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Abstract

In this paper, a numerical integration method is presented for solving general sin-

gularly perturbed two-point boundary value problems. The original second-order dif-

ferential equation is replaced by an approximate first-order differential equation with a

small deviating argument. Then, the trapezoidal formula is used to obtain the three-

term recurrence relationship. The proposed method is iterative on the deviating argu-

ment. To demonstrate the applicability of the method, we have solved several model

linear and non-linear examples with left-end boundary layer or right-end boundary

layer or an internal layer or two boundary layers and presented the computational

results.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Singular perturbations; Ordinary differential equations; Two point boundary value

problems; Boundary layer

1. Introduction

Singular perturbation problems occur very frequently in various fields of
science and engineering such as fluid dynamics, specifically the fluid flow
problems involving large Reynolds number and other problems in the great
world of fluid motion. The numerical treatment of singular perturbation
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problems is far from trivial because of the boundary layer behaviour of the
solution. However, the area of singular perturbation problems is a field of
increasing interest to applied mathematicians.
The survey paper by Kadalbajoo and Reddy [5], gives an erudite outline of

the singular perturbation problems and their treatment starting from Prandtl’s
paper [12] on fluid dynamical boundary layers. This survey paper will remain
as one of the most readable source on singular perturbation problems.
For a detailed theory and analytical discussion on singular perturbation

problems one may refer to the books and high level monographs: O’Malley
[10,11], Nayfeh [7–9], Kevorkian and Cole [6], Bender and Orszag [2], Hemker
and Miller [4].
In this paper, a numerical integration method is presented for solving gen-

eral singularly perturbed two-point boundary value problems. This method
does not depend on asymptotic expansions. The main feature of this method is
that it does not require very fine mesh size. The original second-order differ-
ential equation is replaced by an approximate first-order differential equation
with a small deviating argument. Then, the trapezoidal formula is used to
obtain the three-term recurrence relationship. Thomas algorithm is used to
solve the resulting tridiagonal algebraic system of equations. The proposed
method is iterative on the deviating argument. The method is to be repeated for
different choices of the deviating argument until the solution profile stabilises.
To demonstrate the applicability of the method, we have solved several model
linear and non-linear examples with left-end boundary layer or right-end
boundary layer or an internal layer or two boundary layers and presented the
computational results. It is observed that the numerical integration method
approximates the exact solution very well.

2. Numerical integration method

For convenience we call our method the ‘Numerical Integration Method’.
To set the stage for the numerical integration method, we consider the fol-
lowing linear singularly perturbed two-point boundary value problem:

ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; 06 x6 1 ð1Þ

with yð0Þ ¼ a and yð1Þ ¼ b; ð2Þ

where e is a small positive parameter ð0 < e � 1Þ; a, b are given constants; aðxÞ,
bðxÞ, and f ðxÞ are assumed to be sufficiently continuously differentiable func-
tions in ½0; 1�. Furthermore, we assume that aðxÞPM > 0 throughout the in-
terval ½0; 1�, whereM is some positive constant. This assumption merely implies
that the boundary layer will be in the neighbourhood of x ¼ 0.
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Let d be a small positive deviating argument ð0 < d � 1Þ. By using Taylor
series expansions in the neighbourhood of the point x, we have

yðx	 dÞ 
 yðxÞ 	 dy 0ðxÞ þ d2

2
y 00ðxÞ; ð3Þ

and consequently, Eq. (1) is replaced by the following first-order differential
equation with a small deviating argument:

2eyðx	 dÞ 	 2eyðxÞ þ 2edy0ðxÞ þ d2aðxÞy0ðxÞ þ d2bðxÞyðxÞ ¼ d2f ðxÞ: ð4Þ

Transition from Eq. (1) to Eq. (4) is admitted, because of the condition that d is
small ð0 < d � 1Þ. This replacement is significant from the computational
point of view. Further details on the validity of this transition can be found in
Elsgolts and Norkin [3, pp. 243 and 244]. Theory and discussion on the dif-
ferential equations with a deviating argument can be found in Elsgolts and
Norkin [3].
We rewrite Eq. (4) in the following convenient form:

y0ðxÞ ¼ pðxÞyðx	 dÞ þ qðxÞyðxÞ þ rðxÞ for d6 x6 1; ð5Þ

where

pðxÞ ¼ 	2e
2ed þ d2aðxÞ

; ð6Þ

qðxÞ ¼ 2e 	 d2bðxÞ
2ed þ d2aðxÞ

; ð7Þ

rðxÞ ¼ d2f ðxÞ
2ed þ d2aðxÞ

: ð8Þ

We now divide the interval ½0; 1� into N equal parts with mesh size h, i.e.,
h ¼ 1=N and xi ¼ ih for i ¼ 0; 1; 2; . . . ;N . Integrating Eq. (5) in ½xi; xiþ1�, ði ¼
1; 2; . . . ;N 	 1Þ, we get

yðxiþ1Þ 	 yðxiÞ ¼
Z xiþ1

xi

½pðxÞyðx	 dÞ þ qðxÞyðxÞ þ rðxÞ�dx: ð9Þ

By making use of the trapezoidal formula for evaluating the integrals ap-
proximately, we obtain

yðxiþ1Þ 	 yðxiÞ ¼
h
2
½pðxiþ1Þyðxiþ1 	 dÞ þ pðxiÞyðxi 	 dÞ�

þ h
2
½qðxiþ1Þyðxiþ1Þ þ qðxiÞyðxiÞ� þ

h
2
½rðxiþ1Þ þ rðxiÞ�: ð10Þ

Again, by means of Taylor series expansion, we have

yðx	 dÞ 
 yðxÞ 	 dy 0ðxÞ;
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and, then by approximating y 0ðxÞ by linear interpolation, we get

yðxi 	 dÞ 
 yðxiÞ 	 d
yðxiÞ 	 yðxi	1Þ

h

� �
¼ 1

�
	 d
h

�
yðxiÞ þ

d
h
yðxi	1Þ; ð11Þ

and similarly

yðxiþ1 	 dÞ 
 1

�
	 d
h

�
yðxiþ1Þ þ

d
h
yðxiÞ: ð12Þ

Hence, by making use of (11) and (12) in (10) we obtain

yðxiþ1Þ 	 yðxiÞ ¼
h
2
pðxiþ1Þ 1

��
	 d

h

�
yðxiþ1Þ þ

d
h
yðxiÞ

�

þ h
2
pðxiÞ 1

��
	 d

h

�
yðxiÞ þ

d
h
yðxi	1Þ

�

þ h
2
½qðxiþ1Þyðxiþ1Þ þ qðxiÞyðxiÞ� þ

h
2
½rðxiþ1Þ þ rðxiÞ�;

yðxiþ1Þ 	 yðxiÞ ¼
h
2

1

�
	 d
h

�
pðxiþ1Þyðxiþ1Þ þ

d
2
pðxiþ1ÞyðxiÞ

þ h
2

1

�
	 d
h

�
pðxiÞyðxiÞ þ

d
2
pðxiÞyðxi	1Þ þ

h
2
qðxiþ1Þyðxiþ1Þ

þ h
2
qðxiÞyðxiÞ þ

h
2
½rðxiþ1Þ þ rðxiÞ�:

This equation leads after simple rearrangement to the final three-term recur-
rence relationship, namely

Eiyi	1 	 Fiyi þ Giyiþ1 ¼ Hi for i ¼ 1; 2; . . . ;N 	 1; ð13Þ

where

Ei ¼ 	 d
2
pi; ð14Þ

Fi ¼ 1þ d
2
piþ1 þ

h
2

1

�
	 d
h

�
pi þ

h
2
qi; ð15Þ

Gi ¼ 1	 h
2

1

�
	 d
h

�
piþ1 	

h
2
qiþ1; ð16Þ

Hi ¼
h
2
½riþ1 þ ri�; ð17Þ

and yi ¼ yðxiÞ, pi ¼ pðxiÞ, qi ¼ qðxiÞ and ri ¼ rðxiÞ. Eq. (13) gives a system of
ðN 	 1Þ equations with ðN þ 1Þ unknowns y0 to yN . The two given boundary
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conditions (2) together with these ðN 	 1Þ equations are then sufficient to solve
for the unknowns y0 to yN . The solution of the tridiagonal system (13) can
easily be obtained by using an efficient algorithm called ‘Thomas Algorithm’
also called ‘Discrete Invariant Imbedding’ [1]. In this algorithm we set a dif-
ference relation of the form

yi ¼ Wiyiþ1 þ Ti; ð18Þ

where Wi and Ti corresponding to W ðxiÞ and T ðxiÞ are to be determined. From
(18) we have

yi	1 ¼ Wi	1yi þ Ti	1: ð19Þ

Substituting (19) in (13), we get

EiðWi	1yi þ Ti	1Þ 	 Fiyi þ Giyiþ1 ¼ HI ;

yi ¼
Gi

Fi 	 EiWi	1
yiþ1 þ

EiTi	1 	 Hi

Fi 	 EiWi	1
: ð20Þ

By comparing (18) and (20), we get

Wi ¼
Gi

Fi 	 EiWi	1
; ð21Þ

Ti ¼
EiTi	1 	 Hi

Fi 	 EiWi	1
: ð22Þ

To solve these recurrence relations for i ¼ 1; 2; . . . ;N 	 1; we need to know the
initial conditions for W0 and T0. This can be done by considering (2)

y0 ¼ a ¼ W0y1 þ T0: ð23Þ

If we choose W0 ¼ 0, then T0 ¼ a. With these initial values, we compute se-
quentially Wi and Ti for i ¼ 1; 2; . . . ;N 	 1; from (21) and (22) in the forward
process and then obtain yi in the backward process from (18) using (2).
Repeat the numerical scheme for different choices of d (deviating argument,

satisfying the condition 0 < d � 1Þ, until the solution profiles do not differ
materially from iteration to iteration. For computational point of view, we use
an absolute error criterion, namely

jyðxÞmþ1 	 yðxÞmj6 r; 06 x6 1; ð24Þ

where yðxÞm is the solution for the mth iterate of d, and r is the prescribed
tolerance bound.

2.1. Linear problems

To demonstrate the applicability of the numerical integration method, we
have applied it to four linear singular perturbation problems with left-end
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boundary layer. These examples have been chosen because they have been
widely discussed in the literature and because approximate solutions are
available for comparison.

Example 1. Consider the following homogeneous SPP from Kevorkian and
Cole [6, p. 33, Eqs. (2.3.26) and (2.3.27)] with a ¼ 0:

ey00ðxÞ þ y 0ðxÞ ¼ 0; 06 x6 1

with yð0Þ ¼ 0 and yð1Þ ¼ 1:

The exact solution is given by

yðxÞ ¼ ð1	 expð	x=eÞÞ
ð1	 expð	1=eÞÞ :

The computational results are presented in Table 1(a) and (b) for e ¼ 10	3,
10	4, respectively.

Table 1

Computational results for Example 1

x yðxÞ Exact solution

d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01
0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.9876486 0.9899944 0.9917358 1.0000000

0.04 0.9998419 0.9998944 0.9999319 1.0000000

0.06 0.9999925 0.9999934 0.9999995 1.0000000

0.08 0.9999945 0.9999945 1.0000000 1.0000000

0.10 0.9999946 0.9999946 1.0000000 1.0000000

0.20 0.9999952 0.9999952 1.0000000 1.0000000

0.40 0.9999964 0.9999964 1.0000000 1.0000000

0.60 0.9999976 0.9999976 1.0000000 1.0000000

0.80 0.9999988 0.9999988 1.0000000 1.0000000

1.00 1.0000000 1.0000000 1.0000000 1.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.9998016 0.9998477 0.9998792 1.0000000

0.04 0.9999999 1.0000000 1.0000000 1.0000000

0.06 1.0000000 1.0000000 1.0000000 1.0000000

0.08 1.0000000 1.0000000 1.0000000 1.0000000

0.10 1.0000000 1.0000000 1.0000000 1.0000000

0.20 1.0000000 1.0000000 1.0000000 1.0000000

0.40 1.0000000 1.0000000 1.0000000 1.0000000

0.60 1.0000000 1.0000000 1.0000000 1.0000000

0.80 1.0000000 1.0000000 1.0000000 1.0000000

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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Example 2. Consider the following homogeneous SPP from Bender and
Orszag [2, p. 480, problem 9.17] with a ¼ 0:

ey00ðxÞ þ y 0ðxÞ 	 yðxÞ ¼ 0; 06 x6 1

with yð0Þ ¼ 1 and yð1Þ ¼ 1:

The exact solution is given by

yðxÞ ¼ ðem2 	 1Þem1x þ ð1	 em1Þem2x
ðem2 	 em1Þ ;

where

m1 ¼
	1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p

2e
;

Table 2

Computational results for Example 2

x yðxÞ Exact solution

d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 1.0000000 1.0000000 1.0000000 1.0000000

0.02 0.3834782 0.3819607 0.3808348 0.3756784

0.04 0.3834413 0.3833556 0.3832939 0.3832599

0.06 0.3910828 0.3910290 0.3909866 0.3909945

0.08 0.3989721 0.3989189 0.3988770 0.3988851

0.10 0.4070218 0.4069687 0.4069269 0.4069350

0.20 0.4497731 0.4497210 0.4496799 0.4496879

0.40 0.5492185 0.5491707 0.5491330 0.5491404

0.60 0.6706514 0.6706123 0.6705817 0.6705877

0.80 0.8189330 0.8189092 0.8188905 0.8188942

1.00 1.0000000 1.0000000 1.0000000 1.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

0.00 1.0000000 1.0000000 1.0000000 1.0000000

0.02 0.3754841 0.3754509 0.3754246 0.3753479

0.04 0.3829417 0.3829373 0.3829308 0.3829296

0.06 0.3906766 0.3906722 0.3906657 0.3906645

0.08 0.3985677 0.3985633 0.3985569 0.3985557

0.10 0.4066183 0.4066139 0.4066074 0.4066062

0.20 0.4493767 0.4493724 0.4493661 0.4493649

0.40 0.5488553 0.5488514 0.5488456 0.5488445

0.60 0.6703555 0.6703524 0.6703477 0.6703469

0.80 0.8187524 0.8187507 0.8187476 0.8187471

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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and

m2 ¼
	1	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p

2e
:

The computational results are presented in Table 2(a) and (b) for e ¼ 10	3,
10	4, respectively.

Example 3. Now consider the following non-homogeneous SPP:

ey00ðxÞ þ y 0ðxÞ ¼ 1þ 2x; 06 x6 1

with yð0Þ ¼ 0 and yð1Þ ¼ 1:

The exact solution is given by

yðxÞ ¼ xðxþ 1	 2eÞ þ ð2e 	 1Þ ð1	 expð	x=eÞÞ
ð1	 expð	1=eÞÞ :

The computational results are presented in Table 3(a) and (b) for e ¼ 10	3,
10	4, respectively.

Table 3

Computational results for Example 3

x yðxÞ Exact solution

d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 	0.9648339 	0.9674433 	0.9693918 	0.9776400
0.04 	0.9558468 	0.9561659 	0.9564115 	0.9564800
0.06 	0.9340470 	0.9343091 	0.9345190 	0.9345200
0.08 	0.9112990 	0.9115546 	0.9117595 	0.9117600
0.10 	0.8877491 	0.8879992 	0.8881995 	0.8882000
0.20 	0.7579996 	0.7582219 	0.7583995 	0.7584000
0.40 	0.4385003 	0.4386670 	0.4387995 	0.4388000
0.60 	0.0390007 	0.0391118 	0.0391996 	0.0391999
0.80 0.4404994 0.4404438 0.4404002 0.4404000

1.00 1.0000000 1.0000000 1.0000000 1.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 	0.9791212 	0.9792020 	0.9792610 	0.9794040
0.04 	0.9581252 	0.9581594 	0.9581861 	0.9582080
0.06 	0.9361309 	0.9361644 	0.9361906 	0.9362120
0.08 	0.9133366 	0.9133694 	0.9133950 	0.9134160
0.10 	0.8897424 	0.8897744 	0.8897995 	0.8898200
0.20 	0.7597710 	0.7597994 	0.7598217 	0.7598400
0.40 	0.4398281 	0.4398495 	0.4398662 	0.4398800
0.60 	0.0398854 	0.0398996 	0.0399107 	0.0399199
0.80 0.4400573 0.4400503 0.4400447 0.4400400

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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Example 4. Finally, we consider the following SPP with variable coefficients
from Kevorkian and Cole [6, p. 33, Eqs. (2.3.26) and (2.3.27)] with a ¼ 	1=2;

ey00ðxÞ þ 1
�

	 x
2

�
y0ðxÞ 	 1

2
yðxÞ ¼ 0; 06 x6 1

with yð0Þ ¼ 0 and yð1Þ ¼ 1:

We have chosen to use uniformly valid approximation (which is obtained by
the method given by Nayfeh [7, p. 148, Eq. (4.2.32)]) as our ‘exact’ solution,

yðxÞ ¼ 1

2	 x
	 1

2
exp

�
	 x
�

	 x2

4

�	
e

�
:

The computational results are presented in Table 4(a) and (b) for e ¼ 10	3,
10	4, respectively.

Table 4

Computational results for Example 4

x yðxÞ Nayfeh’s solution

d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.4997202 0.5008049 0.5016018 0.5050505

0.04 0.5110424 0.5109667 0.5109015 0.5102041

0.06 0.5163831 0.5162804 0.5161986 0.5154639

0.08 0.5217560 0.5216525 0.5215703 0.5208333

0.10 0.5272408 0.5271369 0.5270546 0.5263158

0.20 0.5564888 0.5563842 0.5563012 0.5555556

0.40 0.6259239 0.6258209 0.6257385 0.6250000

0.60 0.7151331 0.7150390 0.7149630 0.7142857

0.80 0.8339487 0.8338804 0.8338253 0.8333333

1.00 1.0000000 1.0000000 1.0000000 1.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.5050477 0.5050570 0.5050629 0.5050505

0.04 0.5103018 0.5102878 0.5102776 0.5102041

0.06 0.5155619 0.5155479 0.5155377 0.5154639

0.08 0.5209316 0.5209177 0.5209073 0.5208333

0.10 0.5264143 0.5264003 0.5263901 0.5263158

0.20 0.5556549 0.5556409 0.5556305 0.5555556

0.40 0.6250984 0.6250846 0.6250743 0.6250000

0.60 0.7143759 0.7143634 0.7143539 0.7142857

0.80 0.8333989 0.8333899 0.8333829 0.8333333

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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2.2. Non-linear problems

We have used quasilinearisation process to linearise the non-linear singular
perturbation problems and then applied our method on three classical prob-
lems.

Example 5. Consider the following example from Bender and Orszag [2, p.
463, Eq. (9.7.1)];

ey00 þ 2y0 þ ey ¼ 0; 06 x6 1

with yð0Þ ¼ 0 and yð1Þ ¼ 0:

We have chosen to use Bender and Orszag’s uniformly valid approximation
[2, p. 463, Eq. (9.7.6)] for comparison.

Table 5

Computational results for the Example 5

x yðxÞ Bender &

Orszag’s solutiond ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.6713438 0.6717810 0.6720961 0.6733446

0.04 0.6543222 0.6542806 0.6542470 0.6539265

0.06 0.6352631 0.6352206 0.6351870 0.6348783

0.08 0.6165527 0.6165122 0.6164801 0.6161861

0.10 0.5981860 0.5981475 0.5981169 0.5978370

0.20 0.5110986 0.5110684 0.5110446 0.5108256

0.40 0.3568378 0.3568198 0.3568057 0.3566749

0.60 0.2232326 0.2232228 0.2232150 0.2231435

0.80 0.1053979 0.1053937 0.1053905 0.1053605

1.00 0.0000000 0.0000000 0.0000000 0.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.02 0.6733644 0.6733668 0.6733681 0.6733446

0.04 0.6539788 0.6539733 0.6539692 0.6539265

0.06 0.6349280 0.6349229 0.6349189 0.6348783

0.08 0.6162335 0.6162285 0.6162248 0.6161861

0.10 0.5978821 0.5978773 0.5978737 0.5978370

0.20 0.5108607 0.5108569 0.5108542 0.5108256

0.40 0.3566956 0.3566935 0.3566918 0.3566749

0.60 0.2231549 0.2231536 0.2231526 0.2231435

0.80 0.1053652 0.1053647 0.1053643 0.1053605

1.00 0.0000000 0.0000000 0.0000000 0.0000000
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yðxÞ ¼ log
2

1þ x
	 ðexpð	2x=eÞÞ log 2:

For this example, we have boundary layer of width OðeÞ at x ¼ 0 (cf. Bender
and Orszag [2]).
The computational results are presented in Table 5(a) and (b), for e ¼ 10	3,

10	4, respectively.

Example 6. Now, consider the following example from Kevorkian and Cole
[6, p. 56, Eq. (2.5.1)]:

ey00 þ yy0 	 y ¼ 0; 06 x6 1

with yð0Þ ¼ 	1 and yð1Þ ¼ 3:9995:

We have chosen to use the Kevorkian and Cole’s uniformly valid approxi-
mation ([6, pp. 57 and 58, Eqs. (2.5.5), (2.5.11) and (2.5.14)]) for comparison.

Table 6

Computational results for Example 6

x yðxÞ Kevorkian &

Cole’s solutiond ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 	1.0000000 	1.0000000 	1.0000000 	1.0000000
0.02 3.0131600 3.0144450 3.0153750 3.0195000

0.04 3.0394860 3.0394910 3.0394920 3.0395000

0.06 3.0594960 3.0594970 3.0594970 3.0595000

0.08 3.0794960 3.0794980 3.0794970 3.0795000

0.10 3.0994960 3.0994980 3.0994970 3.0995000

0.20 3.1994960 3.1994970 3.1994970 3.1995000

0.40 3.3994970 3.3994990 3.3994970 3.3995000

0.60 3.5994980 3.5995000 3.5994990 3.5995000

0.80 3.7994990 3.7995000 3.7995000 3.7995000

1.00 3.9995000 3.9995000 3.9995000 3.9995000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01
0.00 	1.0000000 	1.0000000 	1.0000000 	1.0000000
0.02 3.0194070 3.0194290 3.0194440 3.0195000

0.04 3.0394960 3.0394980 3.0394980 3.0395000

0.06 3.0594960 3.0594980 3.0594980 3.0595000

0.08 3.0794960 3.0794980 3.0794980 3.0795000

0.10 3.0994960 3.0994980 3.0994990 3.0995000

0.20 3.1994960 3.1994970 3.1994990 3.1995000

0.40 3.3994980 3.3994980 3.3995010 3.3995000

0.60 3.5994990 3.5994980 3.5995000 3.5995000

0.80 3.7994990 3.7994980 3.7995000 3.7995000

1.00 3.9995000 3.9995000 3.9995000 3.9995000
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yðxÞ ¼ xþ c1 tanh
c1
2

x
e

�
þ c2

�
;

where

c1 ¼ 2:9995 and c2 ¼
1

c1
log

c1 	 1

c1 þ 1

� �
:

For this example also we have a boundary layer of width OðeÞ at x ¼ 0 (cf.
Kevorkian and Cole [6]).
The computational results are presented in Table 6(a) and (b), for e ¼ 10	3,

10	4, respectively.

Example 7. Finally, consider the following example from O’Malley [10, p. 9,
Eq. (1.10), Case 2]:

Table 7

Computational results for Example 7

x yðxÞ O’Malley’s

solutiond ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

	1.00 0.0000000 0.0000000 0.0000000 0.0000000

	0.98 	0.9876427 	0.9899885 	0.9917358 	1.0000000
	0.96 	0.9998360 	0.9998885 	0.9999319 	1.0000000
	0.94 	0.9999866 	0.9999875 	0.9999995 	1.0000000
	0.92 	0.9999886 	0.9999886 	1.0000000 	1.0000000
	0.90 	0.9999887 	0.9999887 	1.0000000 	1.0000000
	0.80 	0.9999893 	0.9999893 	1.0000000 	1.0000000
	0.40 	0.9999917 	0.9999917 	1.0000000 	1.0000000
0.00 	0.9999940 	0.9999940 	1.0000000 	1.0000000
0.40 	0.9999964 	0.9999964 	1.0000000 	1.0000000
0.80 	0.9999988 	0.9999988 	1.0000000 	1.0000000
1.00 	1.0000000 	1.0000000 	1.0000000 	1.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

	1.00 0.0000000 0.0000000 0.0000000 0.0000000

	0.98 	0.9998016 	0.9998477 	0.9998792 	1.0000000
	0.96 	0.9999999 	1.0000000 	1.0000000 	1.0000000
	0.94 	1.0000000 	1.0000000 	1.0000000 	1.0000000
	0.92 	1.0000000 	1.0000000 	1.0000000 	1.0000000
	0.90 	1.0000000 	1.0000000 	1.0000000 	1.0000000
	0.80 	1.0000000 	1.0000000 	1.0000000 	1.0000000
	0.40 	1.0000000 	1.0000000 	1.0000000 	1.0000000
0.00 	1.0000000 	1.0000000 	1.0000000 	1.0000000
0.40 	1.0000000 	1.0000000 	1.0000000 	1.0000000
0.80 	1.0000000 	1.0000000 	1.0000000 	1.0000000
1.00 	1.0000000 	1.0000000 	1.0000000 	1.0000000
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ey00 	 yy0 ¼ 0; 	16 x6 1;

with yð	1Þ ¼ 0 and yð1Þ ¼ 	1:

We have chosen to use O’Malley’s approximate solution [10, pp. 9 and 10, Eqs.
(1.13) and (1.14)] for comparison.

yðxÞ ¼ 	 ½1	 expð	ðxþ 1Þ=eÞ�
½1þ expð	ðxþ 1Þ=eÞ� :

For this example, we have a boundary layer of width OðeÞ at the left end of the
interval, that is, at x ¼ 	1 (cf. O’Malley [10]).
The computational results are presented in Table 7(a) and (b), for e ¼ 10	3,

10	4, respectively.

3. Right-end boundary layer problems

We now describe the numerical integration method for solving problems
with the boundary layer at the right-end of the underlying interval. To be
specific we consider the following singular perturbation problem:

ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; 06 x6 1; ð25Þ
with yð0Þ ¼ a and yð1Þ ¼ b; ð26Þ

where e is a small positive parameter ð0 < e � 1Þ; a, b are given constants; aðxÞ,
bðxÞ, and f ðxÞ are assumed to be sufficiently continuously differentiable func-
tions in ½0; 1�.
We now assume that aðxÞ6M < 0 throughout the interval ½0; 1�, where M

is some negative constant. This assumption merely implies that the boundary
layer will be in the neighbourhood of x ¼ 1.
The evaluation of the right-end boundary layer for (25) and (26) is similar to

that of the left-end boundary layer but there are some differences worth noting.
By using Taylor series expansion in the neighbourhood of the point x, we have

yðxþ dÞ 
 yðxÞ þ dy 0ðxÞ þ d2

2
y 00ðxÞ; ð27Þ

and consequently, Eq. (25) is replaced by the following first-order differential
equation with a small deviating argument:

2eyðxþ dÞ 	 2eyðxÞ 	 2edy0ðxÞ þ d2aðxÞy0ðxÞ þ d2bðxÞyðxÞ ¼ d2f ðxÞ: ð28Þ

Transition from Eq. (25) to Eq. (28) is admitted, because of the condition that
d is small ð0 < d � 1Þ.
We rewrite Eq. (28) in the following convenient form:

y0ðxÞ ¼ pðxÞyðxþ dÞ þ qðxÞyðxÞ þ rðxÞ for 06 x6 1	 d; ð29Þ
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where

pðxÞ ¼ 	2e
d2aðxÞ 	 2ed

; ð30Þ

qðxÞ ¼ 2e 	 d2bðxÞ
d2aðxÞ 	 2ed

; ð31Þ

rðxÞ ¼ d2f ðxÞ
d2aðxÞ 	 2ed

: ð32Þ

We will now describe the numerical scheme for solving Eq. (29). As usual, we
divide the interval ½0; 1� into N equal parts with mesh h, i.e., h ¼ 1=N and
xi ¼ ih for i ¼ 0; 1; . . . ;N .
Integrating Eq. (29) in ½xi	1; xi�, for i ¼ 1; 2; . . . ;N 	 1; we get

yðxiÞ 	 yðxi	1Þ ¼
Z xi

xi	1

½pðxÞyðxþ dÞ þ qðxÞyðxÞ þ rðxÞ�dx:

By making use of the trapezoidal formula for evaluating the integrals ap-
proximately, we obtain

yðxiÞ 	 yðxi	1Þ ¼
h
2
½pðxi	1Þyðxi	1 þ dÞ þ pðxiÞyðxi þ dÞ�

þ h
2
½qðxi	1Þyðxi	1Þ þ qðxiÞyðxiÞ� þ

h
2
½rðxi	1Þ þ rðxiÞ�: ð33Þ

By means of Taylor series expansion, we have

yðxþ dÞ 
 yðxÞ þ dy 0ðxÞ;

and, then by approximating y 0ðxÞ by interpolation formula, we get

yðxi þ dÞ 
 yðxiÞ þ
d
h
½yðxiþ1Þ 	 yðxiÞ�;

yðxi þ dÞ 
 1

�
	 d
h

�
yðxiÞ þ

d
h
yðxiþ1Þ; ð34Þ

and similarly we have

yðxi	1 þ dÞ 
 1

�
	 d
h

�
yðxi	1Þ þ

d
h
yðxiÞ: ð35Þ

Hence, by making use of (34) and (35) in (33) we get
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yðxiÞ 	 yðxi	1Þ ¼
h
2
pðxi	1Þ 1

��
	 d

h

�
yðxi	1Þ þ

d
h
yðxiÞ

�

þ h
2
pðxiÞ 1

��
	 d

h

�
yðxiÞ þ

d
h
yðxiþ1Þ

�

þ h
2
½qðxi	1Þyðxi	1Þ þ qðxiÞyðxiÞ� þ

h
2
½rðxi	1Þ þ rðxiÞ�;

yðxiÞ 	 yðxi	1Þ ¼
h
2

1

�
	 d
h

�
pðxi	1Þyðxi	1Þ þ

d
2
pðxi	1ÞyðxiÞ

þ h
2

1

�
	 d
h

�
pðxiÞyðxiÞ þ

d
2
pðxiÞyðxiþ1Þ þ

h
2
qðxi	1Þyðxi	1Þ

þ h
2
qðxiÞyðxiÞ þ

h
2
½rðxi	1Þ þ rðxiÞ�:

Finally, this leads after simple rearrangement to the following three-term re-
currence relationship:

Eiyi	1 	 Fiyi þ Giyiþ1 ¼ Hi for i ¼ 1; 2; . . . ;N 	 1; ð36Þ

where

Ei ¼ 	1	 h
2

1

�
	 d
h

�
pi	1 	

h
2
qi	1; ð37Þ

Fi ¼ 	1þ d
2
pi	1 þ

h
2

1

�
	 d
h

�
pi þ

h
2
qi; ð38Þ

Gi ¼ 	 d
2
pi; ð39Þ

Hi ¼
h
2
½ri	1 þ ri�; ð40Þ

and yi ¼ yðxiÞ, pi ¼ pðxiÞ, qi ¼ qðxiÞ and ri ¼ rðxiÞ. Eq. (36) gives a system of
ðN 	 1Þ equations with ðN þ 1Þ unknowns y0 to yN . The two given boundary
conditions (26) together with these ðN 	 1Þ equations are then sufficient to
solve for the unknowns y0 to yN . The solution of the tridiagonal system (36) can
easily be obtained by using an efficient algorithm called ‘Thomas Algorithm’
described in the previous section. Repeat the numerical scheme for different
choices of d (deviating argument, satisfying the condition 0 < d � 1), until the
solution profiles do not differ materially from iteration to iteration.

Example 8. To demonstrate the applicability of the numerical integration
method, we will discuss one singular perturbation problem with right-end
boundary layer.
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ey00ðxÞ 	 y 0ðxÞ ¼ 0; 06 x6 1

with yð0Þ ¼ 1 and yð1Þ ¼ 0:

For this example we have aðxÞ ¼ 	1, bðxÞ ¼ 0 and f ðxÞ ¼ 0. Further we have a
boundary layer of width OðeÞ at x ¼ 1.
The exact solution is given by

yðxÞ ¼ 1	 expððx	 1Þ=eÞ
1	 expð	1=eÞ :

The computational results are presented in Table 8(a) and (b), for e ¼ 10	3,
10	4, respectively.

4. Internal layer problems

We will now discuss the singular perturbation problem with an internal layer
of the underlying interval. In this case aðxÞ changes sign in the domain of

Table 8

Computational results for Example 8

x yðxÞ Exact solution

d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

0.00 1.0000000 1.0000000 1.0000000 1.0000000

0.20 0.9999989 0.9999997 1.0000000 1.0000000

0.40 0.9999975 0.9999997 1.0000000 1.0000000

0.60 0.9999962 0.9999997 1.0000000 1.0000000

0.80 0.9999948 0.9999997 1.0000000 1.0000000

0.90 0.9999942 0.9999997 1.0000000 1.0000000

0.92 0.9999940 0.9999997 1.0000000 1.0000000

0.94 0.9999920 0.9999987 0.9999995 1.0000000

0.96 0.9998413 0.9998997 0.9999318 1.0000000

0.98 0.9876480 0.9899997 0.9917356 1.0000000

1.00 0.0000000 0.0000000 0.0000000 0.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01
0.00 1.0000000 1.0000000 1.0000000 1.0000000

0.20 1.0000000 1.0000000 1.0000000 1.0000000

0.40 1.0000000 1.0000000 1.0000000 1.0000000

0.60 1.0000000 1.0000000 1.0000000 1.0000000

0.80 1.0000000 1.0000000 1.0000000 1.0000000

0.90 1.0000000 1.0000000 1.0000000 1.0000000

0.92 1.0000000 1.0000000 1.0000000 1.0000000

0.94 1.0000000 1.0000000 1.0000000 1.0000000

0.96 1.0000000 1.0000000 1.0000000 1.0000000

0.98 0.9998017 0.9998476 0.9998792 1.0000000

1.00 0.0000000 0.0000000 0.0000000 0.0000000
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interest. Without loss of generality, we can take að0Þ ¼ 0, and the interval to be
½	1; 1�. With the help of one model example we demonstrate the applicability
of the numerical integration method for solving singular perturbation prob-
lems with an internal layer.

Example 9. Consider the following singular perturbation problem:

ey 00ðxÞ þ xy 0ðxÞ 	 yðxÞ ¼ 0; 	16 x6 1 ð41Þ
with yð	1Þ ¼ 1 and yð1Þ ¼ 2: ð42Þ

For this example we have aðxÞ ¼ x, bðxÞ ¼ 	1 and f ðxÞ ¼ 0. Further we have
an internal layer of width Oð

ffiffi
e

p
Þ at x ¼ 0. (For details, see O’Malley [10, pp.

168–172, Eq. (8.1), case (i)], and Kevorkian and Cole [6, pp. 41–43, Eqs.
(2.3.76) and (2.3.77)]).
We see that the function

aðxÞ ¼ x < 0 for	 16 x < 0;

aðxÞ ¼ x ¼ 0 for x ¼ 0;

aðxÞ ¼ x > 0 for 0 < x6 1:

Hence, by making use of transitions suggested for left-end and right-end
boundary layers, we replace Eq. (41) by the following first-order differential
equations with a small deviating argument:

y0ðxÞ ¼ pðxÞyðxþ dÞ þ qðxÞyðxÞ þ rðxÞ for	 16 x6 	 d; ð43Þ

where pðxÞ, qðxÞ and rðxÞ are given by

pðxÞ ¼ 	2e
d2aðxÞ 	 2ed

; qðxÞ ¼ 2e 	 d2bðxÞ
d2aðxÞ 	 2ed

and rðxÞ ¼ d2f ðxÞ
d2aðxÞ 	 2ed

;

and

y0ðxÞ ¼ pðxÞyðx	 dÞ þ qðxÞyðxÞ þ rðxÞ for d6 x6 1; ð44Þ

where pðxÞ, qðxÞ and rðxÞ are given by

pðxÞ ¼ 	2e
2ed þ d2aðxÞ

; qðxÞ ¼ 2e 	 d2bðxÞ
2ed þ d2aðxÞ

and rðxÞ ¼ d2f ðxÞ
2ed þ d2aðxÞ

:

We now divide the interval ½	1; 1� into N equal parts with mesh size h, i.e.,
h ¼ 2=N and xi ¼ 	1þ ih for i ¼ 0; 1; . . . ;N .
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Let us denote N=2 ¼ L. Then, integrating using the trapezoidal formula
Eq. (43) in ½xi	1; xi� for i ¼ 1; 2; . . . ; L	 1; and Eq. (44) in ½xi; xiþ1� for i ¼
Lþ 1; Lþ 2; . . . ;N 	 1; we get a system of ðN 	 2Þ equations with ðN þ 1Þ
unknowns. From the given boundary conditions (42) we get two equations

y0 ¼ yð	1Þ ¼ 1;

yN ¼ yð1Þ ¼ 2:

Table 9

Computational results for Example 9

x yðxÞ
d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01

	1.00 1.0000000 1.0000000 1.0000000

	0.50 0.5025128 0.5025125 0.5025129

	0.10 0.1007176 0.1006431 0.1005968

	0.08 0.0812367 0.0810065 0.0808482

	0.06 0.0631051 0.0625267 0.0620928

	0.04 0.0483043 0.0471570 0.0462338

	0.02 0.0401910 0.0384762 0.0370292

0.00 0.0427526 0.0410037 0.0395100

0.02 0.0600897 0.0583748 0.0569278

0.04 0.0881019 0.0869545 0.0860313

0.06 0.1228018 0.1222235 0.1217896

0.08 0.1608329 0.1606027 0.1604443

0.10 0.2002133 0.2001388 0.2000924

0.50 0.9999993 0.9999990 0.9999991

1.00 2.0000000 2.0000000 2.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01

	1.00 1.0000000 1.0000000 1.0000000

	0.50 0.5025129 0.5025131 0.5025126

	0.10 0.1005030 0.1005031 0.1005030

	0.08 0.0804026 0.0804026 0.0804026

	0.06 0.0603046 0.0603036 0.0603030

	0.04 0.0402802 0.0402574 0.0402424

	0.02 0.0215259 0.0213159 0.0211514

0.00 0.0131929 0.0129429 0.0127334

0.02 0.0414236 0.0412137 0.0410492

0.04 0.0800772 0.0800545 0.0800394

0.06 0.1200011 0.1200002 0.1199995

0.08 0.1599986 0.1599988 0.1599986

0.10 0.1999985 0.1999998 0.1999986

0.50 0.9999989 0.9999995 0.9999982

1.00 2.0000000 2.0000000 2.0000000
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We need one more equation to solve for the unknowns ðy0; y1; . . . ; yN Þ. For
this, we consider the original equation at x ¼ xL ¼ 0. Since aðxÞ ¼ 0 at x ¼
xL ¼ 0, we get the following:

ey 00ðxLÞ þ bðxLÞyðxLÞ ¼ f ðxLÞ: ð45Þ
By making use of the second-order central finite difference approximation for
the second-order derivative in Eq. (45) at xL we get the following equation:

½e�yL	1 	 ½2e 	 h2bL�yL þ ½e�yLþ1 ¼ h2fL: ð46Þ

With this Eq. (46) we now have ðN þ 1Þ equations to solve for the ðN þ 1Þ
unknowns ðy0; y1; . . . ; yN Þ.
The matrix problem associated is a tridiagonal algebraic system and the

solution of this tridiagonal system can easily be obtained by using an efficient
and stable algorithm called Thomas Algorithm. Repeat the numerical scheme
for different choices of d (deviating argument, satisfying the condition 0 <
d � 1), until the solution profiles do not differ materially from iteration to
iteration.
The computational results are presented in Table 9(a) and (b), for e ¼ 10	3,

10	4, respectively.

5. Problems with two boundary layers

The suggestions given for internal layer problems apply mutatis mutandis to
problems with two boundary layers. To illustrate this, we will again consider
the case where aðxÞ changes sign in the domain of interest. Without loss of
generality, we can take að0Þ ¼ 0, and the interval to be ½	1; 1�. Again with the
help of one model example we demonstrate the applicability of the numerical
integration method for solving singular perturbation problems with two
boundary layers.

Example 10. Consider the following singular perturbation problem:

ey 00ðxÞ 	 xy 0ðxÞ 	 yðxÞ ¼ 0; 	16 x6 1 ð47Þ
with yð	1Þ ¼ 1 and yð1Þ ¼ 2: ð48Þ

For this example we have aðxÞ ¼ 	x, bðxÞ ¼ 	1 and f ðxÞ ¼ 0. Further we have
two boundary layers one at x ¼ 	1 and one at x ¼ 1. (For details, see O’Malley
[10, pp. 168–173, Eq. (8.1), case (ii)]).
We see that the function

aðxÞ ¼ 	x > 0 for	 16 x < 0;

aðxÞ ¼ 	x ¼ 0 for x ¼ 0;

aðxÞ ¼ 	x < 0 for 0 < x6 1:
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Hence, by making use of transitions suggested for left-end and right-end
boundary layers, we replace Eq. (47) by the following first-order differential
equations with a small deviating argument:

y0ðxÞ ¼ pðxÞyðx	 dÞ þ qðxÞyðxÞ þ rðxÞ for	 1þ d6 x6 0; ð49Þ

where pðxÞ, qðxÞ and rðxÞ are given by

pðxÞ ¼ 	2e
2ed þ d2aðxÞ

; qðxÞ ¼ 2e 	 d2bðxÞ
2ed þ d2aðxÞ

and rðxÞ ¼ d2f ðxÞ
2ed þ d2aðxÞ

;

and

y0ðxÞ ¼ pðxÞyðxþ dÞ þ qðxÞyðxÞ þ rðxÞ for 06 x6 1	 d; ð50Þ

where pðxÞ, qðxÞ and rðxÞ are given by

pðxÞ ¼ 	2e
d2aðxÞ 	 2ed

; qðxÞ ¼ 2e 	 d2bðxÞ
d2aðxÞ 	 2ed

and rðxÞ ¼ d2f ðxÞ
d2aðxÞ 	 2ed

:

As usual, we divide the interval ½	1; 1� into N equal parts with mesh size h,
i.e., h ¼ 2=N and xi ¼ 	1þ ih for i ¼ 0; 1; . . . ;N .
Let us denote N=2 ¼ L. Then, integrating using the trapezoidal formula Eq.

(49) in ½xi; xiþ1� for i ¼ 1; 2; . . . ; L	 1; and Eq. (50) in ½xi	1; xi� for
i ¼ Lþ 1; Lþ 2; . . . ;N 	 1; we get a system of ðN 	 2Þ equations with ðN þ 1Þ
unknowns.
From the given boundary conditions (48) we get two equations

y0 ¼ yð	1Þ ¼ 1;

yN ¼ yð1Þ ¼ 2:

We need one more equation to solve for the unknowns ðy0; y1; . . . ; yN Þ. As
in the previous section, we again consider the original equation at x ¼ xL ¼ 0.
Since aðxÞ ¼ 0 at x ¼ xL ¼ 0, we get the following:

ey 00ðxLÞ þ bðxLÞyðxLÞ ¼ f ðxLÞ: ð51Þ

By making use of the second-order central finite difference approximation for
the second-order derivative in Eq. (51) at xL we get the following equation:

½e�yL	1 	 ½2e 	 h2bL�yL þ ½e�yLþ1 ¼ h2fL: ð52Þ

Hence, with this Eq. (52) we now have ðN þ 1Þ equations to solve for the
ðN þ 1Þ unknowns ðy0; y1; . . . ; yN Þ.
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The matrix problem associated is a tridiagonal algebraic system and the
solution of this tridiagonal system can easily be obtained by using an efficient
and stable algorithm called Thomas algorithm.
Repeat the numerical scheme for different choices of d (deviating argument,

satisfying the condition 0 < d � 1), until the solution profiles do not differ
materially from iteration to iteration.

Table 10

Computational results for Example 10

x yðxÞ
d ¼ 0:008 d ¼ 0:009 d ¼ 0:01

(a) e ¼ 10	3 and h ¼ 0:01
	1.00 1.0000000 1.0000000 1.0000000

	0.98 0.0125913 0.0101998 0.0084301

	0.96 0.0001644 0.0001079 0.0000738

	0.94 0.0000022 0.0000012 0.0000007

	0.92 0.0000000 0.0000000 0.0000000

	0.90 0.0000000 0.0000000 0.0000000

	0.70 0.0000000 0.0000000 0.0000000

	0.30 0.0000000 0.0000000 0.0000000

0.30 0.0000000 0.0000000 0.0000000

0.70 0.0000000 0.0000000 0.0000000

0.90 0.0000000 0.0000000 0.0000000

0.92 0.0000001 0.0000000 0.0000000

0.94 0.0000045 0.0000024 0.0000013

0.96 0.0003288 0.0002159 0.0001475

0.98 0.0251827 0.0203996 0.0168602

1.00 2.0000000 2.0000000 2.0000000

d ¼ 0:007 d ¼ 0:008 d ¼ 0:009

(b) e ¼ 10	4 and h ¼ 0:01
	1.00 1.0000000 1.0000000 1.0000000

	0.98 0.0002024 0.0001555 0.0001232

	0.96 0.0000000 0.0000000 0.0000000

	0.94 0.0000000 0.0000000 0.0000000

	0.92 0.0000000 0.0000000 0.0000000

	0.90 0.0000000 0.0000000 0.0000000

	0.70 0.0000000 0.0000000 0.0000000

	0.30 0.0000000 0.0000000 0.0000000

0.30 0.0000000 0.0000000 0.0000000

0.70 0.0000000 0.0000000 0.0000000

0.90 0.0000000 0.0000000 0.0000000

0.92 0.0000000 0.0000000 0.0000000

0.94 0.0000000 0.0000000 0.0000000

0.96 0.0000001 0.0000001 0.0000000

0.98 0.0004048 0.0003110 0.0002464

1.00 2.0000000 2.0000000 2.0000000
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The computational results are presented in Table 10(a) and (b), for e ¼ 10	3,
10	4, respectively.

6. Discussion and conclusions

As mentioned, the numerical integration method is iterative on the deviating
argument d. The process is to be repeated for different choices of d (deviating
argument), until the solution profiles do not differ materially from iteration to
iteration. The choice of d is not unique but can assume any number of values
satisfying the condition, 0 < d � 1. To reduce the amount of computation, we
fix the mesh size h and vary the deviating argument d. Finally, we pick up the
smallest value of d which produces the required accuracy. We have imple-
mented this method on total 10 problems (four linear problems with left-end
boundary layer, three non-linear problems with left-end boundary layer, one
problem with a right-end boundary layer, one problem with an internal layer
and one problem with two boundary layers) by taking different values for e.
The computational results are presented in Tables 1–10. We have given here
only a few values although the solutions are computed at all the points with
mesh size h. It can be observed from the tables that the present method ap-
proximates the exact solution very well. This shows the efficiency and accuracy
of the present method.
We have shown that the numerical integration method is capable of solving

general singularly perturbed two-point boundary value problems. This method
provides an alternative and supplementary technique to the conventional ways
of solving singular perturbation problems. It is a practical method, easily
adaptable on a computer to solve singular perturbation problems with a
modest amount of problem preparation.
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