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Abstract

In this paper we present a numerical method for solving a two point boundary value

problem in the interval ½0; 1� with regular singularity at x ¼ 0. By employing the
Chebyshev economizition on ½0; d�, where d is near the singularity, we first replace it by a
regular problem on some interval ½d; 1�. The stable central difference method is then
employed to solve the problem over the reduced interval. Some numerical results are

presented to demonstrate the applicability of the method.
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1. Introduction

Consider a linear homogeneous differential equation of form
* Co

E-m

0096-3

doi:10.
pðxÞy00ðxÞ þ qðxÞy0ðxÞ þ rðxÞyðxÞ ¼ 0
which can be rewritten in the form
y00ðxÞ þ aðxÞ
ðx� aÞ y

0ðxÞ þ bðxÞ
ðx� aÞ2

yðxÞ ¼ 0
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where aðxÞ and bðxÞ both possess Taylor series expansions about the point
x ¼ a, i.e. a is regular singular point of the differential equation.
The numerical treatment of the singular boundary value problems has al-

ways been far from trivial, because of the singularity. Jamet [4] has discussed

existence and uniqueness of solutions of second-order linear singular boundary

value problems and presented finite difference method for numerically solving

such problems. Kadalbajoo and Raman [6] used series solution in the vicinity

of the singular point to subtract singularity and then used the invariant im-

bedding technique to solve the regular boundary value problem in the re-

maining interval. Cohen and Jones [1] studied a shifted chebyshev polynomial
with finite deferred correction approach for a second-order linear ordinary

differential equation with a regular singular point. They considered these

polynomials the whole interval where the polynomials are valid, by neglecting

the effect of singularity.

In this paper we present a numerical method for solving boundary value

problems with regular singularity. The singular problem over the interval ½0; 1�
is first reduced to regular problem over ½d; 1�, d > 0 is near the singularity. This
is done by making use of Chebshey economizition in the vicinity of the sin-
gularity and obtaining a boundary condition at x ¼ d. The stable central dif-
ference (SCD) method is then employed for solving the regular problem. Some

numerical results are presented to demonstrate the applicability of the method.
2. Description of the method

Consider a homogeneous linear ordinary differential equation give by
pðxÞy00ðxÞ þ qðxÞy0ðxÞ þ rðxÞyðxÞ ¼ 0 ð1Þ

With the boundary conditions yð0Þ ¼ A and yð1Þ ¼ B ð2Þ
where x ¼ 0 is the regular singular point of the differential equation (1). Since
x ¼ 0 is a regular singularity, we make use of a series expansion in a small
interval near x ¼ 0 and Eq. (1) has a solution of the form
yðxÞ ¼
X1
k¼0

Ckxkþr; C0 6¼ 0 ð3Þ
The coefficients Ck and the indicial roots r are obtained by differentiating (3),

substituting in (1) and comparing the coefficients of like powers of x on the two

sides of the equation. The general solution can be written as
yðxÞ ¼
X2
i¼0

aiSiðxÞ ð4Þ
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where S1ðxÞ and S2ðxÞ are linearly independent solutions and a1, a2 are arbitrary
constants. Keller [7] and Coddington and Levinson [2] have discussed the
basics theoretical results of series expansion about a singular point. The series

solution may be valid for the entire interval ½0; 1� but due to its slow conver-
gence, to over come this situation we recommend that the series expansion be

approximated by an economized expansion in ð0; hÞ where 0 < h6 1.
Let us assume that for different indicial values the series S1ðxÞ and S2ðxÞ are

equal to SðxÞ. So that the general solution is of the form

yðxÞ ¼ ða1xm1 þ a2xm2ÞSðxÞ ð5Þ
where m1, m2 are the indicial roots of Eq. (1). In order to approximate SðxÞ by
an economized expansion P ðxÞ, we assume that
PðxÞ ¼
XN
j¼0

ajxj ð6Þ
satisfies the differential equation
pðxÞy00ðxÞ þ qðxÞy0ðxÞ þ rðxÞyðxÞ ¼ s�N
x
h

� �
ð7Þ
taking h ¼ 1, and choosing s so that Pð0Þ ¼ A, where N is an arbitrary con-

stant. Now by substituting PðxÞ for yðxÞ and corresponding the like powers of x
on both sides in (7) we can find the coefficients aj and write (6) as
yðxÞ ¼ ða1xm1 þ a2xm2ÞP ðxÞ 0 < x6 d ð8Þ
Now we reduce problems (1) and (2) to regular boundary value problem, by

finding a new boundary condition at x ¼ d. To do this we have from Eq. (8)
yðxÞ ¼ a1R1ðxÞ þ a2R2ðxÞ ð9Þ
where R1ðxÞ ¼ xm1P ðxÞ and R2ðxÞ ¼ xm2P ðxÞ. Eq. (9) at x ¼ d can be written as
yðdÞ ¼ a1R1ðdÞ þ a2R2ðdÞ ð10Þ
We also have from Eq. (9)
y0ðdÞ ¼ a1R0
1ðdÞ þ a2R0

2ðdÞ ð11Þ
solving (10) and (11) for a1 and a2, we get
a1 ¼
yðdÞR0

2ðdÞ � y0ðdÞR2ðdÞ
R1ðdÞR0

2ðdÞ � R2ðdÞR0
1ðdÞ

ð12Þ

a2 ¼
y0ðdÞR1ðdÞ � yðdÞR0

1ðdÞ
R1ðdÞR0

2ðdÞ � R2ðdÞR0
1ðdÞ

ð13Þ
Since yð0Þ ¼ A, we have Eq. (9)
A ¼ a1R1ð0Þ þ a2R2ð0Þ ð14Þ
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Using Eqs. (12)–(14) we have
yðdÞR0
2ðdÞ � y 0ðdÞR2ðdÞ

R1ðdÞR0
2ðdÞ � R2ðdÞR0

1ðdÞ
R1ð0Þ þ

y 0ðdÞR1ðdÞ � yðdÞR0
1ðdÞ

R1ðdÞR0
2ðdÞ � R2ðdÞR0

1ðdÞ
R2ð0Þ ¼ A
the above equation can be conveniently written as
R1ð0ÞR0
2ðdÞ

�
� R0

1ðdÞR2ðdÞ
�
yðdÞ þ R1ðdÞR2ð0Þð � R2ðdÞR1ð0ÞÞy 0ðdÞ ¼ AqðdÞ
where
QðxÞ ¼ R1ðxÞR0
2ðxÞ � R0

1ðxÞR2ðxÞ
This equation can be conveniently written as
KyðdÞ þ Ly0ðdÞ ¼ M ð15Þ
where
K ¼ R1ð0ÞR0
2ðdÞ � R0

1ðdÞR2ð0Þ
L ¼ R1ðdÞR2ð0Þ � R2ðdÞR1ð0Þ and M ¼ AQðdÞ
Eq. (15) give the new boundary condition at x ¼ d. Thus the regular boundary
value problem over ½d; 1� is given by pðxÞy 00ðxÞ þ qðxÞy 0ðxÞ þ rðxÞyðxÞ ¼ 0 with
boundary conditions KyðdÞ þ Ly 0ðdÞ ¼ M and yð1Þ ¼ B.
In case of non-homogeneous equation
pðxÞy00ðxÞ þ qðxÞy0ðxÞ þ rðxÞyðxÞ ¼ hðxÞ
The above procedure can be applied by making P ðxÞ ¼
PN

j¼0 ajx
j satisfies the

equation
pðxÞy00ðxÞ þ qðxÞy0ðxÞ þ rðxÞyðxÞ ¼ s�N
x
h

� �
þ hðxÞ ð16Þ
To obtain the coefficients aj by comparing the coefficients on both sides of the
Eq. (16).
3. Stable central difference method of order two

In this section we briefly describe the SCD method. Stabilizing the classical

central difference (CD) method (for details see Ref. [3]) develops this SCD

method. To obtain these methods, we re-approximate the CD approximation

by rewriting its error terms as a combination of first- and second-derivative

terms and approximating them. Such a re-approximation process has a sta-

bilizing effect and so we shall call our new methods the stabilized central dif-
ference methods (in short SCD methods) (for details see Ref. [5]). In particular,

we have discussed the second order SCD methods using three points so that we

get three-term recurrence relationship. Consider the equation
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y00ðxÞ þ f ðxÞy 0ðxÞ þ gðxÞyðxÞ ¼ 0 ð17Þ

With KyðdÞ þ Ly 0ðdÞ ¼ M and yð1Þ ¼ B ð17aÞ
A unique solution yðxÞ of (17) exists f ðxÞ, gðxÞ are continuous on ½d; 1� and gðxÞ
is negative there. Since these functions are continuous on a closed and bounded

interval, there must exist positive constants F �, G�, and G� such that
jf ðxÞj6 F �; 0 < G� 6 gðxÞ6G�; d6 x6 1
We now divide ½d; 1� into �n� equal parts by d ¼ x0 < x1 < 
 
 
 < xn ¼ 1, with
h ¼ xi � xi�1 (i ¼ 1; 2; . . . ; n), where h is the mesh size. By Taylor series ex-

pansion we obtain the CD formulas for y0i , y
00
i assuming that y has continuous

fourth-order derivatives in the interval ½d; 1�.
y00i ffi yiþ1 � 2yi þ yi�1
h2

� h2

12
yivi ðnÞ ð18Þ
and
y0i ffi
yiþ1 � yi�1
2h

� h2

6
y000ðgÞ ð19Þ
where n, g 2 ½xi�1; xiþ1�. Substituting (18) and (19) in (17) at x ¼ xi, we get the
CD operator Lh, defined by
Lhyi � aiyi�1 þ biyi þ ciyiþ1 ¼ si½y�; 16 i6 n� 1 ð20Þ
where
ai ¼
1

h2
� fi
2h

bi ¼ gi �
2

h2

ci ¼
1

h2
þ fi
2h

si½y� ¼
h2

12
y ivi ðnÞ þ

h2fi
6

y000ðgÞ

ð21Þ
where n, g 2 ½xi�1; xiþ1�, here si½y� are local truncation errors of the CD ap-

proximation.

To obtain numerical solution of (17) by the CD operator Lh, we solve the

system of equations formed by the three-term recurrence relation:
Lhyi � aiyi�1 þ biyi þ ciyiþ1; 16 i6 n� 1 ð22Þ
By rewriting the CD formulas for y0i , y
00
i in new form as given below:
y00i ffi yiþ1 � 2yi þ yi�1
h2

� h2

12
y0000i þ R1 ð23Þ
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y0i ffi
yiþ1 � yi�1
2h

� h2

6
y000i þ R2 ð24Þ
where
R1 ¼ � 2h
4yð6ÞðnÞ
6!

and R2 ¼ � h4yð5ÞðgÞ
5!

for n; g 2 ½xi�1; xiþ1�
By substituting these y0i , y
00
i from Eqs. (23) and (24) in (17) at x ¼ xi, we get

the CD approximation in a form that includes the Oðh2Þ error term for y0:
Lhyi �
fih2

6
y 000i þ R ¼ 0 ð25Þ
where R ¼ �ðh2=12Þy ivi þ R1 þ fiR2 and Lh is the CD operator as in (22).

Writing f ðxÞ ¼ f , gðxÞ ¼ g in (17) we get
y00 ¼ �fy0 � gy
By differentiating both sides of this equation with respect to x, we get
y000 ¼ �½fy 00 þ ðg þ f 0Þy0 þ g0y� ð26Þ
Substituting (27) in (26), we get
Lhyi þ
h2

6
½f 2i y 00i þ giðgi þ f 0

i Þy 0 þ fig0iyi� þ R ¼ 0 ð27Þ
where R ¼ R1 þ fiR2 � ðh2=12Þy ivi . Note that the term h2f 2i y
00
i =6 can reinforce

the central coefficient, bi when y00i approximated by (23).
Now we approximate the converted error term in Eq. (27) by using the CD

formulas for y 00i , y
0
i . Then adding the new approximation to Lhyi, defined by (21),

we obtain the second-order SCD operator (SCD-2 operator) L�
h.
L�
hyi � a�i yi�1 þ b�i yi þ c�i yiþ1 ¼ s�i ½y�; 16 i6 n� 1 ð28Þ
where
a�i ¼ ai þ
f 2i
6
� hfiðgi þ f 0

i Þ
12

b�i ¼ bi �
f 2i
3
þ h2fig0i

6

c�i ¼ ci þ
f 2i
6
þ hfiðgi þ f 0

i Þ
12

ð29Þ
where ai, bi, ci are as in Eq. (21). s�i ½y� are the local truncation errors of SCD-2
approximation of (1) given below
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s�i ½y� ¼
h2

12

�
þ h4f 2i
72

�
y ivi þ h4fi

36
ðgi þ f 0

i Þy000i � eRR ð30Þ
eRR ¼ R1 þ fiR2 ¼ Oðh4Þ
To obtain numerical solution of (18) by SCD-2 operator, we solve the

system of equations formed by the three-term recurrence relation:
L�
hyi � a�i yi�1 þ b�i yi þ c�i yiþ1 ¼ 0; 16 i6 n� 1 ð31Þ
Eq. (31) lead to a system of ðn� 1Þ equations with ðnþ 1Þ unknowns
y0; y1; . . . ; yn. The two boundary conditions (16) and yð1Þ ¼ B together with
ðn� 1Þ equations are then sufficient to solve for the unknowns. The matrix
problem associated with (31) is a tridiagonal algebraic system and the solution

of this tridiagonal system can easily be obtained by using an efficient algorithm

called the Thomas Algorithm.
4. Numerical results

In this section, we present the numerical example to illustrate the applica-

bility of the method described in the previous sections. This problem has earlier

been studied by Cohen and Jones [1] by using finite difference and deferred

correction approach.
Example. We consider the second-order differential equation
2xð1þ xÞy00ðxÞ þ ð1þ 5xÞy0ðxÞ þ yðxÞ ¼ 0
with boundary conditions
yð0Þ ¼ yð1:5Þ ¼ 1
The analytical solution for the problem is given by yðxÞ ¼ ð1þ
ffiffiffiffiffiffiffiffiffi
1:5x

p
Þ=ð1þ xÞ.

The computational results are presented in Tables 1 and 2. The polynomials for

N ¼ 8 and 5 are given by
PN ðxÞ ¼ 1� 0:9998916xþ 0:9975789x2 � 0:9781525x3 þ 0:8948963x4

� 0:6913812x5 þ 0:3953593x6 � 0:1416262x7 þ 0:0232174x8

PN ðxÞ ¼ 1� 0:991087504xþ 0:916816709x2 � 0:679150162x3

þ 0:322650342x4 � 0:069139359x5



Table 1

Computational for Example with N ¼ 8

x yðxÞ SCD-2 yðxÞ EXACT x yðxÞ SCD-2 yðxÞ EXACT
N ¼ 8, d ¼ 0:1, h ¼ 1, H ¼ 1=50 N ¼ 8, d ¼ 0:1, h ¼ 1, H ¼ 1=100

0.1 1.261738 1.261180 0.1 1.261312 1.261180

0.2 1.289951 1.289769 0.2 1.289798 1.289769

0.3 1.285325 1.285246 0.3 1.285245 1.285246

0.4 1.267607 1.267569 0.4 1.267554 1.267569

0.5 1.244036 1.244017 0.5 1.243997 1.244017

0.6 1.217937 1.217927 0.6 1.217907 1.217927

0.7 1.191001 1.190997 0.7 1.190980 1.190997

0.8 1.164137 1.164136 0.8 1.164121 1.164136

0.9 1.137838 1.137840 0.9 1.137825 1.137840

1.0 1.112370 1.112373 1.0 1.112359 1.112373

1.1 1.087867 1.087868 1.1 1.087854 1.087868

1.2 1.064381 1.064382 1.2 1.064371 1.064382

1.3 1.041923 1.041924 1.3 1.041914 1.041924

1.4 1.020474 1.020474 1.4 1.020469 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000

N ¼ 8, d ¼ 0:2, h ¼ 1, H ¼ 1=50 N ¼ 8, d ¼ 0:2, h ¼ 1, H ¼ 1=100

0.2 1.289925 1.289769 0.2 1.289785 1.289769

0.3 1.285304 1.285246 0.3 1.285237 1.285246

0.4 1.267588 1.267569 0.4 1.267548 1.267569

0.5 1.244020 1.244017 0.5 1.243993 1.244017

0.6 1.217923 1.217927 0.6 1.217905 1.217927

0.7 1.190989 1.190997 0.7 1.190979 1.190997

0.8 1.164127 1.164136 0.8 1.164121 1.164136

0.9 1.137829 1.137840 0.9 1.137825 1.137840

1.0 1.112362 1.112373 1.0 1.112359 1.112373

1.1 1.087860 1.087868 1.1 1.087854 1.087868

1.2 1.064376 1.064382 1.2 1.064371 1.064382

1.3 1.041920 1.041924 1.3 1.041914 1.041924

1.4 1.020472 1.020474 1.4 1.020469 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000

N ¼ 8, d ¼ 0:5, h ¼ 1, H ¼ 1=50 N ¼ 8, d ¼ 0:5, h ¼ 1, H ¼ 1=100

0.5 1.244041 1.244017 0.5 1.244001 1.244017

0.6 1.217941 1.217927 0.6 1.217909 1.217927

0.7 1.191005 1.190997 0.7 1.190981 1.190997

0.8 1.164140 1.164136 0.8 1.164121 1.164136

0.9 1.137841 1.137840 0.9 1.137824 1.137840

1.0 1.112372 1.112373 1.0 1.112358 1.112373

1.1 1.087868 1.087868 1.1 1.087854 1.087868

1.2 1.064382 1.064382 1.2 1.064371 1.064382

1.3 1.041923 1.041924 1.3 1.041914 1.041924

1.4 1.020474 1.020474 1.4 1.020469 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000
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Table 2

Computational for Example with N ¼ 5

x yðxÞ SCD-2 yðxÞ EXACT x yðxÞ SCD-2 yðxÞ EXACT
N ¼ 5, d ¼ 0:1, h ¼ 1, H ¼ 1=50 N ¼ 5, d ¼ 0:1, h ¼ 1, H ¼ 1=100

0.1 1.261993 1.261180 0.1 1.261566 1.261180

0.2 1.290151 1.289769 0.2 1.289999 1.289769

0.3 1.285486 1.285246 0.3 1.285406 1.285246

0.4 1.267738 1.267569 0.4 1.267685 1.267569

0.5 1.244141 1.244017 0.5 1.244103 1.244017

0.6 1.218022 1.217927 0.6 1.217993 1.217927

0.7 1.191070 1.190997 0.7 1.191050 1.190997

0.8 1.164192 1.164136 0.8 1.164177 1.164136

0.9 1.137881 1.137840 0.9 1.137868 1.137840

1.0 1.112404 1.112373 1.0 1.112392 1.112373

1.1 1.087891 1.087868 1.1 1.087879 1.087868

1.2 1.064398 1.064382 1.2 1.064389 1.064382

1.3 1.041934 1.041924 1.3 1.041925 1.041924

1.4 1.020479 1.020474 1.4 1.020474 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000

N ¼ 5, d ¼ 0:2, h ¼ 1, H ¼ 1=50 N ¼ 5, d ¼ 0:2, h ¼ 1, H ¼ 1=100

0.2 1.290630 1.289769 0.2 1.290488 1.289769

0.3 1.285870 1.285246 0.3 1.285802 1.285246

0.4 1.268048 1.267569 0.4 1.268007 1.267569

0.5 1.244394 1.244017 0.5 1.244367 1.244017

0.6 1.218228 1.217927 0.6 1.218210 1.217927

0.7 1.191237 1.190997 0.7 1.191228 1.190997

0.8 1.164327 1.164136 0.8 1.164323 1.164136

0.9 1.137987 1.137840 0.9 1.137987 1.137840

1.0 1.112486 1.112373 1.0 1.112487 1.112373

1.1 1.087952 1.087868 1.1 1.087951 1.087868

1.2 1.064441 1.064382 1.2 1.064440 1.064382

1.3 1.041960 1.041924 1.3 1.041958 1.041924

1.4 1.020491 1.020474 1.4 1.020491 1.020474

1.5 1.000000 1.000000 1.5 1.000000 1.000000
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5. Discussion and conclusion

The numerical results for the example at different mesh points for different

mesh sizes and two different values of N and d are presented in Tables 1 and 2.
Cohen and Jones [1] solved it using finite difference deferred correction tech-

nique. They used economized series expansion in the interval ½0; 1� and ob-
tained finite difference solution on the remaining part of the interval. So they

neglected the effect of the singularity on the solution in the immediate neigh-
borhood of the singular point. Since computed difference solution is far away
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from the singularity. The present method is simple, easy to program and quite

efficient for solving singular boundary value problems. It can be observed from
these tables that the computed solutions compare well with the exact solutions.
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