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Abstract

The nonlinear ordinary differential equation resulting from the self-similar reduction of a gen-
eralized Burgers equation with nonlinear damping is studied in some detail. Assuming certain
asymptotic conditions at plus infinity or minus infinity, we find a wide variety of solutions—
(positive) single hump, monotonic (bounded or unbounded) or solutions with a finite zero. The
existence or non-existence of positive bounded solutions with exponential decay to zero at infinity
for specific parameter ranges is proved. The analysis relies mainly on the shooting argument.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the present paper we study the self-similar solutions of the generalized Burgers
equation, namely
, O
utJru/}uer/lu“:Euxx, —co<x<oo, t>0, (1.1)
where o >0, f >0, 2€R and 6 > 0 (small) are constants. Eq. (1.1) is a generalized
Burgers equation with Au” as the damping term. It reduces to Burgers equation when
f=1and A1=0.
Lardner and Arya [11] studied a special case of (1.1), namely

0
Uy = un, — Au+ Eum (1.2)
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where 4 >0 and 6 > 0 (small) are constants. The transformation x — —x changes
(1.2) to (1.1) with f =1 and « = 1. This equation appears in the description of a
continuous medium for which the constitutive relation for the stress contains a large
linear term proportional to the strain, a small term which is quadratic in strain, and a
small dissipative term proportional to the strain rate. The inviscid form of (1.1) arises
in several applications, which include nonlinear acoustic propagation [15], the Gunn
effect in semiconductors [13], rotating thin liquid films [14], chloride concentration in
the kidney [12] and flow of petroleum in underground reservoirs [6,8]. This has also
been considered by Bukiet et al. [4] in the inviscid limit.
Sachdev et al. [21] reduced (1.1) to the ODE

4
f~//+217f/+ — f_23/25—1/2f(“—1)/2f/ —4/1]”‘:0 (13)

by the similarity transformation

— M- -7
=1 S 1.4
u S, 1 2002 (1.4)
requiring = (o« — 1)/2. By a simple scaling, (1.3) can be changed to
4
9" +2m9' + =9 =272 —dig” =0, (15)

Eq. (1.5) is an important special case which after a transformation belongs to a class
of nonlinear ordinary differential equations, called Euler—Painlevé equations first intro-
duced by Sachdev and his collaborators in a series of papers [19-22]. These equations
are much more general than the equation studied first by Euler and Painlevé (see Kamke
[10, p. 574]), which is exactly linearizable; hence the equations of the former class are
referred to as Euler—Painlevé transcendents. It was also pointed out by Sachdev [17]
that this class covers a large number of special cases treated by Kamke [10] (see also
the more recent work of Sachdev [18]).

We study here the self-similar solutions of (1.1) via (1.5). The study of (1.5) with
asymptotic conditions at infinity brings out a rich structure of solutions of Euler—
Painlevé transcendents, as evidenced by Theorems 1-5.

Sachdev et al. [21] studied numerically the boundary value problem

4
S S 2RI TR -4 =0, 00 <y <00, (1.6)

f ~ dexp(—*)H,(n) ~ Aexp(—n*)(2n)*"  as 1 — oo, (1.7)

f—=0 aspn——o0 (1.8)
and

|f| <00 on (_00900)3 (19)

where y = (3 — a)/(« — 1) and H, is the Hermite function. They obtained precise
numerical description of the solutions for 1 <o <3, 2 >0 and o > 1,4 <0.
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In a related study (see [25]), we have investigated the initial value problem for (1.5),
with initial conditions

g(0)=y, 4'(0)=0,

where y > 0 is a positive constant. Depending on the parameters o, /4, and 7, the
existence of different types of positive solutions is proved.
In this paper we study the following connection problem for (1.5):

g’ +2g + ﬁ g —22glg|* g — 4iglg]*~" =0, (1.10)
g(n) ~ Aexp(—* == as iy — oo, (1.11)
g—0 asn— —oo, (1.12)
g>0, |g|<oo on (—o0,00), (1.13)

where o > 1, 4 > 0 and 4 is real. The amplitude parameter A is varied for given (o, 4)
to see how nonlinearity changes the solution. In order to make the terms containing
g well-defined when it becomes negative, we write g*~1/2 as g|g|*=3/2 and ¢* as
glgl~".

We have proved Theorems 1-5 for problems (1.10)—(1.11).

Theorem 1. Assume that o >3 and 2= 0. Then for any A >0, a unique posi-
tive solution to problem (1.10)—(1.13) exists and decays algebraically to zero as
n— —oo.

Theorem 2. Assume that oo >3 and A > 0. Then there exist positive solutions g of
(1.10) and (1.11) exhibiting each of the following behaviours:

(i) g > 0 exists on (—o0,00) and g(n) — 0 algebraically as n — —oc.
(ii) g > 0 exists on (—oo,00) and g(n) — Yo, the constant solution of (1.10),
as n — —oo.
(iii) g > 0 exists on [ag,0) such that g(ayg) =y for some ag € R.

Theorem 3. Assume that o > 3 and ). < 0. Then there exists a solution of (1.10) and
(1.11), which is positive on (—o0,00) and decays to zero algebraically as n — —oc.

For the following cases, we show that there does not exist a positive solution on
(—00,00).

Theorem 4. Assume that 1 <o <3 and A <0 or a =3, <0. Then any solution g
of (1.10) and (1.11) has a finite zero for all A and hence no global positive solution
exists.

Here we prove also the existence of some more solutions of (1.10) which decay ex-
ponentially at #=—o0 and algebraically at 7=-+oo for the parametric range o > 3, 1=0,
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following closely the work of Soewono and Debnath [23]. We thus pose the following
connection problem:

4 _
g" +2ng' + —g - 2¥glg|* g =0, (1.14)
g(n) ~ Aexp(—n*)|n| =D as i — o0, (1.15)
gin) —0 asy— o0 (1.16)
and
g(n) >0 for all € (—o0,00), (L.17)

where 4 > 0 is an arbitrary constant.

Theorem 5. When o > 3, there exist solutions g of (1.14)—(1.17) on (—o0,00) de-
caying algebraically to zero as n — +oo.

The above theorems are motivated by the extensive numerical study of (1.10),
see [24].

The plan of the paper is as follows. Section 2 gives the preliminaries for linear and
nonlinear equations. Section 3 sets forth the proofs of the Theorems 1-5. Section 4
contains the conclusions.

2. Some preliminary results

Here we first give the general solution, the asymptotic behaviour and some qualitative
properties of the solution of the linearized form of (1.10), namely

g"(n)+2ng'(n) + %g(n) =0, neR. @1
The two linearly independent solutions of (2.1) are

g10n) =¢~"2U(a, V1) (2.2)
and

g2() ="V (a,V2n), (2.3)
where

a<y+;>, y:EZ:T;. (2.4)

Here U and V are the parabolic cylinder functions (see [1]). It follows from the
asymptotic behaviours of U and V' that the asymptotic behaviour of solutions of the
linear equation (2.1) as 1 — oo is given by

et Gty [ (@=3) (@—=2) T 1
gi(n) =4ie™" (1 a2 2 etolz)) (2:5)
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—2/(o— +1) -
— gy e (4 D 4 2.6
92(17) 1M + 2(0( — 1)27]2 +0(’1 ) s ( )
where

2(2=3)/2(2—1)
Bj=——

Nz

Next we give an exact solution of the nonlinear equation (1.10) when =3, A=0 and
g'(0) =2'2g*(0):

Ay = 26021 2.7

1

g(n) = — ,
er (c — \/;erf(r])>

where ¢ = 1/g(0). The solution (2.8) was first found by Sachdev et al. [21] and
subsequently by Cazenave and Escobedo [5].
Let

70 = (Ao — 1))~ 1E=D, (2.9)

(2.8)

g = 7o is an exact solution of (1.10) for A > 0.

We will show below that if the nonlinear equation (1.10) admits positive solutions
decaying to zero as 1 — +00, then they have the leading order behaviours same as ¢;
or g, as N — oo.

2.1. Asymptotic behaviour of solutions of the nonlinear equation (1.10) as n — too

We shall analyse here the types of decay of a positive solution of the full Eq. (1.10)
as 1 — £oo.

Lemma 2.1. If g is a positive solution of (1.10) on (—oo,00) and g — 0 as n — —oo,
then ¢ — 0 as n — —oo.

Proof. It follows from Eq. (1.10) that at an extreme point of the solution g, we have
g" = —4g/(e« — 1)+ 44g|g|*~'. This implies one of the following:

(i) If <0, g can have at most one local maximum.
(ii) If A >0, g can have local maximum only when g < 7.

Since g — 0 as n — —oo, we can find 7 such that g < y¢ in (—o0,n9). Hence g
can have at most one local maximum in this interval. Thus, in both these cases, we
find #; such that ¢’ > 0 in (—oo,#;). Now ¢’ can either be oscillatory or ultimately
monotonic as 7§ — —oo. We shall show that in both the cases ¢’ — 0 as B — —oo.
Let ¢’ be oscillatory. Then there exists a sequence of points, 17, — —oo as k — 0o
such that ¢’ has local extremum. By (1.10),

_ 4g(n0)/(2 = 1) — 4Ag(no)lg(n) !

/
g () =2k + 232g(ni)|g(ne )| (=372

(2.10)
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Using the assumption that ¢ — 0 as n — —oo, we have ¢g'(;) — 0 as k — oo
from (2.10). This implies that ¢’ — 0 as § — —oco. Now let us consider the second
case wherein ¢’ is ultimately monotonic. Suppose for contradiction that ¢ — K as
n — —oo, for some K > 0. This implies that ¢’ > K/2, for |n| sufficiently large. An
integration of this inequality from 5 to ny gives

K
g(n) < g(ne) — 5(170 —n) forn<mn (2.11)

implying that g(#) — —oco as n — —oo. This contradicts our assumption that g is
positive on (—oo,00). Therefore, ¢’ tends to zero as 7 — —oo. Hence the lemma. [J

Lemma 2.2 and Theorems 2.3 and 2.4 below can be proved following the work of
Brezis et al. [3]. Detailed proof can be found in [24].

Lemma 2.2. Assume that o > 1 and L€ R. Let g be a positive solution of (1.10) on
(—00,00). Further let g — 0 as n — —oo. Then lim,_._ ¢'/g exists and is zero
or +0o0.

2.2. Exponentially decaying solutions

Theorem 2.3. If g(n) is a positive solution of (1.10) tending to zero as n — —oo and
lim, . ¢'/g = oo, then

e Genyfa—1) [ (e =2)(x—=3) 1 1 1
g =de" (- e ()

as n — —oo, (2.12)
where A > 0 is a constant.
2.3. Algebraically decaying solutions

Theorem 2.4. If g(n) is a positive solution of (1.10) tending to zero as n — —oo and
lim,—, oo ¢'/g =0, then for some 0 < K <2,

g(n) = A7 (T4 o(In| %)) as n— —o0, (2.13)
where A > 0 is a constant.

Combining Lemmas 2.1 and 2.2 and Theorems 2.3 and 2.4, we have the following
remark.

Remark 2.5. If g is a positive solution of (1.10) tending to zero as # — —oo, then g
decays to zero exponentially or algebraically as n — —oo.

Following closely the analysis for 7 — —oo we have the following remark.
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Remark 2.6. If g is a positive solution of (1.10) tending to zero as 1 — 400, then g
decays exponentially or algebraically to zero as # — oo. The asymptotic expressions
for the solution as 1 — oo are essentially the same as in Theorems 2.3 and 2.4.

3. Solutions of (1.10) with exponential decay at n = +oo or —oo
In this section, we shall prove Theorems 1-5.

Proof of Theorem 1. We first show that for every 4 > 0 there exists a unique solution
g for the differential equation (1.10) on some interval [#,,00) with exponential decay
at 1 = +oo satisfying (1.11). Next we show that g is positive at +oco for 4 > 0 and
it cannot become zero in its maximal interval of existence for 4 > 0. Then we show
that g exists globally on (—o0,00) and has algebraic decay at n = —oo. The proof as
outlined results from the following three lemmas.

The proof of Lemma 3.1 follows from the use of fixed point iteration as in Hastings
and McLeod [9]. Unlike their equation, we have a nonlinear term having g’ which is
handled here by integration by parts to reduce it to an integral equation amenable to
fixed point iteration. []

Lemma 3.1. Under the assumptions of Theorem 1, for every ki > 0 there exists a
unique positive solution g, of (1.10), which is asymptotic to (k; exp(—n?)pB=*/=1)
as n — oo on [no(ky),o0). Further gy, and its derivatives are continuous functions of
ki. (The choice of no(ky) would be explained in the proof of this lemma.)

Proof. We first write (1.10) as an inhomogeneous ODE
4 y—
g"+2ng' + —— g=2"glg|* . 3.1

By the method of variation of parameters, the general solution of (3.1) can be written
as

g(n) =kigi(n) +k2g2(17)+/ k(s,mR(s)ds, (32)
n

where

k(s,t) = ? =2 (U (a, tV2)V (a,5v2) — U(a,sV2)V (a,tv/2)), s>t (3.3)
and

R(s) = 22g(s)]g(5)| g/ (s). (34)
Here g; and g, are as in (2.2) and (2.3) of Section 2. Since we are interested in the
solution of (1.10) with asymptotic behaviour k; exp(—#7?)nC=/*=1 as y — oo, we
put k&, =0 and replace k; by k;/A; where A; = 20B=®)/2(x=1). the constant 4, appears

in the asymptotic behaviour of the solution of linearized form (2.1) of (1.10) (see
Eq. (2.7)). Thus,

k o0
g(n) = Afll g1(n) + 23/2/ k(s,m)g(s)|g(s)| g/ (s) ds. (3.3)
n
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Integrating by parts the second term on the right side of (3.5) and using the asymptotic
behaviours of U,V (see [1]) and g to drop the boundary terms, we get
5/2

k o
o0 = () - / k(s lg(s)[ D2 ds. (3.6)
n

o+ 1

We use the contraction mapping theorem to show that (3.6) has a unique solution. The
asymptotic behaviours of U and V' as 1 — oo imply that

lk(s,n)] < MeS " y@=0/a=Dg=2/a—1) (3.7)

lky(s, )| < Mesz—rfn(s—a)/(a—l>S<«—3)/<x—1), (3.8)

for some M > 0 fixed and s > 5 = no(k;), where no(k;) is sufficiently large. Let 1o(k;)
be chosen so large that for n > #y(k;) the following conditions are satisfied:

@) / e~ (=D /2= (=32 g T erfe -1 nl, (3.9)
0 o—1 4
232 -1

() )~ Me(o)(dh) D2 erfe | /2 ) <0, (3.10)
o+1Va—1 4

k 3 3k

(iii)  sup ‘ g1 exp(p T < S8 (3.11)
[no(k1),00) 1411

where 0, is fixed in (0, 1/4], c(2)=(a+1)/2, and erfc(n)=(2/\/7) j;fo exp(—#?)dt is the
complementary error function. Condition (ii) is satisfied since the complementary error
function tends to zero as § — oo. Condition (iii) is satisfied thanks to the asymptotic
behaviour of g; as # — oo (see (2.5)).

Define

Clno(k1),00) = {g| g is continuous on [no(ky),0)},

X = {g€ Clno(ky), )| sup \g(s)eszs(“*”/(“*l)\ < 2k1},
[10(k1),00)

(ot*3)/(ot*1)|’

2
lgllx = sup [g(s)e” s d(91,92) = llgr — gallx

[10(k1),00)

and an operator 7 on X by
5/2

Tk (172 g, 12
e RGO O (3.12)

k
Tg(n) = ;'lglw) —~

Clearly d satisfies the properties of a metric. It is easy to see that X is a complete
metric space with metric d.

Claim. T is a contraction from X into X.
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Suppose g3,94 € X. We shall show that
Tgs — Tgallx < O1llgs — gallx, 01 <1. (3.13)
Now, using the definition of T,

2
|Tgs — Tgally = sup e n*=3=D|Tg5 — Tgyl
[10(k1),00)

< sup el pede=D
[no(k1),00)

25/2 oo
x{ / WGMWMKHW“W-Wm@W”WZM}-
a+1J,
(3.14)

Note that, by the mean value theorem,
lgs| 72 — 1ga| D2 < e)lgs| + 19l * = 1gs — gal, (3.15)

where c(a)=(a+1)/2. By using (3.15) and (3.8) and the fact that g3,¢4 € X in (3.14),
we get, after some simplification,

25/2
HM—MMSS@{ Me()(dk)@ "
otk ooy L0641

o0
< [Tz g - gy
n

< sup  { Me(o)(4ky ) *D2
[10(k1),00)

« 22T ke JELA |
o+1Va—1 g 1 93 7 gallx

(by Eq. (3.9))

< 0i]lgs — gallx  (by Eq. (3.10)).

Further for g = 0, we have Tg = kyg1/4; and by (3.11), ||kig1/41||x < 3k1/2. For any
g € X, we have by Egs. (3.11) and (3.13) and remembering that 0 < 0; < 1/4
3 ki

1Tglly < ITO)x + 179~ TOllx < 3 k1 + 5 =24, (3.16)

Thus Tg € X. Hence the claim is proved.

Since 7 maps X to X and is a contraction on the complete metric space X, by
contraction mapping theorem (see [16]), 7 has a unique fixed point on X defined on
[no(k1),00). This implies that Eq. (3.6) has a unique solution on [#y(k; ), c0) satisfying
lg| < 2kye™" y3=2/@=D for all n > ne(k). If we use the bound on g and the asymp-
totic behaviour of complementary error function as # — oo, in the integral equation
(3.6), we can show that g has the required asymptotic behaviour at co. Thus, we have
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shown that, for any k; > 0, there exists 79(k;) such that the differential equation (1.10)
has a unique solution with the asymptotic behaviour g ~ kle”’zn(3*°‘)/(“*1) as n§ — oo;
it exists for all # on [no(k;),0).

If k1 > 0, then there exists some #; sufficiently large such that gz, > 0 on (#;,00)
because of the asymptotic behaviour of g;,. We claim that this g, is positive on
(no(k1),00). If not, let n, be such that gi (n2) =0 and g (12) on (12,00); then by
(3.1) we have at 5 =1

9i, (n2) = —/ (((;C_l))gkl(s)) ds <0,
n2

a contradiction. Hence g4, cannot have a zero.

We now show the continuous dependence of g on k;. Let g4, be the solution of
(1.10)—(1.11) on [#no(k1),00) and k € (k; — &k + ¢) for some &> 0. Define 5, =
SUP [k, ek +¢] M0(K). Since gi,, gy, are fixed points of (3.6) corresponding to k; and
ky on (y5,00), proceeding as in the proof of the claim we arrive at the following
inequality:

(1= 00k~ gl < E gy G.17)
This implies that g, — g, uniformly on [#;,00) as k» — k;. Now the continuous
dependence of g with respect to k on [#,,#] can be obtained by standard theorems
for initial value problems on compact intervals (see [16]).
Integrating (1.10) from 5 to co, we get

252 BT /20 —3)
ng——M%Mﬂ+a+ﬂmmmm’/—l <ch4%®0d&

n € (no(ky), 00). (3.18)

On using continuous dependence of g on k; in (3.18), we get continuous dependence
of ¢ on k. O

For the sake of simplicity, we shall, in the following, use g instead of g; when there
is no ambiguity.

Lemma 3.2. The positive solution g on [no(k),o0) can be extended to (—oo,00) as a
positive solution of (1.10) and (1.11) under the assumptions of Theorem 1.

Proof. Suppose on the contrary that 7,,x > — 00, (max, ) is the maximal interval of
existence for g. Then as 1§ — #max, ¢ Or ¢’ or both must be unbounded. It is easy to see
from (1.10) that g on (#7max, 00) cannot have a positive local minimum. Hence either g
has no maximum on (#ax, 00) or g has exactly one maximum and remains positive and
bounded near #,.,. In the former case, g has to cross the curve f(n) = (y/2'/%)¥*=1
on (0,00) at some point 7 in (0,00) and g(17) > (1) on (mMax{#<max,0},7). Then,
defining
2

2
En ="+ o0




Ch.S. Rao et al. | Nonlinear Analysis: Real World Applications 4 (2003) 723741 733

the derivative of £, on use of (1.10), is
E'(n) =g (=2 +2%2¢|g|* ")
and is positive on (#max,#). Thus E is an increasing function on this interval and

E(n) <EW) V1€ (max, 1)-

This implies that g and ¢’ are bounded on (9yax,7) by E(7j). This is a contradiction.
Therefore, this case cannot arise. In the second case, when ¢ is bounded on (#max, 20),
g’ is bounded in view of (3.18) and (1.11). Hence #y.x = —oo, that is, g exists on
(—o0,00). O

Lemma 3.3. Assume that o >3 and /. =0. If g is a positive solution of (1.10) and
(1.11) on (—o0,00), then g must decay algebraically to 0 as n — —oo.

Proof. By (1.10), g can have at most one critical point. Since the solution is positive
and bounded, g(n) — C = 0 as n — —oo. We will show that C =0.
For contradiction, we let C > 0. By integrating (1.10) from 5 to & > 0, we get

) . 2502 ¢ /g3
[9/ )T} = ~[2s9()]; + L +1|g(s>|<““’/2] +2 /7 (z_1>g(s>ds.

n

When we let £ — oo, g(&), ¢'(¢) and &g(E) — 0 in view of (1.11). Thus

()| T2 -2 / h (“ — 3) g(s)ds. (3.19)

" o—1

5/2

2
/ -2
g(n) ng(n) + o

If g(n) = C >0 as § — —oo, then from (3.19), we conclude that
g (n) — +oo  as n — —o0.

This is impossible by the earlier lemma. Therefore C = 0.
If g decays to 0 exponentially at —oo, then from (3.19) we get by letting # run
to —o0,

*© (a—3
0:_2/—00 <a1>g(s)ds;£0,

a contradiction. By Remark 2.5, we conclude that g — 0 algebraically as 4 — —co. [

Proof of Theorem 2. The proof of Lemma 3.1 goes through after rewriting the differ-
ential equation (1.10) as

52

k o .,
o= 0~ 7 [ ki) ds
1

o+ 1

47 / k(s mg(s)|g(s)*" ds.
n
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Thus we get a solution g on [no(k;),o0) satisfying (1.10) and (1.11) with 4 = k.
Notice that

©(2(a—73
s == [ (= o+ w0 ) o

5/2

2 o
—2ng(n) + lg(m)| 12 (3.20)

o+ 1
Treating this equation as in the proof of Lemma 3.1, we can conclude that g cannot
have a zero on its maximal interval of existence.

Suppose that g is bounded on its maximal interval of existence (#max, 0 ). Then, using
arguments as in Lemma 3.2, we can extend g to (—o0,00) as a positive solution. It
is clear from (1.10) that g cannot have a positive local minimum. Hence the solutions
are ultimately monotonic as y — —oo.

Suppose that g(y) — C (finite), as n — —oo. By integrating (1.10) from 5 to &, we
get

5/2 <

. . [2
[g/()15 = —[2s9(s)]; + [

(a+1)2
2 lane]

n

+/n' (2 (Z - ?) g(s) —|—4/1g(s)g(s)|“1> ds.

g(&), ¢'(&) and Eg(€) — 0 as ¢ — oo in view of (1.11). Thus

/ _ 25/2 (a+1)/2
g'(m)=—2n9(n) + ——1g(n)|
o+ 1
> o—3 o—1
— 2 ) g(s) + 4g(s)|g(s)| ds. (3.21)
1
So, if 5 is a fixed negative number and |1jo| is large, then for 1 < 59, we have
25/2c(9<+1)/2 -1
/ a—1
= D EE—— + )LC
=TT ((oc—l) >”

%) ) _ 25/2
_/ 207 o) 440671 (9) ) ds b (gD - )
"o (a—1) o+ 1

~ / " [Z(fx 3)(g(s) — C)
p (a—1)

+44(g%(s) — C“)} ds — 2n(g(n) — C).
This implies that
-1
o) = 4C <oc1 + m-‘) 1+ o).

as § — —oo. If C # 0 or yg, ¢’'(n) — oo or —oco as § — —oo. Therefore, g(1) cannot
remain bounded, which is a contradiction. Thus g(n) — 0 or yg as # — —oo, leading to
cases (i) or (ii) of Theorem 2. We will show in Lemma 3.4 that the case (i) happens
for £ small. If g is unbounded, case (iii) happens. We show in Lemma 3.5 that a
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positive solution on [7y,c0) with g(19) = y¢ exists. Thus, case (iii) occurs. Using the
connectedness of (0,00) and Lemmas 3.4 and 3.5, we will finally prove in Lemma 3.6
the existence of positive solutions with the behaviour as in (ii). This completes the
proof of Theorem 2. [J

Remark. Define

g” 2, 4;
2

Te-n? T @rn

Note that a characterization of different types of solutions of (1.10) may be given in
the following ways:

|oc+1

E(n) = lg

(i) If g,¢g’ — 0, then E — 0 as y — —oo.
(ii) If g — 70, ¢’ — 0 as § — —oo, then E — 2 (A(ax — 1))~ %D as n — —oc.
(iii) If g(71) = (Ao — 1)~V for some 1, then E(q1) > o2+(3o — 1))~ 26D,

This characterization will be used in the proof of the next lemma.

Lemma 3.4. Under the assumptions of Theorem 2, if k > 0 is sufficiently small, then
there exists a positive solution g of (1.10) and (1.11) on (—oo,00) and g(n) — 0
algebraically as n — —oo.

Proof. We observe that g has to intersect the curve f(17)=(5/v/2)¥*~ D, since ¢ has
at most one local maximum. Let f and g intersect at the point /7. We have gy =0
when k& =0. By the continuous dependence of g on k, we can choose sufficiently small
k such that both g(#) and ¢'(7}) are small and E(7}) < %Eo, where Ey = [2/(a + 1)]
x (Ao —1))72/#=D_ We shall show that E(y) < %EO Vn. By (1.10),

2 _
E'(n) =g~ (—2n + 2%2g|g|*~3?).

This implies that E'() < 0 on (7, 00), E'(7) > 0 on (—o0,7) and E'(77)=0. Thus E(1)
has a global maximum at n = .

If g were unbounded, there would be a point #; such that g(n;) = 7. In that case
E(m) = g’z(m)/2+E0 > Ey, which is not possible in view of our choice of k. Hence
g < yo for all 5. Further observe that if g — y¢ as # — —oo, then ¢’ — 0 as 1 — —o0
and hence E(n) — Ey as n — —oo. This implies that for some 12, E(12) > Ey/2,
which is again impossible because of our choice of k. Hence g has to tend to zero as
N — —o0.

If g(n) decays to 0 exponentially at —oo, then from (3.21), we get by letting # tend
to —oo,

o -3
0= —/_OO <2 (Z_J g(s)+4/1g|g|°“1> ds # 0,

a contradiction. From Remark 2.5, we conclude that g(y) — 0 algebraically as
n— —oo. U
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The proof of the following lemma uses arguments similar to those of Soewono and
Debnath [23].

Lemma 3.5. Under the assumptions of Theorem 2, there exists a positive solution of
(1.10)—(1.11) in [ay,00) such that g(a,) =7y for some a; € R.

Proof. Rewriting (1.10) as

1

g'=-2ng' -

@ i 59t 212919 I + 42glgI" = F(n,9.9').  (3.22)
First we show that f(7)=a exp(—bn) is an upper solution of (3.22) on [a;, c0) for some
positive numbers a and b. Take a(n) = 0 as a lower solution. We shall show that F
satisfies Nagumo’s condition with respect to « and f on any interval J =[aj, b;]. Then
by Theorem 1.7.1 of Bernfeld and Lakshmikantham [2], for any ¢, a(a;) < ¢ < f(ay),
the problem

g” :F(W, g, g/)a g(al) =, (323)

has a solution g € C?([a;,00), R) such that a(17) < g(17) < B(n) on [a;,00). This implies
that g is a solution of (1.10) and (1.11) decaying exponentially at 7= +o00 by Remark
2.6, and is positive with g(a;) = c.

(i) We now check that f§ is an upper solution for a suitable choice of a and b.

_2'/Iﬂ/ _ ﬁ + 23/2ﬁ(a—l)/2ﬁ/ + 4;\’ﬁa _ ﬁ//

4
(0 —1)
4a
(=2

+4a” exp(—bn(o — 1))}

4 o TR ], 162 2
TN T =) 8 2 N TS (T =D

1 b 16/,
—b? (1 + “) by ( b + - 1))} exp(—bn). (3.24)

Choose positive numbers a and b such that

4 2732472 16/, 2
- logd =% " (p4/p -
@—1) Og{ 7 ( + +(o¢—1)>} -1

1 b 164
_ K2 —y_ = 2
b <l 4/1> 4, ( b (o — 1)) > 0.

=exp(—bn) { <2abn + — ab2> — 2324002 exp(—bn(a — 1)/2)
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This choice is possible since logt — —oo as ¢ — 0. Thus, in conjunction with (3.24),
f is an upper solution.

(i) F satisfies Nagumo’s condition with respect to o, § on J =[ay, b;]. From (3.22),
we have

- 4 —
IF(1.9.9)] = |9/ (=21 + 2Pglg|*™%) = =59 + dglg"™

< |g'|121n] + 2*21g|*= V2| + 44|g|”

<|g'|er + 2 = h(lg')),

where A(s) = c15 + ¢z, and ¢; and ¢, depend on J, |g|. Now,

St 1 C
ELE PR (Y .
/ O <S o °g(cl”cz)>

Therefore as s — oo, [*(#/h(t))dt — oo; this implies that [*(s/h(s))ds =00 > f(ay).
Thus F satisfies Nagumo’s condition with respect to « and f. Since f() — oo as
n — —oo, choose a; such that fi(a;) > 7. Hence the lemma follows. [J

Lemma 3.6. Under the assumptions of Theorem 2, there exists a positive solution g
of (1.10) and (1.11) on (—o0,00) and g(n) — v9 as n — —oo, where 7y is given
by (2.9).

Proof. Define S;={4 > 0| g4@7) > 0 is the solution of (1.10) and (1.11) and g4@1;) =
yo for some 1}, So = {4 > 0]g4(n) > 0 is the solution of (1.10) and (1.11) and
g, (n1)=0 for some n,}, and S3={4 > 0| g4(n) > 0 is the solution of (1.10) and (1.11)
and g(1) — 70 as 7 — —oo}.

We now prove that S} and S, are non-empty open sets. Lemmas 3.4 and 3.5 imply
that S} and S, are non-empty. Suppose 4; € S;. By the definition of S, there exists 7,
such that g4, (12) > 70. By the continuous dependence of solutions on A, there exists
a neighbourhood U of 4; such that g4(1,) > 7o for all 4 € U. This implies U C Sj.
Therefore, S; is open. Suppose 4, € S,. By the definition of .S;, there exists 73 such that
9/,(13) = 0. Suppose 14 is such that g,(14) = g.4,(13)/2, 14 < n3. By the continuous
dependence of the solutions on A there exists a neighbourhood U of A, such that
l9.4,(n) — g4(n)| < & on [n4,00). This implies that

ga,(n) — & < ga(n) < ga,(n) +¢ for all n€[ns,00). (3.25)

For the sake of clarity let 4 > A,. Then g4 > g4, on [n4,00) (see the remark below).
This implies that g4(n3) > g4,(#3). Choose &= g.,(n3)/4. Then, using (3.25), we have
ga(na) < 3ga,(n3)/4 < ga(n3), implying that g, is increasing on [14,13], i.e., g4(n) =0
on [#4,13]. Since g4 — 0 as n — oo, we have ¢,(n*) < 0 for sufficiently large #*.
Thus there exists #** €[4, 7*] such that ¢/,(5**) = 0. Therefore 4 € S,.
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Since S| and S, are non-empty disjoint open subsets of (0, c0), there exists 4™ € (0, o)
such that 4* ¢ S; U S,. Hence A* € S;5. Hence the proof of the lemma follows. [

Remark. Positive solutions of (1.10) and (1.11) are ordered with respect to 4 for
o > 3,4 = 0. Suppose that g3 and g4 are two solutions of (1.10) and (1.11) intersecting
at n = no. Further,

g3(n) > ga4(n) for n>no and  g3(10) = ga(no)- (3.26)
This implies that

g5(n0) = g4(no). (3.27)
By (3.20) and (3.26),

93(m0) — ga(10) = —/

Mo

—— (93— g4)

2(o0 —3)
(G5

+4Mgslgs|"" — g4|g4|°“1)> ds <0,
a contradiction to (3.27). Hence the remark.

Proof of Theorem 3. As in Lemma 3.1, we get the existence of a solution g on
[no(k),00) satisfying (1.10) and (1.11) with 4 = k. In this case too g > 0 has at
most one local maximum. Hence ¢ intersects the curve f(n) = (1/v2)¥*=, say, at
n1. In view of the continuous dependence of g on k, we may choose & small such that
g(n),g'(n1) are small enough so that

2 (x-3)
s <Bri= 2 (55505 )

as in the proof of Lemma 3.4; here £ is as in Remark above Lemma 3.4. If, for
some 1,

(06—3) >1/(3€—1)

> (555

then E(#2) = E, which is impossible by our choice. This implies that

(2 —3) >1/(oc—1)

< (360

for all n. Now we claim that g is positive on (—o0,00). Suppose on the contrary that
g has the first zero from oo at = ng. Then, by (3.20), we have

® (2(a—3
g/(WO):_/nO <((;_1))0+4/1§]|9|a_1> ds <0,

a contradiction to the fact that g’(19) = 0. Hence g > 0 on (—o0, o). Following Lemma
33,9g—0asn— —ooand g=O(n|~?@V)yas yn— —oco. O
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Proof of Theorem 4. If g is positive for all #, then ¢g’(s) > 0 for all # < 0 as follows
readily from Eq. (3.20). Again from (3.20),
1203 —a) , _
g'(n) > / [ g(s) = 44g(s)|g(s)* | ds =& >0
o L(—=1)
for all #n < 0. This implies that g cannot remain positive for all negative 7. Hence the
theorem. [

3.1. Solutions with exponential decay at n = —oo

Remark. For o =3 and 1 =0, an exact solution with exponential decay as || — oo
was found earlier by Sachdev, Nair and Tikekar [21] and is given in Section 2. Now,
we consider the case 1 < o < 3. Cazenave and Escobedo [5] studied the ODE

u//+p|u‘p—]u/+§u/+

5 72(p_1)u20, (eR (3.28)

obtained by the similarity reduction of the PDE
Wi — we + (WP W), =0, >0, x€R, 1< p<2. (3.29)

They analysed Eq. (3.28) for 1 < p < 2. Eq. (3.28) can be reduced to (1.14) by
simple scaling. Making use of the results of Cazenave and Escobedo [5], we conclude
that there are no bounded positive solutions of (1.14). Therefore, the boundary value
problem (1.14)—(1.17) does not have a solution for 1 < o < 3.

Proof of Theorem 5. The local existence on (—o0,7), uniqueness and continuous de-
pendence of solutions of (1.14) and (1.15) on the parameter 4 can be obtained by
following the arguments of Lemma 3.1. If A =0, g = 0 is a solution of (1.14) and
(1.15). By choosing A4 sufficiently small, and making use of the continuous dependence
of solutions on 4 as in Soewono and Debnath [23], we get the solutions g, satisfying
94(n0) = go < (170/2"%)?*=1 where g, is defined on (—oc, 7). Following the proof
of Lemma 3.2, g4 is bounded. In the manner of the proofs for Lemmas 3.1 and 3.3,
we can show that g, is positive and g4 decays algebraically to zero as y — oco. [

4. Conclusions

In this paper, we have studied self-similar solutions of GBE (1.1) with asymptotic
conditions at x = +o00 or as x = —oo. We have proved the existence of bounded,
positive solutions with exponential decay to zero as x — +oo or —oo for different
parametric ranges. From our analysis we conclude that bounded, positive solutions
with exponential decay to zero as x — +o0o or —oo exist only for the following cases:
(i) « > 3,4 >0 (i) « > 3,41 < 0. However, our numerical study (see [24]) suggests
that there also exist global positive solutions for the case 1 <o < 3,1 > 0.

The existence of a self-similar solution with exponential decay as x — =+ oo for
1 <o <3 and A=1 was proved by Escobedo and Zuazua [7]. Their results complement
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our work. Sachdev et al. [21] showed numerically that self-similar solutions of the
GBE (1.1) form intermediate asymptotics in the parametric range 1 < o« < 3,1 > 0.
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