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Abstract

In this paper we present a numerical method for solving a two point boundary value
problem in the interval [0,1] with regular singularity at x =0. By employing the
Chebyshev economizition on [0, §], where ¢ is near the singularity, we first replace it by a
regular problem on some interval [J,1]. The stable central difference method is then
employed to solve the problem over the reduced interval. Some numerical results are
presented to demonstrate the applicability of the method.
© 2002 Published by Elsevier Inc.
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1. Introduction

Consider a linear homogeneous differential equation of form

Py (x) + q(x)y' (x) + r(x)y(x) =0

which can be rewritten in the form
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where a(x) and b(x) both possess Taylor series expansions about the point
X = a, 1.e. a is regular singular point of the differential equation.

The numerical treatment of the singular boundary value problems has al-
ways been far from trivial, because of the singularity. Jamet [4] has discussed
existence and uniqueness of solutions of second-order linear singular boundary
value problems and presented finite difference method for numerically solving
such problems. Kadalbajoo and Raman [6] used series solution in the vicinity
of the singular point to subtract singularity and then used the invariant im-
bedding technique to solve the regular boundary value problem in the re-
maining interval. Cohen and Jones [1] studied a shifted chebyshev polynomial
with finite deferred correction approach for a second-order linear ordinary
differential equation with a regular singular point. They considered these
polynomials the whole interval where the polynomials are valid, by neglecting
the effect of singularity.

In this paper we present a numerical method for solving boundary value
problems with regular singularity. The singular problem over the interval [0, 1]
is first reduced to regular problem over [J, 1], 6 > 0 is near the singularity. This
is done by making use of Chebshey economizition in the vicinity of the sin-
gularity and obtaining a boundary condition at x = 6. The stable central dif-
ference (SCD) method is then employed for solving the regular problem. Some
numerical results are presented to demonstrate the applicability of the method.

2. Description of the method

Consider a homogeneous linear ordinary differential equation give by
p)Y'(x) + q(x)y (x) + r(x)y(x) = 0 (D)
With the boundary conditions y(0) =4 and y(1) =B (2)

where x = 0 is the regular singular point of the differential equation (1). Since

x =0 is a regular singularity, we make use of a series expansion in a small
interval near x = 0 and Eq. (1) has a solution of the form

o0

yx) =D G, G #£0 (3)

k=0

The coefficients C; and the indicial roots r are obtained by differentiating (3),
substituting in (1) and comparing the coefficients of like powers of x on the two
sides of the equation. The general solution can be written as

y) = a5 )
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where S} (x) and S»(x) are linearly independent solutions and oy, o, are arbitrary
constants. Keller [7] and Coddington and Levinson [2] have discussed the
basics theoretical results of series expansion about a singular point. The series
solution may be valid for the entire interval [0, 1] but due to its slow conver-
gence, to over come this situation we recommend that the series expansion be
approximated by an economized expansion in (0, ) where 0 < 0 < 1.

Let us assume that for different indicial values the series S;(x) and S,(x) are
equal to S(x). So that the general solution is of the form

y(x) = (oux™ + 0x™)S(x) (5)
where m;, m, are the indicial roots of Eq. (1). In order to approximate S(x) by
an economized expansion P(x), we assume that

N

P) = > (©)

Jj=0

satisfies the differential equation
" / « X
()Y (x) + q(x)y (x) + r(x)y(x) = T ( 5) o

taking 6 = 1, and choosing 7 so that P(0) = 4, where N is an arbitrary con-
stant. Now by substituting P(x) for y(x) and corresponding the like powers of x
on both sides in (7) we can find the coefficients a; and write (6) as

y(x) = (g™ + apx™)P(x) 0<x<9 (8)

Now we reduce problems (1) and (2) to regular boundary value problem, by
finding a new boundary condition at x = 4. To do this we have from Eq. (8)

y(x) = ouRi(x) + 2R (x) )
where R;(x) = x™ P(x) and Ry(x) = x™P(x). Eq. (9) at x = 4 can be written as
¥(8) = yR1 () + 0aR>(9) (10)
We also have from Eq. (9)
V'(0) = au R\ (8) + 22R)(0) (11)
solving (10) and (11) for o; and o, we get
_ Y(O)Ry(9) — Y (0)Rx(9)
" = RORD) ~ RO 0) (12
_ YORi(9) — y(9)R(9)
%= ROR) — RO 0) ()

Since y(0) = 4, we have Eq. (9)
A = o1R1(0) + 0,R,(0) (14)
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Using Egs. (12)—(14) we have

Y(0)R;(9) = ¥ (0)R1(9)
Ri(0)R5(9) — Ra(0)R} (9)

Y (0)R1(9) — y(9)R; (9)
Ri(0)R(9) — Ra(9)R; (9)

R2(0) =4

the above equation can be conveniently written as

(Ri(0)R5(3) — R|(0)R2(9))7(3) + (R1(9)R2(0) — R2(0)R1(0))y'(9) = Aq(9)
where

O(x) = Ri(x)R)(x) — R (x)Ra(x)
This equation can be conveniently written as

Ky(0) + Ly () =M (15)
where

K =Ri(0)R,(d) — R (6)R,(0)

L=Ri()R:(0) — R(3)R1(0) and M = A4Q(5)
Eq. (15) give the new boundary condition at x = §. Thus the regular boundary
value problem over [0, 1] is given by p(x)y”(x) + g(x)y' (x) + r(x)y(x) = 0 with
boundary conditions Ky(d) + Ly'(6) = M and y(1) = B.

In case of non-homogeneous equation

p(x)y"(x) + q(x)y (x) + r(x)y(x) = h(x)
The above procedure can be applied by making P(x) = Z;V:O ax’ satisfies the
equation

X

PEY'(x) + g(e)y/ () + r(e)y(x) = 73,5 ) + h) (16)

To obtain the coefficients a; by comparing the coefficients on both sides of the
Eq. (16).

3. Stable central difference method of order two

In this section we briefly describe the SCD method. Stabilizing the classical
central difference (CD) method (for details see Ref. [3]) develops this SCD
method. To obtain these methods, we re-approximate the CD approximation
by rewriting its error terms as a combination of first- and second-derivative
terms and approximating them. Such a re-approximation process has a sta-
bilizing effect and so we shall call our new methods the stabilized central dif-
ference methods (in short SCD methods) (for details see Ref. [5]). In particular,
we have discussed the second order SCD methods using three points so that we
get three-term recurrence relationship. Consider the equation
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V') +/(x)y (x) + g(x)y(x) =0 (17)
With Ky(6) + Ly (6) =M and y(1)=B (17a)
A unique solution y(x) of (17) exists f(x), g(x) are continuous on [J, 1] and g(x)

is negative there. Since these functions are continuous on a closed and bounded
interval, there must exist positive constants F*, G*, and G, such that

fI<F, 0<G.<g(x) <G, o<x<
We now divide [, 1] into ‘%’ equal parts by 6 =xp < x; < -+ <x, = 1, with
h=x;—x;_; (i=1,2,...,n), where h is the mesh size. By Taylor series ex-

pansion we obtain the CD formulas for y/, y/ assuming that y has continuous
fourth-order derivatives in the interval [, 1].

Vit — 2y i n o,
T () (18)
and
!~ Yir1 — Vi h2 "
yi - = 2h 1 7%.}} (’7) (19)

where &, 1 € [x;_1,x;41]. Substituting (18) and (19) in (17) at x = x;, we get the
CD operator L, defined by

Lth = a;)i-1 + b,'y,' + CiVir1 = 'Ci[yL 1 g i g n—1 (20)

where

n hzi "
o] = T e + L)

where &, 1 € [x;,_1,x:11], here 1,[y] are local truncation errors of the CD ap-
proximation.

To obtain numerical solution of (17) by the CD operator L,, we solve the
system of equations formed by the three-term recurrence relation:

Lyyi = a1 + biyi + ¢iyir1, 1<i<n—1 (22)
By rewriting the CD formulas for y/, ' in new form as given below:

" Vi1 — 2yi +yi71 h2 1
e e R 23
i 2 12)}; + R ( )
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;o Yitl = Vi-1 W "
- y" LR 24
where
2h49(6) W40
Ry = —27'(5) and R, =— y5|(”) for &, n € [xio1,xip4]

By substituting these /, 3/’ from Eqgs. (23) and (24) in (17) at x = x;, we get
the CD approximation in a form that includes the O(h?) error term for y':

ﬁhz /1
6

Lyyi — +R=0 (25)

where R = —(h*/12)y + Ry + f;R, and L, is the CD operator as in (22).
Writing f(x) = f, g(x) = g in (17) we get
V== —gy
By differentiating both sides of this equation with respect to x, we get
V== + g+ )Y + ) (26)

Substituting (27) in (26), we get

]’12
Ly + 2 5] + &ile + 1))V + figin] + R =0 (27)

where R = R, + fiR, — (h*/12)y". Note that the term A>f?y//6 can reinforce
the central coefficient, b; when y approximated by (23).

Now we approximate the converted error term in Eq. (27) by using the CD
formulas for y!', y/. Then adding the new approximation to L,);, defined by (21),
we obtain the second-order SCD operator (SCD-2 operator) L;.

Ly, =ay_1+by+cyn=1, 1<i<n-—1 (28)
where

* i2 hﬁ(gl +f;/)

e S T

:wg

bf=b, - o1 29
, >+ (29)
. f2 kg + 1)

GEat et T

where a;, b;, ¢; are as in Eq. (21). 77 [y] are the local truncation errors of SCD-2
approximation of (1) given below
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* h2 h4f;'2 iv h4fl N D
b= 3+ o i+ G 10l - R (30)

36
R =R, + fiR, = O(h*)

To obtain numerical solution of (18) by SCD-2 operator, we solve the
system of equations formed by the three-term recurrence relation:

Ly =day1 +by+cy1=0, 1<i<n—-1 (31)

Eq. (31) lead to a system of (n—1) equations with (n+ 1) unknowns
Y0, V1, -+, ¥a- The two boundary conditions (16) and y(1) = B together with
(n — 1) equations are then sufficient to solve for the unknowns. The matrix
problem associated with (31) is a tridiagonal algebraic system and the solution
of this tridiagonal system can easily be obtained by using an efficient algorithm
called the Thomas Algorithm.

4. Numerical results

In this section, we present the numerical example to illustrate the applica-
bility of the method described in the previous sections. This problem has earlier
been studied by Cohen and Jones [1] by using finite difference and deferred
correction approach.

Example. We consider the second-order differential equation
(1 +x)y"(x) + (1 4+ 5x))/(x) + y(x) = 0

with boundary conditions
y(0) =x(1.5) =1

The analytical solution for the problem is given by y(x) = (1 + v/1.5x)/(1 +x).
The computational results are presented in Tables 1 and 2. The polynomials for
N =8 and 5 are given by

Py(x) = 1 —0.9998916x + 0.9975789x> — 0.9781525x" + 0.8948963x*
— 0.6913812x° + 0.3953593x° — 0.1416262x” + 0.0232174x®

Py(x) = 1 — 0.991087504x + 0.916816709x> — 0.679150162x°
+0.322650342x* — 0.069139359x°
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Table 1
Computational for Example with N = 8

x y(x) SCD-2 y(x) EXACT «x »(x) SCD-2 y(x) EXACT
N=8,0=01,0=1,H=1/50 N=8,0=01,0=1,H=1/100

0.1 1.261738 1.261180 0.1 1.261312 1.261180
0.2 1.289951 1.289769 0.2 1.289798 1.289769
0.3 1.285325 1.285246 0.3 1.285245 1.285246
0.4 1.267607 1.267569 0.4 1.267554 1.267569
0.5 1.244036 1.244017 0.5 1.243997 1.244017
0.6 1.217937 1.217927 0.6 1.217907 1.217927
0.7 1.191001 1.190997 0.7 1.190980 1.190997
0.8 1.164137 1.164136 0.8 1.164121 1.164136
0.9 1.137838 1.137840 0.9 1.137825 1.137840
1.0 1.112370 1.112373 1.0 1.112359 1.112373
1.1 1.087867 1.087868 1.1 1.087854 1.087868
1.2 1.064381 1.064382 1.2 1.064371 1.064382
1.3 1.041923 1.041924 1.3 1.041914 1.041924
1.4 1.020474 1.020474 1.4 1.020469 1.020474
1.5 1.000000 1.000000 1.5 1.000000 1.000000
N=8,0=020=1,H=1/50 N=8,§=020=1,H=1/100

0.2 1.289925 1.289769 0.2 1.289785 1.289769
0.3 1.285304 1.285246 0.3 1.285237 1.285246
0.4 1.267588 1.267569 0.4 1.267548 1.267569
0.5 1.244020 1.244017 0.5 1.243993 1.244017
0.6 1.217923 1.217927 0.6 1.217905 1.217927
0.7 1.190989 1.190997 0.7 1.190979 1.190997
0.8 1.164127 1.164136 0.8 1.164121 1.164136
0.9 1.137829 1.137840 0.9 1.137825 1.137840
1.0 1.112362 1.112373 1.0 1.112359 1.112373
1.1 1.087860 1.087868 1.1 1.087854 1.087868
1.2 1.064376 1.064382 1.2 1.064371 1.064382
1.3 1.041920 1.041924 1.3 1.041914 1.041924
1.4 1.020472 1.020474 1.4 1.020469 1.020474
1.5 1.000000 1.000000 1.5 1.000000 1.000000
N=38,6=050=1,H=1/50 N=8,6=050=1,H=1/100

0.5 1.244041 1.244017 0.5 1.244001 1.244017
0.6 1.217941 1.217927 0.6 1.217909 1.217927
0.7 1.191005 1.190997 0.7 1.190981 1.190997
0.8 1.164140 1.164136 0.8 1.164121 1.164136
0.9 1.137841 1.137840 0.9 1.137824 1.137840
1.0 1.112372 1.112373 1.0 1.112358 1.112373
1.1 1.087868 1.087868 1.1 1.087854 1.087868
1.2 1.064382 1.064382 1.2 1.064371 1.064382
1.3 1.041923 1.041924 1.3 1.041914 1.041924
1.4 1.020474 1.020474 1.4 1.020469 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000
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Table 2
Computational for Example with N = 5

x y(x) SCD-2 y(x) EXACT «x »(x) SCD-2 y(x) EXACT
N=506=010=1H=1/5 N=56=01,0=1H=1/100

0.1 1.261993 1.261180 0.1 1.261566 1.261180
0.2 1.290151 1.289769 0.2 1.289999 1.289769
0.3 1.285486 1.285246 0.3 1.285406 1.285246
0.4 1.267738 1.267569 0.4 1.267685 1.267569
0.5 1.244141 1.244017 0.5 1.244103 1.244017
0.6 1.218022 1.217927 0.6 1.217993 1.217927
0.7 1.191070 1.190997 0.7 1.191050 1.190997
0.8 1.164192 1.164136 0.8 1.164177 1.164136
0.9 1.137881 1.137840 0.9 1.137868 1.137840
1.0 1.112404 1.112373 1.0 1.112392 1.112373
1.1 1.087891 1.087868 1.1 1.087879 1.087868
1.2 1.064398 1.064382 1.2 1.064389 1.064382
1.3 1.041934 1.041924 1.3 1.041925 1.041924
1.4 1.020479 1.020474 1.4 1.020474 1.020474
1.5 1.000000 1.000000 1.5 1.000000 1.000000
N=506=020=1,H=1/5 N=506=020=1,H=1/100

0.2 1.290630 1.289769 0.2 1.290488 1.289769
0.3 1.285870 1.285246 0.3 1.285802 1.285246
0.4 1.268048 1.267569 0.4 1.268007 1.267569
0.5 1.244394 1.244017 0.5 1.244367 1.244017
0.6 1.218228 1.217927 0.6 1.218210 1.217927
0.7 1.191237 1.190997 0.7 1.191228 1.190997
0.8 1.164327 1.164136 0.8 1.164323 1.164136
0.9 1.137987 1.137840 0.9 1.137987 1.137840
1.0 1.112486 1.112373 1.0 1.112487 1.112373
1.1 1.087952 1.087868 1.1 1.087951 1.087868
1.2 1.064441 1.064382 1.2 1.064440 1.064382
1.3 1.041960 1.041924 1.3 1.041958 1.041924
1.4 1.020491 1.020474 1.4 1.020491 1.020474
1.5 1.000000 1.000000 1.5 1.000000 1.000000

5. Discussion and conclusion

The numerical results for the example at different mesh points for different
mesh sizes and two different values of N and ¢ are presented in Tables 1 and 2.
Cohen and Jones [1] solved it using finite difference deferred correction tech-
nique. They used economized series expansion in the interval [0, 1] and ob-
tained finite difference solution on the remaining part of the interval. So they
neglected the effect of the singularity on the solution in the immediate neigh-
borhood of the singular point. Since computed difference solution is far away
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from the singularity. The present method is simple, easy to program and quite
efficient for solving singular boundary value problems. It can be observed from
these tables that the computed solutions compare well with the exact solutions.
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