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Abstract

In this paper, a numerical integration method is presented for solving general sin-
gularly perturbed two-point boundary value problems. The original second-order dif-
ferential equation is replaced by an approximate first-order differential equation with a
small deviating argument. Then, the trapezoidal formula is used to obtain the three-
term recurrence relationship. The proposed method is iterative on the deviating argu-
ment. To demonstrate the applicability of the method, we have solved several model
linear and non-linear examples with left-end boundary layer or right-end boundary
layer or an internal layer or two boundary layers and presented the computational
results.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Singular perturbation problems occur very frequently in various fields of
science and engineering such as fluid dynamics, specifically the fluid flow
problems involving large Reynolds number and other problems in the great
world of fluid motion. The numerical treatment of singular perturbation
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problems is far from trivial because of the boundary layer behaviour of the
solution. However, the area of singular perturbation problems is a field of
increasing interest to applied mathematicians.

The survey paper by Kadalbajoo and Reddy [5], gives an erudite outline of
the singular perturbation problems and their treatment starting from Prandtl’s
paper [12] on fluid dynamical boundary layers. This survey paper will remain
as one of the most readable source on singular perturbation problems.

For a detailed theory and analytical discussion on singular perturbation
problems one may refer to the books and high level monographs: O’Malley
[10,11], Nayfeh [7-9], Kevorkian and Cole [6], Bender and Orszag [2], Hemker
and Miller [4].

In this paper, a numerical integration method is presented for solving gen-
eral singularly perturbed two-point boundary value problems. This method
does not depend on asymptotic expansions. The main feature of this method is
that it does not require very fine mesh size. The original second-order differ-
ential equation is replaced by an approximate first-order differential equation
with a small deviating argument. Then, the trapezoidal formula is used to
obtain the three-term recurrence relationship. Thomas algorithm is used to
solve the resulting tridiagonal algebraic system of equations. The proposed
method is iterative on the deviating argument. The method is to be repeated for
different choices of the deviating argument until the solution profile stabilises.
To demonstrate the applicability of the method, we have solved several model
linear and non-linear examples with left-end boundary layer or right-end
boundary layer or an internal layer or two boundary layers and presented the
computational results. It is observed that the numerical integration method
approximates the exact solution very well.

2. Numerical integration method

For convenience we call our method the ‘Numerical Integration Method’.
To set the stage for the numerical integration method, we consider the fol-
lowing linear singularly perturbed two-point boundary value problem:

&y (x) + a(x)y (x) + b(x)y(x) = f(x); 0<x<1 (1)
with p(0)=a and y(1) =B, 2)

where ¢ is a small positive parameter (0 < ¢ < 1); o, ff are given constants; a(x),
b(x), and f(x) are assumed to be sufficiently continuously differentiable func-
tions in [0, 1]. Furthermore, we assume that a(x) > M > 0 throughout the in-
terval [0, 1], where M is some positive constant. This assumption merely implies
that the boundary layer will be in the neighbourhood of x = 0.
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Let 0 be a small positive deviating argument (0 < § < 1). By using Taylor
series expansions in the neighbourhood of the point x, we have
2

i —8) 2 1) — () + 50 (), ()

and consequently, Eq. (1) is replaced by the following first-order differential
equation with a small deviating argument:

2ey(x — 8) — 2ev(x) + 20/ (x) + 0"a(x)y (x) + &b (¥)y(x) = &/ (x).  (4)

Transition from Eq. (1) to Eq. (4) is admitted, because of the condition that ¢ is
small (0 < 6 < 1). This replacement is significant from the computational
point of view. Further details on the validity of this transition can be found in
Elsgolts and Norkin [3, pp. 243 and 244]. Theory and discussion on the dif-
ferential equations with a deviating argument can be found in Elsgolts and

Norkin [3].
We rewrite Eq. (4) in the following convenient form:
Y (x) =p(x)y(x — ) + q(x)y(x) + r(x) for d<x<1, (5)
where
—2¢
= 6
P = S T Fa) (6)
2e — 8°b(x)
=, 7
1) = ot Palr) @)
f(x
r(x) = fi(z) (8)
260 + 6°a(x)

We now divide the interval [0, 1] into N equal parts with mesh size #, i.e.,
h=1/N and x; =ik for i =0,1,2,...,N. Integrating Eq. (5) in [x;,x;11], (i =
1,2,...,N —1), we get

Xit+1

Yxi) =y(a) = | Ipx)y(x = 8) + g(x)y(x) + r(x)] dx. ©)

Xi

By making use of the trapezoidal formula for evaluating the integrals ap-
proximately, we obtain

Y1) = 9(5) = 3 [l (s = 8) + pley(x )

)+ a8+ ) ()] (10

Again, by means of Taylor series expansion, we have

y(x = 6) = y(x) — 0/ (x),
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and, then by approximating y/(x) by linear interpolation, we get

o= 0) ) = o XY - (1) 4 Dyt (1)

and similarly

o =) (1= ) + ot (12)

Hence, by making use of (11) and (12) in (10) we obtain
y(xi1) = y(x) = gp(xiﬂ) [(1 - %)y(xiﬂ) + g)’(xi)]
h 0 0
+ EP(xi) [(1 - z)J’(xi) + ZJ’(XM)}
i) (ie0) 9]+ ) + ()

>
(13 ot ts) + 5ot

5 (13 Jptvte) + 3ps)yton) + 5 a0
h
2

gy () + ) + ()]

This equation leads after simple rearrangement to the final three-term recur-
rence relationship, namely

El‘yi,] —F;yl + Gin,] = [{l fOr i= 1,2,. .. ,N — 1, (13)
where
0
E =——p; 14
i =50 (14)
0 h 0 h
E‘—1+§Pi+1+§(1—z>l?i+§f]n (15)
h 0 h
G =1 —5 <1 _Z)pﬂrl —ECIM, (16)
h
HiZE[VfH + 1l (17)

and y; = y(x;), pi = p(x:), ¢; = q(x;) and r; = r(x;). Eq. (13) gives a system of
(N — 1) equations with (N + 1) unknowns yy to yy. The two given boundary
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conditions (2) together with these (N — 1) equations are then sufficient to solve
for the unknowns yy to yy. The solution of the tridiagonal system (13) can
easily be obtained by using an efficient algorithm called ‘Thomas Algorithm’
also called ‘Discrete Invariant Imbedding’ [1]. In this algorithm we set a dif-
ference relation of the form

Yi=Wyi+ T, (18)

where W; and T; corresponding to W (x;) and T(x;) are to be determined. From
(18) we have

Yier = Wiy + Ty, (19)
Substituting (19) in (13), we get

E(Wi1yi+ Tia) — Fyi + Gy = Hy,
EiT, 1 — H;

.= ! : . 20
R CEWL N TR B 20
By comparing (18) and (20), we get
G.
Wi=—"">— 21
F—EW, @)
ET 1 —H
7=l (22)
F—EW,
To solve these recurrence relations fori =1,2,...,N — 1, we need to know the
initial conditions for W, and 7;. This can be done by considering (2)
Y =o= Wy +T. (23)

If we choose W, =0, then T, = . With these initial values, we compute se-
quentially W, and T; for i = 1,2,...,N — 1; from (21) and (22) in the forward
process and then obtain y; in the backward process from (18) using (2).

Repeat the numerical scheme for different choices of ¢ (deviating argument,
satisfying the condition 0 < § < 1), until the solution profiles do not differ
materially from iteration to iteration. For computational point of view, we use
an absolute error criterion, namely

)" = y(x)"| <o, 0<x<1, (24)

where y(x)” is the solution for the mth iterate of J, and ¢ is the prescribed
tolerance bound.

2.1. Linear problems

To demonstrate the applicability of the numerical integration method, we
have applied it to four linear singular perturbation problems with left-end
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boundary layer. These examples have been chosen because they have been
widely discussed in the literature and because approximate solutions are
available for comparison.

Example 1. Consider the following homogeneous SPP from Kevorkian and
Cole [6, p. 33, Egs. (2.3.26) and (2.3.27)] with o = 0:

& (x) +)y(x) =0, 0<x<1
with »(0) =0 and y(1)=1.
The exact solution is given by
(1 —exp(—x/e))
y(x) =
) = (T exp(=1/2)

The computational results are presented in Table 1(a) and (b) for ¢ = 1073,
1074, respectively.

Table 1
Computational results for Example 1
X y() Exact solution
0 =0.008 0 =0.009 0=0.01

(a) e = 1073 and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.9876486 0.9899944 0.9917358 1.0000000
0.04 0.9998419 0.9998944 0.9999319 1.0000000
0.06 0.9999925 0.9999934 0.9999995 1.0000000
0.08 0.9999945 0.9999945 1.0000000 1.0000000
0.10 0.9999946 0.9999946 1.0000000 1.0000000
0.20 0.9999952 0.9999952 1.0000000 1.0000000
0.40 0.9999964 0.9999964 1.0000000 1.0000000
0.60 0.9999976 0.9999976 1.0000000 1.0000000
0.80 0.9999988 0.9999988 1.0000000 1.0000000
1.00 1.0000000 1.0000000 1.0000000 1.0000000

0 =0.007 o =0.008 0 =0.009

(b) e =10"* and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.9998016 0.9998477 0.9998792 1.0000000
0.04 0.9999999 1.0000000 1.0000000 1.0000000
0.06 1.0000000 1.0000000 1.0000000 1.0000000
0.08 1.0000000 1.0000000 1.0000000 1.0000000
0.10 1.0000000 1.0000000 1.0000000 1.0000000
0.20 1.0000000 1.0000000 1.0000000 1.0000000
0.40 1.0000000 1.0000000 1.0000000 1.0000000
0.60 1.0000000 1.0000000 1.0000000 1.0000000
0.80 1.0000000 1.0000000 1.0000000 1.0000000

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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Example 2. Consider the following homogeneous SPP from Bender and

Orszag [2, p. 480, problem 9.17] with o« = 0:

&y (x) +)'(x) —y(x) =0,  0<x<lI
with »(0)=1 and y(1)=1.

The exact solution is given by

(emz _ 1)em1x + (1 _ eml)emzx

yx) = @ —em) ,
where
—1+VI+4e
m=—————""""
1 28 )
Table 2

Computational results for Example 2

X »(x) Exact solution
0 =0.008 0 =0.009 0=0.01

(a) e = 1073 and h = 0.01

0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.3834782 0.3819607 0.3808348 0.3756784
0.04 0.3834413 0.3833556 0.3832939 0.3832599
0.06 0.3910828 0.3910290 0.3909866 0.3909945
0.08 0.3989721 0.3989189 0.3988770 0.3988851
0.10 0.4070218 0.4069687 0.4069269 0.4069350
0.20 0.4497731 0.4497210 0.4496799 0.4496879
0.40 0.5492185 0.5491707 0.5491330 0.5491404
0.60 0.6706514 0.6706123 0.6705817 0.6705877
0.80 0.8189330 0.8189092 0.8188905 0.8188942
1.00 1.0000000 1.0000000 1.0000000 1.0000000

6 =0.007 6 =0.008 6 =0.009

(b) & = 10 and h = 0.01

0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.3754841 0.3754509 0.3754246 0.3753479
0.04 0.3829417 0.3829373 0.3829308 0.3829296
0.06 0.3906766 0.3906722 0.3906657 0.3906645
0.08 0.3985677 0.3985633 0.3985569 0.3985557
0.10 0.4066183 0.4066139 0.4066074 0.4066062
0.20 0.4493767 0.4493724 0.4493661 0.4493649
0.40 0.5488553 0.5488514 0.5488456 0.5488445
0.60 0.6703555 0.6703524 0.6703477 0.6703469
0.80 0.8187524 0.8187507 0.8187476 0.8187471
1.00 1.0000000 1.0000000 1.0000000 1.0000000
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and
1 - T54
2¢ '
The computational results are presented in Table 2(a) and (b) for ¢ = 1073,
1074, respectively.

my —

Example 3. Now consider the following non-homogeneous SPP:
&'(x)+ ) (x) =1+ 2x, 0<x<1
with »(0)=0 and y(1)=1.

The exact solution is given by

(1 — exp(—x/2))

(1 —exp(=1/z))”

The computational results are presented in Table 3(a) and (b) for & = 1073,

1074, respectively.

yx)=x(x+1-2¢)+ (2e—-1)

Table 3
Computational results for Example 3
X y(x) Exact solution
6 =0.008 6 =0.009 0 =10.01

(a) e = 1073 and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 —0.9648339 —0.9674433 —0.9693918 —0.9776400
0.04 —0.9558468 —0.9561659 —0.9564115 —0.9564800
0.06 —0.9340470 —0.9343091 —0.9345190 —0.9345200
0.08 —0.9112990 —0.9115546 —0.9117595 —0.9117600
0.10 —0.8877491 —0.8879992 —0.8881995 —0.8882000
0.20 —0.7579996 —0.7582219 —0.7583995 —0.7584000
0.40 —0.4385003 —0.4386670 —0.4387995 —0.4388000
0.60 —0.0390007 —0.0391118 —0.0391996 —0.0391999
0.80 0.4404994 0.4404438 0.4404002 0.4404000
1.00 1.0000000 1.0000000 1.0000000 1.0000000

0 =0.007 0 =0.008 0 =0.009

(b) e =10~* and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 —0.9791212 —0.9792020 —0.9792610 —0.9794040
0.04 —0.9581252 —0.958159%4 —0.9581861 —0.9582080
0.06 —0.9361309 —0.9361644 —0.9361906 —0.9362120
0.08 —0.9133366 —0.9133694 —0.9133950 —0.9134160
0.10 —0.8897424 —0.8897744 —0.8897995 —0.8898200
0.20 —0.7597710 —0.7597994 —0.7598217 —0.7598400
0.40 —0.4398281 —0.4398495 —0.4398662 —0.4398800
0.60 —0.0398854 —0.0398996 —0.0399107 —0.0399199
0.80 0.4400573 0.4400503 0.4400447 0.4400400

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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Example 4. Finally, we consider the following SPP with variable coefficients

from Kevorkian and Cole [6, p. 33, Eqgs. (2.3.26) and (2.3.27)] with o = —1/2;

" X ! 1
/() + (1-3 V@ -390 =0, 0<x<1

with »(0) =0 and y(1)=1.

We have chosen to use uniformly valid approximation (which is obtained by
the method given by Nayfeh [7, p. 148, Eq. (4.2.32)]) as our ‘exact’ solution,

-ty den (- (-2

The computational results are presented in Table 4(a) and (b) for ¢ = 1073,
1074, respectively.

Table 4
Computational results for Example 4
X y(x) Nayfeh’s solution
0 =0.008 0 =10.009 0=0.01

(a) e =107 and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.4997202 0.5008049 0.5016018 0.5050505
0.04 0.5110424 0.5109667 0.5109015 0.5102041
0.06 0.5163831 0.5162804 0.5161986 0.5154639
0.08 0.5217560 0.5216525 0.5215703 0.5208333
0.10 0.5272408 0.5271369 0.5270546 0.5263158
0.20 0.5564888 0.5563842 0.5563012 0.5555556
0.40 0.6259239 0.6258209 0.6257385 0.6250000
0.60 0.7151331 0.7150390 0.7149630 0.7142857
0.80 0.8339487 0.8338804 0.8338253 0.8333333
1.00 1.0000000 1.0000000 1.0000000 1.0000000

0 =0.007 0 =0.008 0 =0.009

(b) ¢ = 10"* and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.5050477 0.5050570 0.5050629 0.5050505
0.04 0.5103018 0.5102878 0.5102776 0.5102041
0.06 0.5155619 0.5155479 0.5155377 0.5154639
0.08 0.5209316 0.5209177 0.5209073 0.5208333
0.10 0.5264143 0.5264003 0.5263901 0.5263158
0.20 0.5556549 0.5556409 0.5556305 0.5555556
0.40 0.6250984 0.6250846 0.6250743 0.6250000
0.60 0.7143759 0.7143634 0.7143539 0.7142857
0.80 0.8333989 0.8333899 0.8333829 0.8333333

1.00 1.0000000 1.0000000 1.0000000 1.0000000
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2.2. Non-linear problems

We have used quasilinearisation process to linearise the non-linear singular
perturbation problems and then applied our method on three classical prob-
lems.

Example 5. Consider the following example from Bender and Orszag [2, p.
463, Eq. (9.7.1)];

N

&' +2) +e¢ =0, 0<x<l
with »(0)=0 and y(1)=0.

We have chosen to use Bender and Orszag’s uniformly valid approximation
[2, p. 463, Eq. (9.7.6)] for comparison.

Table 5
Computational results for the Example 5
X y(x) Bender &
5 =0.008 5 = 0.009 5 =0.01 Orszag’s solution

(a) e =107 and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.6713438 0.6717810 0.6720961 0.6733446
0.04 0.6543222 0.6542806 0.6542470 0.6539265
0.06 0.6352631 0.6352206 0.6351870 0.6348783
0.08 0.6165527 0.6165122 0.6164801 0.6161861
0.10 0.5981860 0.5981475 0.5981169 0.5978370
0.20 0.5110986 0.5110684 0.5110446 0.5108256
0.40 0.3568378 0.3568198 0.3568057 0.3566749
0.60 0.2232326 0.2232228 0.2232150 0.2231435
0.80 0.1053979 0.1053937 0.1053905 0.1053605
1.00 0.0000000 0.0000000 0.0000000 0.0000000

0 =0.007 0 =0.008 0 =0.009

(b) ¢ =10"* and h = 0.01

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 0.6733644 0.6733668 0.6733681 0.6733446
0.04 0.6539788 0.6539733 0.6539692 0.6539265
0.06 0.6349280 0.6349229 0.6349189 0.6348783
0.08 0.6162335 0.6162285 0.6162248 0.6161861
0.10 0.5978821 0.5978773 0.5978737 0.5978370
0.20 0.5108607 0.5108569 0.5108542 0.5108256
0.40 0.3566956 0.3566935 0.3566918 0.3566749
0.60 0.2231549 0.2231536 0.2231526 0.2231435
0.80 0.1053652 0.1053647 0.1053643 0.1053605

1.00 0.0000000 0.0000000 0.0000000 0.0000000
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y(x) = log1 —ka — (exp(—2x/¢)) log2.

For this example, we have boundary layer of width O(¢) at x = 0 (cf. Bender
and Orszag [2]).

The computational results are presented in Table 5(a) and (b), for & = 1073,
1074, respectively.

Example 6. Now, consider the following example from Kevorkian and Cole
[6, p. 56, Eq. (2.5.1)]:

g+ —y=0, 0<x<1
with  »(0) = —1 and (1) = 3.9995.

We have chosen to use the Kevorkian and Cole’s uniformly valid approxi-
mation ([6, pp. 57 and 58, Egs. (2.5.5), (2.5.11) and (2.5.14)]) for comparison.

Table 6
Computational results for Example 6
X »(x) Kevorkian &
= 0.008 8 = 0.009 5 =0.01 Cole’s solution

(a) e = 1073 and h = 0.01

0.00 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.02 3.0131600 3.0144450 3.0153750 3.0195000
0.04 3.0394860 3.0394910 3.0394920 3.0395000
0.06 3.0594960 3.0594970 3.0594970 3.0595000
0.08 3.0794960 3.0794980 3.0794970 3.0795000
0.10 3.0994960 3.0994980 3.0994970 3.0995000
0.20 3.1994960 3.1994970 3.1994970 3.1995000
0.40 3.3994970 3.3994990 3.3994970 3.3995000
0.60 3.5994980 3.5995000 3.5994990 3.5995000
0.80 3.7994990 3.7995000 3.7995000 3.7995000
1.00 3.9995000 3.9995000 3.9995000 3.9995000

6 =0.007 6 =0.008 6 =0.009

(b) & = 10 and h = 0.01

0.00 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.02 3.0194070 3.0194290 3.0194440 3.0195000
0.04 3.0394960 3.0394980 3.0394980 3.0395000
0.06 3.0594960 3.0594980 3.0594980 3.0595000
0.08 3.0794960 3.0794980 3.0794980 3.0795000
0.10 3.0994960 3.0994980 3.0994990 3.0995000
0.20 3.1994960 3.1994970 3.1994990 3.1995000
0.40 3.3994980 3.3994980 3.3995010 3.3995000
0.60 3.5994990 3.5994980 3.5995000 3.5995000
0.80 3.7994990 3.7994980 3.7995000 3.7995000

1.00 3.9995000 3.9995000 3.9995000 3.9995000
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c1 /X
y(x) =x+¢ tanhf1 (— + cz),
&

where

1 c;—1
¢ =2.9995 and ¢ - log (ci . 1>.
For this example also we have a boundary layer of width O(¢) at x = 0 (cf.
Kevorkian and Cole [6]).
The computational results are presented in Table 6(a) and (b), for & = 1073,
1074, respectively.

Example 7. Finally, consider the following example from O’Malley [10, p. 9,
Eq. (1.10), Case 2]:

Table 7
Computational results for Example 7
X y(x) O’Malley’s
5 =0.008 5 =0.009 5=001 solution

(a) e = 1073 and h = 0.01

—1.00 0.0000000 0.0000000 0.0000000 0.0000000

—0.98 —0.9876427 —0.9899885 —0.9917358 —1.0000000

—0.96 —0.9998360 —0.9998885 —0.9999319 —1.0000000

—0.94 —0.9999866 —0.9999875 —0.9999995 —1.0000000

—-0.92 —0.9999886 —0.9999886 —1.0000000 —1.0000000

-0.90 —0.9999887 —0.9999887 —1.0000000 —1.0000000

—0.80 —0.9999893 —0.9999893 —1.0000000 —1.0000000

—0.40 —0.9999917 —0.9999917 —1.0000000 —1.0000000
0.00 —0.9999940 —0.9999940 —1.0000000 —1.0000000
0.40 —0.9999964 —0.9999964 —1.0000000 —1.0000000
0.80 —0.9999988 —0.9999988 —1.0000000 —1.0000000
1.00 —1.0000000 —1.0000000 —1.0000000 —1.0000000

6 =0.007 0 =0.008 6 =0.009

(b) e =10"* and h = 0.01

—1.00 0.0000000 0.0000000 0.0000000 0.0000000

—0.98 —0.9998016 —0.9998477 —0.9998792 —1.0000000

—0.96 —0.9999999 —1.0000000 —1.0000000 —1.0000000

—0.94 —1.0000000 —1.0000000 —1.0000000 —1.0000000

—0.92 —1.0000000 —1.0000000 —1.0000000 —1.0000000

-0.90 —1.0000000 —1.0000000 —1.0000000 —1.0000000

—0.80 —1.0000000 —1.0000000 —1.0000000 —1.0000000

—0.40 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.00 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.40 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.80 —1.0000000 —1.0000000 —1.0000000 —1.0000000

1.00 —1.0000000 —1.0000000 —1.0000000 —1.0000000
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g —y =0, —-1<x<1,
with y(—=1)=0 and y(1)=-1.

We have chosen to use O’Malley’s approximate solution [10, pp. 9 and 10, Egs.
(1.13) and (1.14)] for comparison.

[ —exp(=(x+1)/e)]
y(x) - [1 + exp(—(x + 1)/‘9)] '

For this example, we have a boundary layer of width O(¢) at the left end of the
interval, that is, at x = —1 (cf. O’Malley [10]).

The computational results are presented in Table 7(a) and (b), for ¢ = 1073,
1074, respectively.

3. Right-end boundary layer problems

We now describe the numerical integration method for solving problems
with the boundary layer at the right-end of the underlying interval. To be
specific we consider the following singular perturbation problem:

&' (x) +a(x)y' (x) + b(x)y(x) = f(x);  0<x<1, (25)
with y(0) =« and y(1)=p, (26)

where ¢ is a small positive parameter (0 < ¢ < 1); o, ff are given constants; a(x),
b(x), and f(x) are assumed to be sufficiently continuously differentiable func-
tions in [0, 1].

We now assume that a(x) <M < 0 throughout the interval [0, 1], where M
is some negative constant. This assumption merely implies that the boundary
layer will be in the neighbourhood of x = 1.

The evaluation of the right-end boundary layer for (25) and (26) is similar to
that of the left-end boundary layer but there are some differences worth noting.
By using Taylor series expansion in the neighbourhood of the point x, we have

Y 8) () 80/ (6) + 1), @7)

and consequently, Eq. (25) is replaced by the following first-order differential
equation with a small deviating argument:

2ep(x + 0) — 2ep(x) — 2e0y (x) + 0%a(x)y (x) + *b(x)y(x) = 8*f(x). (28)

Transition from Eq. (25) to Eq. (28) is admitted, because of the condition that
o is small (0 < 0 < 1).
We rewrite Eq. (28) in the following convenient form:

Y (x) = p(x)y(x + 9) + g(x)y(x) + r(x) for 0<x<1 -9, (29)
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where
P = s (30)
q(x) = % : (31)
r(x) = % (32)

We will now describe the numerical scheme for solving Eq. (29). As usual, we
divide the interval [0, 1] into N equal parts with mesh A, i.e., h=1/N and
x;=ihfori=0,1,... N.

Integrating Eq. (29) in [x;_,x;], fori=1,2,... N —1; we get

) =) = [ It + 0) + goe) + ]

By making use of the trapezoidal formula for evaluating the integrals ap-
proximately, we obtain

) ¥(51) = 2o )1 +0) Pl (e + )
0 g ) + ge)ys)] + 2 ) + )] (33)

By means of Taylor series expansion, we have
y(x+0) = y(x) + 8/ (x),

and, then by approximating y/(x) by interpolation formula, we get

i+ 8) % () + 5 ) = e

0 0
y(x; +6) ~ (1 - Z)y(xi) + Zy(xiﬂ)y (34)
and similarly we have
0 0
o+ 0 (1= )t + Dot (35)

Hence, by making use of (34) and (35) in (33) we get
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o) =305 =300 | (1= Jotscn) + o)
#5000 (13 )0 + o]
+ 3 lglu (1) + g+ ) + ()l
$(x) — i) —g( ) (i) + (o )y(x)
+5 (1= )yt + 5Pt + Sato )yt

gy ) + o) + ().

Finally, this leads after simple rearrangement to the following three-term re-
currence relationship:

Eyi1—Fyi+ Gy =H, fori=12...,N-1, (36)
where
h d h
Ei——1—§<1—z)Pi—1—EQi—la (37)
o h 0 h
Fz=—1+2Pz1+2<1—h>P[+2(Iia (38)
o
G = _Epi’ (39)
h
H; :z[”ifl + 7l (40)

and y; = y(x;), pi = p(x:), ¢: = q(x;) and r; = r(x;). Eq. (36) gives a system of
(N — 1) equations with (N + 1) unknowns yy to yy. The two given boundary
conditions (26) together with these (N — 1) equations are then sufficient to
solve for the unknowns yy to yy. The solution of the tridiagonal system (36) can
easily be obtained by using an efficient algorithm called ‘Thomas Algorithm’
described in the previous section. Repeat the numerical scheme for different
choices of ¢ (deviating argument, satisfying the condition 0 < ¢ < 1), until the
solution profiles do not differ materially from iteration to iteration.

Example 8. To demonstrate the applicability of the numerical integration
method, we will discuss one singular perturbation problem with right-end
boundary layer.
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Table 8

Computational results for Example 8
X »(x) Exact solution

0 =0.008 0 =0.009 0=0.01
(a) e = 1073 and h = 0.01
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.9999989 0.9999997 1.0000000 1.0000000
0.40 0.9999975 0.9999997 1.0000000 1.0000000
0.60 0.9999962 0.9999997 1.0000000 1.0000000
0.80 0.9999948 0.9999997 1.0000000 1.0000000
0.90 0.9999942 0.9999997 1.0000000 1.0000000
0.92 0.9999940 0.9999997 1.0000000 1.0000000
0.94 0.9999920 0.9999987 0.9999995 1.0000000
0.96 0.9998413 0.9998997 0.9999318 1.0000000
0.98 0.9876480 0.9899997 0.9917356 1.0000000
1.00 0.0000000 0.0000000 0.0000000 0.0000000
6 =0.007 6 =0.008 6 =0.009
(b) & = 10 and h = 0.01
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.20 1.0000000 1.0000000 1.0000000 1.0000000
0.40 1.0000000 1.0000000 1.0000000 1.0000000
0.60 1.0000000 1.0000000 1.0000000 1.0000000
0.80 1.0000000 1.0000000 1.0000000 1.0000000
0.90 1.0000000 1.0000000 1.0000000 1.0000000
0.92 1.0000000 1.0000000 1.0000000 1.0000000
0.94 1.0000000 1.0000000 1.0000000 1.0000000
0.96 1.0000000 1.0000000 1.0000000 1.0000000
0.98 0.9998017 0.9998476 0.9998792 1.0000000
1.00 0.0000000 0.0000000 0.0000000 0.0000000
e'(x) =y (x)=0;  0<x<1
with y(0)=1 and y(1)=0.
For this example we have a(x) = —1, b(x) = 0 and f(x) = 0. Further we have a

boundary layer of width O(e) at x = 1.
The exact solution is given by
_l—exp((x—1)/e)
M) = 1 —exp(—1/e)
The computational results are presented in Table 8(a) and (b), for ¢ = 1073,
1074, respectively.

4. Internal layer problems

We will now discuss the singular perturbation problem with an internal layer
of the underlying interval. In this case a(x) changes sign in the domain of
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interest. Without loss of generality, we can take a(0) = 0, and the interval to be
[—1,1]. With the help of one model example we demonstrate the applicability
of the numerical integration method for solving singular perturbation prob-
lems with an internal layer.

Example 9. Consider the following singular perturbation problem:

&'(x) +0/(x) =y(x) =0,  —I<x<1 (41)
with y(—=1)=1 and y(1)=2. (42)
For this example we have a(x) = x, b(x) = —1 and f(x) = 0. Further we have

an internal layer of width O(y/¢) at x = 0. (For details, see O’Malley [10, pp.
168-172, Eq. (8.1), case (i)], and Kevorkian and Cole [6, pp. 41-43, Egs.
(2.3.76) and (2.3.77))).

We see that the function

a(x)=x<0 for—1<x<0,
a(x)=x=0 forx=0,
ax)=x>0 for0<x<l.
Hence, by making use of transitions suggested for left-end and right-end

boundary layers, we replace Eq. (41) by the following first-order differential
equations with a small deviating argument:

V(%) = px)y(x +6) + q(x)y(x) + r(x) for —1<x< -9, (43)
where p(x), g(x) and r(x) are given by
B —2¢ o) — 2¢ — 6°b(x)
pl) = 0 a(x) —2&d’ g0 = 0% a(x) — 2o
and r(x) = 5—"—"— ) ,
0 a(x) — 2¢d
and
V(%) = px)y(x = 6) + q(x)y(x) +r(x) for 6<x<1, (44)
where p(x), g(x) and r(x) are given by
=2 oo 26— 8b(x)
Pl) = 20 + &a(x)’ () = 260 + 6a(x)
and r(x) = L();)
2ed + 0%a(x)

We now divide the interval [—1, 1] into N equal parts with mesh size 4, i.e.,
h=2/Nandx;,=—-1+ihfori=0,1,...,N.
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Let us denote N/2 = L. Then, integrating using the trapezoidal formula
Eq. 43) in [x;_1,x;] for i=1,2,...,L—1; and Eq. (44) in [x;,x;y] for i =
L+1,L+2,....N—1; we get a system of (N —2) equations with (N + 1)
unknowns. From the given boundary conditions (42) we get two equations

»=y(-1)=1,
w=y(1)=2.
Table 9
Computational results for Example 9
X »(x)
0 =0.008 6 =0.009 0=0.01
(@) e=1073 and h = 0.01
—1.00 1.0000000 1.0000000 1.0000000
—-0.50 0.5025128 0.5025125 0.5025129
—0.10 0.1007176 0.1006431 0.1005968
—0.08 0.0812367 0.0810065 0.0808482
—0.06 0.0631051 0.0625267 0.0620928
—0.04 0.0483043 0.0471570 0.0462338
—0.02 0.0401910 0.0384762 0.0370292
0.00 0.0427526 0.0410037 0.0395100
0.02 0.0600897 0.0583748 0.0569278
0.04 0.0881019 0.0869545 0.0860313
0.06 0.1228018 0.1222235 0.1217896
0.08 0.1608329 0.1606027 0.1604443
0.10 0.2002133 0.2001388 0.2000924
0.50 0.9999993 0.9999990 0.9999991
1.00 2.0000000 2.0000000 2.0000000
6 =0.007 ¢ =0.008 6 =0.009
(b) e =10~* and h = 0.01
-1.00 1.0000000 1.0000000 1.0000000
—0.50 0.5025129 0.5025131 0.5025126
—-0.10 0.1005030 0.1005031 0.1005030
—0.08 0.0804026 0.0804026 0.0804026
—0.06 0.0603046 0.0603036 0.0603030
—0.04 0.0402802 0.0402574 0.0402424
—-0.02 0.0215259 0.0213159 0.0211514
0.00 0.0131929 0.0129429 0.0127334
0.02 0.0414236 0.0412137 0.0410492
0.04 0.0800772 0.0800545 0.0800394
0.06 0.1200011 0.1200002 0.1199995
0.08 0.1599986 0.1599988 0.1599986
0.10 0.1999985 0.1999998 0.1999986
0.50 0.9999989 0.9999995 0.9999982

1.00 2.0000000 2.0000000 2.0000000
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We need one more equation to solve for the unknowns (y,1,...,yv). For
this, we consider the original equation at x = x; = 0. Since a(x) =0 at x =
x; = 0, we get the following:

&y" () + b(xp)y(xr) = f(xr). (45)
By making use of the second-order central finite difference approximation for
the second-order derivative in Eq. (45) at x; we get the following equation:

[elye-1 = 26 = Pbilye + [y = B fr. (40)

With this Eq. (46) we now have (N + 1) equations to solve for the (N + 1)
unknowns (3, Vi, - .., In)-

The matrix problem associated is a tridiagonal algebraic system and the
solution of this tridiagonal system can easily be obtained by using an efficient
and stable algorithm called Thomas Algorithm. Repeat the numerical scheme
for different choices of § (deviating argument, satisfying the condition 0 <
0 < 1), until the solution profiles do not differ materially from iteration to
iteration.

The computational results are presented in Table 9(a) and (b), for ¢ = 1073,
107, respectively.

5. Problems with two boundary layers

The suggestions given for internal layer problems apply mutatis mutandis to
problems with two boundary layers. To illustrate this, we will again consider
the case where a(x) changes sign in the domain of interest. Without loss of
generality, we can take a(0) = 0, and the interval to be [—1, 1]. Again with the
help of one model example we demonstrate the applicability of the numerical
integration method for solving singular perturbation problems with two
boundary layers.

Example 10. Consider the following singular perturbation problem:
&'(x) —xy'(x) — y(x) =0, —-1<x<1 (47)
with y(—=1)=1 and y(1)=2. (48)
For this example we have a(x) = —x, b(x) = —1 and f(x) = 0. Further we have
two boundary layers one at x = —1 and one at x = 1. (For details, see O’Malley
[10, pp. 168-173, Eq. (8.1), case (ii)]).
We see that the function
a(x)=—x>0 for—1<x<0,
a(x)=—x=0 forx=0,
a(x) =—x<0 for0<x<l.
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Hence, by making use of transitions suggested for left-end and right-end
boundary layers, we replace Eq. (47) by the following first-order differential
equations with a small deviating argument:

V(%) = px)y(x = 8) + q(x)y(x) +r(x) for —1+0<x<0, (49)
where p(x), g(x) and r(x) are given by
B —2¢ o) = 2¢ — 6°b(x)
P) = 2¢ + 6a(x)’ () = 260 + 6a(x)
and r(x) = —52f()2€) ,
2ed + 0%a(x)
and
Y (x) = p(x)y(x + ) + qg(x)y(x) + r(x) for0<x<1 -4, (50)
where p(x), g(x) and r(x) are given by
=2 oo 28 8°b(x)
Pl) = 0a(x) — 2&d’ qlx) = 0 a(x) — 2o
and r(x) = M
o-a(x) — 2eo

As usual, we divide the interval [—1, 1] into N equal parts with mesh size 4,
ie,h=2/Nandx,=—1+ihfori=0,1,... N.

Let us denote N/2 = L. Then, integrating using the trapezoidal formula Eq.
49) in [x,x;] for i=1,2,...,L—1; and Eq. (50) in [x;_;,x;] for
i=L+1,L+2 ...,N—1; we get a system of (N — 2) equations with (N + 1)
unknowns.

From the given boundary conditions (48) we get two equations

»=y=)=1
w=y()=2.
We need one more equation to solve for the unknowns (yo,y1,...,v). As

in the previous section, we again consider the original equation at x = x; = 0.
Since a(x) =0 at x = x;, = 0, we get the following:

3)’”(XL) +b(x)y(xr) = f(x1). (51)

By making use of the second-order central finite difference approximation for
the second-order derivative in Eq. (51) at x; we get the following equation:

[elyi-1 — 26 — Ibilys + [elya = B[ (52)

Hence, with this Eq. (52) we now have (N + 1) equations to solve for the
(N + 1) unknowns (yo, 1, - -, W)
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The matrix problem associated is a tridiagonal algebraic system and the
solution of this tridiagonal system can easily be obtained by using an efficient
and stable algorithm called Thomas algorithm.

Repeat the numerical scheme for different choices of ¢ (deviating argument,
satisfying the condition 0 < 6 < 1), until the solution profiles do not differ
materially from iteration to iteration.

Table 10
Computational results for Example 10
X y(x)
6 =0.008 0 =10.009 0=0.01
(a) e = 1073 and h = 0.01
—1.00 1.0000000 1.0000000 1.0000000
—0.98 0.0125913 0.0101998 0.0084301
—0.96 0.0001644 0.0001079 0.0000738
—0.94 0.0000022 0.0000012 0.0000007
—0.92 0.0000000 0.0000000 0.0000000
—0.90 0.0000000 0.0000000 0.0000000
—0.70 0.0000000 0.0000000 0.0000000
—0.30 0.0000000 0.0000000 0.0000000
0.30 0.0000000 0.0000000 0.0000000
0.70 0.0000000 0.0000000 0.0000000
0.90 0.0000000 0.0000000 0.0000000
0.92 0.0000001 0.0000000 0.0000000
0.94 0.0000045 0.0000024 0.0000013
0.96 0.0003288 0.0002159 0.0001475
0.98 0.0251827 0.0203996 0.0168602
1.00 2.0000000 2.0000000 2.0000000
¢ =0.007 0 =0.008 ¢ =0.009
(b) e =10~* and h = 0.01
—1.00 1.0000000 1.0000000 1.0000000
—0.98 0.0002024 0.0001555 0.0001232
—0.96 0.0000000 0.0000000 0.0000000
—0.94 0.0000000 0.0000000 0.0000000
—0.92 0.0000000 0.0000000 0.0000000
—0.90 0.0000000 0.0000000 0.0000000
—0.70 0.0000000 0.0000000 0.0000000
—0.30 0.0000000 0.0000000 0.0000000
0.30 0.0000000 0.0000000 0.0000000
0.70 0.0000000 0.0000000 0.0000000
0.90 0.0000000 0.0000000 0.0000000
0.92 0.0000000 0.0000000 0.0000000
0.94 0.0000000 0.0000000 0.0000000
0.96 0.0000001 0.0000001 0.0000000
0.98 0.0004048 0.0003110 0.0002464

1.00 2.0000000 2.0000000 2.0000000
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The computational results are presented in Table 10(a) and (b), for ¢ = 1073,
1074, respectively.

6. Discussion and conclusions

As mentioned, the numerical integration method is iterative on the deviating
argument 0. The process is to be repeated for different choices of J (deviating
argument), until the solution profiles do not differ materially from iteration to
iteration. The choice of J is not unique but can assume any number of values
satisfying the condition, 0 < § < 1. To reduce the amount of computation, we
fix the mesh size /4 and vary the deviating argument . Finally, we pick up the
smallest value of § which produces the required accuracy. We have imple-
mented this method on total 10 problems (four linear problems with left-end
boundary layer, three non-linear problems with left-end boundary layer, one
problem with a right-end boundary layer, one problem with an internal layer
and one problem with two boundary layers) by taking different values for e.
The computational results are presented in Tables 1-10. We have given here
only a few values although the solutions are computed at all the points with
mesh size 4. It can be observed from the tables that the present method ap-
proximates the exact solution very well. This shows the efficiency and accuracy
of the present method.

We have shown that the numerical integration method is capable of solving
general singularly perturbed two-point boundary value problems. This method
provides an alternative and supplementary technique to the conventional ways
of solving singular perturbation problems. It is a practical method, easily
adaptable on a computer to solve singular perturbation problems with a
modest amount of problem preparation.
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