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Abstract

In this paper an initial-value approach is presented for solving singularly perturbed

two-point boundary value problems with the boundary layer at one end (left or right)

point. This approach is based on the boundary layer behavior of the solution. The

method is distinguished by the following fact: The given singularly perturbed two-point

boundary value problem is replaced by three first order initial-value problems. Several

linear and non-linear problems are solved to demonstrate the applicability of the method.

It is observed that the present method approximates the exact solution very well.
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1. Introduction

Singularly perturbed second order two-point boundary value problems arise

very frequently in fluid mechanics and other branches of Applied Mathematics.

These problems have been received a significant amount of attention in past

and recent years. These problems depend on a small positive parameter in such

a way that the solution varies rapidly in some parts and varies slowly in some
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other parts. So, typically there are thin transition layers where the solutions can

jump abruptly, while away from the layers the solution behaves regularly and
vary slowly. There are a wide variety of techniques for solving singular per-

turbation problems (cf. [1,3,5]).

A non-asymptotic method, called boundary value technique, has been in-

troduced by Roberts [7] to solve certain classes of singular perturbation

problems. He also discussed the analytical and approximate solutions of the

problem: ey00 ¼ yy 0 [8]. Roberts [9] has extended his boundary value technique

to solve the problem: ey 00 þ yy 0 � y ¼ 0. The concept of replacing singularly

perturbed two-point boundary value problem by an initial-value problem is
presented by Kadalbajoo and Reddy [2].

In this paper, an initial-value approach is presented for solving singularly

perturbed two-point boundary value problems with the boundary layer at one

end (left or right) point. This approach is based on the boundary layer behavior

of the solution. The method is distinguished by the following fact: The given

singularly perturbed two-point boundary value problem is replaced by three

first order initial-value problems. The numerical solution of two initial-value

problems goes in opposite direction and the third initial-value problem is in-
dependent of these two initial-value problems. Several linear and non-linear

problems are solved to demonstrate the applicability of the method. It is ob-

served that the present method approximates the exact solution very well.
2. Initial-value approach

For convenience, we call our method as the initial-value approach. To de-

scribe the method, we first consider a linear singularly perturbed two-point

boundary value problem of the form
ey 00ðxÞ þ f ðxÞy0ðxÞ þ gðxÞyðxÞ ¼ hðxÞ; x 2 ½a; b	 ð1Þ
with
yðaÞ ¼ a ð2aÞ
and
yðbÞ ¼ b; ð2bÞ
where e is a small positive parameter (0 < e 
 1) and a, b are known constants.

We assume that f ðxÞ, gðxÞ and hðxÞ are sufficiently continuously differentiable

functions in ½a; b	. Further more, we assume that f ðxÞPM > 0 throughout the

interval ½a; b	, where M is some positive constant. This assumption merely
implies that the boundary layer will be in the neighborhood of x ¼ a.

Because of the boundary layer behavior of the solution of singular pertur-

bation problems, it is known that the solution of (1) and (2) is given by
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yðxÞ ¼ pðxÞ þ qðxÞe�rðxÞ=e ð3Þ
with
rðxÞ ¼
Z x

a
f ðxÞdx;
where
pðxÞ ¼
X1
n¼0

pnðxÞen and qðxÞ ¼
X1
n¼0

qnðxÞen
(cf. [10, p. 292]), i.e.,
yðxÞ ¼
X1
n¼0

pnðxÞen þ
X1
n¼0

qnðxÞen
 !

e�rðxÞ=e ð4Þ
with
rðxÞ ¼
Z x

a
f ðxÞdx: ð5Þ
Differentiating (4) with respect to �x� we get
y0ðxÞ ¼
X1
n¼0

p0nðxÞen þ
X1
n¼0

q0nðxÞen
 !

e�rðxÞ=e

�
X1
n¼0

qnðxÞen
 !

ðe�rðxÞ=eÞ f ðxÞ
e

� �
; ð6Þ
y00ðxÞ ¼
X1
n¼0

p00nðxÞen þ
X1
n¼0

q00nðxÞen
 !

e�rðxÞ=e

� 2
X1
n¼0

q0nðxÞen
 !

ðe�rðxÞ=eÞ f ðxÞ
e

� �

þ
X1
n¼0

qnðxÞen
 !

ðe�rðxÞ=eÞ f ðxÞ
e

� �2

�
X1
n¼0

qnðxÞen
 !

ðe�rðxÞ=eÞ f 0ðxÞ
e

� �
: ð7Þ
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Substituting (4), (6) and (7) in (1) we get
X1
n¼0

p00nðxÞenþ1 þ
X1
n¼0

q00nðxÞenþ1
 !

ðe�rðxÞ=eÞ � 2
X1
n¼0

q0nðxÞen
 !

ðe�rðxÞ=eÞðf ðxÞÞ

þ
X1
n¼0

qnðxÞen�1
 !

ðe�rðxÞ=eÞðf ðxÞÞ2 �
X1
n¼0

qnðxÞen
 !

ðe�rðxÞ=eÞðf 0ðxÞÞ

þ f ðxÞ
X1
n¼0

p0nðxÞen
 !

þ f ðxÞ
X1
n¼0

q0nðxÞen
 !

e�rðxÞ=e

� ðf ðxÞÞ2
X1
n¼0

qnðxÞen�1
 !

e�rðxÞ=e þ gðxÞ
X1
n¼0

pnðxÞen
 !

þ gðxÞ
X1
n¼0

qnðxÞen
 !

e�rðxÞ=e ¼ hðxÞ: ð8Þ
By restricting these series to their first terms, we get
�2f ðxÞe�rðxÞ=eq00ðxÞ � q0ðxÞe�rðxÞ=ef 0ðxÞ þ f ðxÞp00ðxÞ þ f ðxÞq00ðxÞe�rðxÞ=e

þ gðxÞp0ðxÞ þ gðxÞq0ðxÞe�rðxÞ=e ¼ hðxÞ;
i.e.,
f ðxÞp00ðxÞ þ gðxÞp0ðxÞ þ ½�2f ðxÞq00ðxÞ � f 0ðxÞq0ðxÞ þ f ðxÞq00ðxÞ
þ gðxÞq0ðxÞ	e�rðxÞ=e ¼ hðxÞ:
Therefore we have,
f ðxÞp00ðxÞ þ gðxÞp0ðxÞ ¼ hðxÞ ð9Þ
and
d

dx
½f ðxÞq0ðxÞ	 ¼ gðxÞq0ðxÞ: ð10Þ
The representation (4) and (5) can be inserted to the boundary conditions (2a)

and (2b). Now the boundary conditions becomes
p0ðaÞ þ q0ðaÞ ¼ a ð11Þ
and
p0ðbÞ ¼ b; ð12Þ
where we have neglected the exponentially small term e�rðbÞ=e (which is as-

ymptotically zero) in obtaining the boundary condition (12) at x ¼ b. First the
differential equation (9) can be solved along with the boundary condition (12)

to determine p0ðxÞ. Now q0ðxÞ is determined by solving Eq. (10) subject to the
condition q0ðaÞ ¼ a � p0ðaÞ where p0ðaÞ is determined already.

Now from (5) we have rðxÞ ¼
R x
a f ðxÞdx, i.e., r0ðxÞ ¼ f ðxÞ with rðaÞ ¼ 0.
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Therefore the three initial-value problems corresponding to (1) and (2) are

given by
ðIVP: IÞ f ðxÞp00ðxÞ þ gðxÞp0ðxÞ ¼ hðxÞ with p0ðbÞ ¼ b; ð13Þ

ðIVP: IIÞ d

dx
½f ðxÞq0ðxÞ	 ¼ gðxÞq0ðxÞ with q0ðaÞ ¼ a � p0ðaÞ ð14Þ
and
ðIVP: IIIÞ r0ðxÞ ¼ f ðxÞ with rðaÞ ¼ 0: ð15Þ
Remark. Here it is worth to note that these initial-value problems are inde-

pendent of perturbation parameter e.

The integration of the first two initial-value problems goes in opposite di-

rection and the second problem is solved only if the solution of the first one is
known at x ¼ a. The third initial-value problem is independent of the first two

initial-value problems. This can be solved independently. There now exist

several efficient methods for solving initial-value problems. In order to solve

the initial-value problems in our numerical experimentation, we used classical

fourth order Runge–Kutta method. In fact, any standard analytical or nu-

merical method can be used. After finding p0ðxÞ and q0ðxÞ and rðxÞ we obtain
the solution of (1) and (2) from (3) as
yðxÞ ¼ p0ðxÞ þ q0ðxÞe�rðxÞ=e:
3. Numerical examples

To demonstrate the applicability of the method we have applied it to three

linear singular perturbation problems with left-end boundary layer. These
examples have been chosen because they have been widely discussed in liter-

ature and because approximate solutions are available for comparison.

Example 3.1. Consider the following homogeneous singular perturbation

problem from Bender and Orszag [1, p. 480, Problem 9.17 with a ¼ 0]
ey 00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ 1 and yð1Þ ¼ 1.

The exact solution is given by
yðxÞ ¼ ½ðem2 � 1Þem1x þ ð1� em1Þem2x	
½em2 � em1 	 ;
where m1 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ and m2 ¼ ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ.



Table 1

Numerical results of Example 3.1

x yðxÞ Exact solution

Panel A: e ¼ 10�3, h ¼ 10�3

0.000 1.0000000 1.0000000

0.001 0.6003270 0.6007918

0.010 0.3712379 0.3719724

0.020 0.3749439 0.3756784

0.030 0.3787160 0.3794502

0.040 0.3825260 0.3832599

0.050 0.3863742 0.3871079

0.100 0.4062043 0.4069350

0.300 0.4962382 0.4969324

0.500 0.6062278 0.6068334

0.700 0.7405963 0.7410401

0.900 0.9047471 0.9049277

1.000 1.0000000 1.0000000

Panel B: e ¼ 10�4, h ¼ 10�4

0.0000 1.0000000 1.0000000

0.0001 0.6004139 0.6004604

0.0010 0.3682394 0.3683130

0.0020 0.3685792 0.3686527

0.0030 0.3689480 0.3690215

0.0040 0.3693172 0.3693907

0.0050 0.3696867 0.3697602

0.1000 0.4065330 0.4066062

0.3000 0.4965506 0.4966200

0.5000 0.6065004 0.6065609

0.7000 0.7407961 0.7408404

0.9000 0.9048287 0.9048464

1.0000 1.0000000 1.0000000
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The numerical results are given in Table 1(panels A and B) for e ¼ 10�3 and

10�4 respectively.

Example 3.2. Now consider the following non-homogeneous singular pertur-

bation problem from fluid dynamics for fluid of small viscosity [6, Example 2]
ey 00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1	
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

The exact solution is given by
yðxÞ ¼ xðxþ 1� 2eÞ þ ð2e � 1Þð1� e�x=eÞ
ð1� e�1=eÞ :
The numerical results are given in Table 2(panels A and B) for e ¼ 10�3 and

10�4 respectively.



Table 2

Numerical results of Example 3.2

x yðxÞ Exact solution

Panel A: e ¼ 10�3, h ¼ 10�3

0.000 0.0000000 0.0000000

0.001 )1.0009970 )0.6298573
0.010 )0.9918800 )0.9878747
0.020 )0.9815600 )0.9776400
0.030 )0.9710400 )0.9671600
0.040 )0.9603199 )0.9564800
0.050 )0.9493999 )0.9456000
0.100 )0.8918000 )0.8882000
0.300 )0.6114000 )0.6086000
0.500 )0.2510000 )0.2490000
0.700 0.1894000 0.1906001

0.900 0.7098000 0.7102001

1.000 1.0000000 1.0000000

Panel B: e ¼ 10�4, h ¼ 10�4

0.0000 0.0000000 0.0000000

0.0001 )1.0001000 )0.6318942
0.0010 )0.9991989 )0.9987538
0.0020 )0.9981956 )0.9977964
0.0030 )0.9971904 )0.9967916
0.0040 )0.9961832 )0.9957848
0.0050 )0.9951739 )0.9947760
0.1000 )0.8901801 )0.8898200
0.3000 )0.6101403 )0.6098600
0.5000 )0.2501001 )0.2499000
0.7000 0.1899399 0.1900600

0.9000 0.7099798 0.7100199

1.0000 1.0000000 1.0000000
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Example 3.3. Finally we consider the following variable coefficient singular

perturbation problem from Kevorkian and Cole [3, p. 33, Eqs. (2.3.26) and

(2.3.27) with a ¼ �1=2]
ey 00ðxÞ þ 1
	

� x
2



y 0ðxÞ � 1

2
yðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

We have chosen to use uniformly valid approximation (which is obtained by
the method given by Nayfeh [4, p. 148, Eq. (4.2.32)]) as our �exact� solution:
yðxÞ ¼ 1

2� x
� 1

2
e�ðx�x2=4Þ=e:
The numerical results are given in Table 3(panels A and B) for e ¼ 10�3 and

10�4 respectively.



Table 3

Numerical results of Example 3.3

x yðxÞ Nayfeh solution

Panel A: e ¼ 10�3, h ¼ 10�3

0.000 0.0000000 0.0000000

0.001 0.4997493 0.3162644

0.010 0.5020117 0.5024893

0.020 0.5045496 0.5050505

0.030 0.5071134 0.5076142

0.040 0.5097033 0.5102041

0.050 0.5123200 0.5128205

0.100 0.5258163 0.5263158

0.300 0.5877497 0.5882353

0.500 0.6662214 0.6666667

0.700 0.7688746 0.7692308

0.900 0.9089253 0.9090909

1.000 1.0000000 1.0000000

Panel B: e ¼ 10�4, h ¼ 10�4

0.0000 0.0000000 0.0000000

0.0001 0.4999750 0.3160807

0.0010 0.5002003 0.5002274

0.0020 0.5004506 0.5005005

0.0030 0.5007012 0.5007511

0.0040 0.5009522 0.5010020

0.0050 0.5012032 0.5012531

0.1000 0.5262662 0.5263158

0.3000 0.5881871 0.5882353

0.5000 0.6666222 0.6666667

0.7000 0.7691954 0.7692308

0.9000 0.9090744 0.9090909

1.0000 1.0000000 1.0000000
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4. Non-linear problems

Non-linear singular perturbation problems were converted as a sequence of
linear singular perturbation problems by using quasilinearization method. The

outer solution (the solution of the given problem by putting e ¼ 0) is taken to

be the initial approximation.
5. Non-linear examples

Again to demonstrate the applicability of the method, we have applied it to

three non-linear singular perturbation problems with left-end boundary layer.

Example 5.1. Consider the following singular perturbation problem from

Bender and Orszag [1, p. 463, Eq. (9.7.1)]



Table

Numer

x

Pan

0.00

0.00

0.01

0.02

0.03

0.04

0.05

0.10

0.30

0.50

0.70

0.90

1.00

Pan

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.30

0.50

0.70

0.90

1.00
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ey 00ðxÞ þ 2y0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ 0 and yð1Þ ¼ 0.

We have chosen to use Bender and Orszag�s uniformly valid approximation

[1, p. 463, Eq. (9.7.6)] for comparison,
yðxÞ ¼ logeð2=ð1þ xÞÞ � ðloge 2Þe�2x=e:
For this example, we have boundary layer of thickness OðeÞ at x ¼ 0 [1].

The numerical results are given in Table 4(panels A and B) for e ¼ 10�3 and

10�4 respectively.
Example 5.2. Now consider the following singular perturbation problem from

Kevorkian and Cole [3, p. 56, Eq. (2.5.1)]
4

ical results of Example 5.1

yðxÞ Bender solution

el A: e ¼ 10�3, h ¼ 10�3

0 0.0000000 0.0000000

1 0.6913641 0.5983404

0 0.6825219 0.6831968

0 0.6726859 0.6733446

0 0.6629456 0.6635884

0 0.6532992 0.6539265

0 0.6437448 0.6443570

0 0.5972949 0.5978370

0 0.4304523 0.4307829

0 0.2874905 0.2876821

0 0.1624234 0.1625189

0 0.0512663 0.0512933

0 0.0000000 0.0000000

el B: e ¼ 10�4, h ¼ 10�4

00 0.0000000 0.0000000

01 0.6929690 0.5992399

10 0.6920789 0.6921477

20 0.6910806 0.6911492

30 0.6900831 0.6901517

40 0.6890868 0.6891552

50 0.6880914 0.6881596

00 0.5977829 0.5978370

00 0.4307501 0.4307829

00 0.2876630 0.2876821

00 0.1625094 0.1625189

00 0.0512906 0.0512933

00 0.0000000 0.0000000



Table

Numer

x

Pan

0.00

0.00

0.01

0.02

0.03

0.04

0.05

0.10

0.30

0.50

0.70

0.90

1.00

Pan

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.30

0.50

0.70

0.90

1.00
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ey 00ðxÞ þ yðxÞy0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ �1 and yð1Þ ¼ 3:9995.
We have chosen to use the Kivorkian and Cole�s uniformly valid approxi-

mation [3, pp. 57–58, Eqs. (2.5.5), (2.5.11) and (2.5.14)] for comparison,
yðxÞ ¼ xþ c1 tanhðc1ðx=e þ c2Þ=2Þ;
where c1 ¼ 2:9995 and c2 ¼ ð1=c1Þ loge½ðc1 � 1Þ=ðc1 þ 1Þ	.
For this example also we have a boundary layer of width OðeÞ at x ¼ 0 [3,

pp. 56–66].

The numerical results are given in Table 5(panels A and B) for e ¼ 10�3 and

10�4 respectively.
5

ical results of Example 5.2

yðxÞ Kevorkian solution

el A: e ¼ 10�3, h ¼ 10�3

0 )1.0000000 )1.0000000
1 2.9508520 2.4569400

0 3.0095720 3.0095000

0 3.0195710 3.0195000

0 3.0295700 3.0295000

0 3.0395700 3.0395000

0 3.0495690 3.0495000

0 3.0995650 3.0995000

0 3.2995510 3.2995000

0 3.4995360 3.4995000

0 3.6995220 3.6995000

0 3.8995070 3.8995000

0 3.9995000 3.9995000

el B: e ¼ 10�4, h ¼ 10�4

00 )1.0000000 )1.0000000
01 2.9508230 2.4560400

10 3.0015250 3.0005000

20 3.0025240 3.0015000

30 3.0035230 3.0025000

40 3.0045220 3.0035000

50 3.0055210 3.0045000

00 3.1004240 3.0995000

00 3.3002180 3.2995000

00 3.5000130 3.4995000

00 3.6998080 3.6995000

00 3.8996030 3.8995000

00 3.9995000 3.9995000
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Example 5.3. Finally we consider the following singular perturbation problem

from O�Malley [5, p. 9, Eq. (1.10) case 2]:
Table

Numer

x

Pan

)1.0
)0.9
)0.9
)0.9
)0.9
)0.9
)0.9
)0.8
)0.4
0.0

0.4

0.8

1.0

Pan

)1.0
)0.9
)0.9
)0.9
)0.9
)0.9
)0.9
)0.8
)0.4
0.0

0.4

0.8

1.0
ey 00ðxÞ � yðxÞy0ðxÞ ¼ 0; x 2 ½�1; 1	
with yð�1Þ ¼ 0 and yð1Þ ¼ �1.
We have chosen to use O�Malley�s approximate solution [5, pp. 9–10, Eqs.

(1.13) and (1.14)] for comparison,
yðxÞ ¼ �ð1� e�ðxþ1Þ=eÞ=ð1þ e�ðxþ1Þ=eÞ:
For this example, we have a boundary layer of width OðeÞ at x ¼ �1 (cf. [5, pp.
9–10, Eqs. (1.10), (1.13), (1.14), case 2] and [8]).

The numerical results are given in Table 6(panels A and B) for e ¼ 10�3 and

10�4 respectively.
6

ical results of Example 5.3

yðxÞ O�Malley solution

el A: e ¼ 10�3, h ¼ 10�3

00 0.0000000 0.0000000

99 )1.0000000 )0.4621121
80 )1.0000000 )1.0000000
60 )1.0000000 )1.0000000
40 )1.0000000 )1.0000000
20 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000
00 )1.0000000 )1.0000000

el B: e ¼ 10�4, h ¼ 10�4

000 0.0000000 0.0000000

999 )1.0000000 )0.4621824
980 )1.0000000 )1.0000000
960 )1.0000000 )1.0000000
940 )1.0000000 )1.0000000
920 )1.0000000 )1.0000000
900 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
000 )1.0000000 )1.0000000
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6. Right-end boundary layer problems

Finally, we discuss our method for singularly perturbed two-point boundary

value problems with right-end boundary layer of the underlying interval. To be

specific, we consider a class of singular perturbation problem of the form
ey 00ðxÞ þ f ðxÞy0ðxÞ þ gðxÞyðxÞ ¼ hðxÞ; x 2 ½a; b	 ð16Þ
with
yðaÞ ¼ a ð17aÞ
and
yðbÞ ¼ b; ð17bÞ
where e is a small positive parameter (0 < e 
 1) and a, b are known constants.
We assume that f ðxÞ, gðxÞ and hðxÞ are sufficiently continuously differentiable

functions in ½a; b	. Further more, we assume that f ðxÞ6M < 0 throughout the

interval ½a; b	, where M is some negative constant. This assumption merely

implies that the boundary layer will be in the neighborhood of x ¼ b.
Because of the boundary layer behavior of the solution of singular pertur-

bation problems, it is known that the solution of (16) and (17) is given
yðxÞ ¼ pðxÞ þ qðxÞe�rðxÞ=e ð18Þ
with
rðxÞ ¼
Z x

b
f ðxÞdx; ð19Þ
where pðxÞ ¼
P1

n¼0 pnðxÞen and qðxÞ ¼
P1

n¼0 qnðxÞen.
Restricting these series to their first terms and substituting (18) in (16) we get
f ðxÞp00ðxÞ þ gðxÞp0ðxÞ ¼ hðxÞ ð20Þ
and
d

dx
½f ðxÞq0ðxÞ	 ¼ gðxÞq0ðxÞ: ð21Þ
The boundary conditions becomes
p0ðaÞ ¼ a ð22Þ
and
p0ðbÞ þ q0ðbÞ ¼ b: ð23Þ
Now from (19) we have rðxÞ ¼
R x
b f ðxÞdx, i.e., r0ðxÞ ¼ f ðxÞ with rðbÞ ¼ 0.

Therefore the three initial-value problems corresponding to (16) and (17) are

given by
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ðIVP: IÞ f ðxÞp00ðxÞ þ gðxÞp0ðxÞ ¼ hðxÞ with p0ðaÞ ¼ a; ð24Þ

ðIVP: IIÞ d

dx
½f ðxÞq0ðxÞ	 ¼ gðxÞq0ðxÞ with q0ðbÞ ¼ b � p0ðbÞ ð25Þ
and
ðIVP: IIIÞ r0ðxÞ ¼ f ðxÞ with rðbÞ ¼ 0: ð26Þ
We used classical forth order Runge–Kutta method to solve these initial-value
problems. After finding p0ðxÞ and q0ðxÞ and rðxÞ we obtain the solution of (16)

and (17) from (18) as
yðxÞ ¼ p0ðxÞ þ q0ðxÞe�rðxÞ=e:
7. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two-point boundary value

problems with right-end boundary layer of the underlying interval we con-
sidered two examples.

Example 7.1. Consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ 1 and yð1Þ ¼ 0.
Clearly, this problem has a boundary layer at x ¼ 1. i.e.; at the right end of

the underlying interval.

The exact solution is given by
yðxÞ ¼ ðeðx�1Þ=e � 1Þ
ðe�1=e � 1Þ :
The numerical results are given in Table 7(panels A and B) for e ¼ 10�3 and
10�4 respectively.

Example 7.2. Now we consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1	
with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ; and yð1Þ ¼ 1þ 1=e.
Clearly this problem has a boundary layer at x ¼ 1. The exact solution is

given by
yðxÞ ¼ eð1þeÞðx�1Þ=e þ e�x:
The numerical results are given in Table 8(panels A and B) for e ¼ 10�3 and

10�4 respectively.



Table 7

Numerical results of Example 7.1

x yðxÞ Exact solution

Panel A: e ¼ 10�3, h ¼ 10�3

0.000 1.0000000 1.0000000

0.200 1.0000000 1.0000000

0.400 1.0000000 1.0000000

0.600 1.0000000 1.0000000

0.800 1.0000000 1.0000000

0.900 1.0000000 1.0000000

0.920 1.0000000 1.0000000

0.940 1.0000000 1.0000000

0.960 1.0000000 1.0000000

0.980 1.0000000 1.0000000

0.999 0.6321205 0.6320939

1.000 0.0000000 0.0000000

Panel B: e ¼ 10�4, h ¼ 10�4

0.0000 1.0000000 1.0000000

0.2000 1.0000000 1.0000000

0.4000 1.0000000 1.0000000

0.6000 1.0000000 1.0000000

0.8000 1.0000000 1.0000000

0.9000 1.0000000 1.0000000

0.9200 1.0000000 1.0000000

0.9400 1.0000000 1.0000000

0.9600 1.0000000 1.0000000

0.9800 1.0000000 1.0000000

0.9999 0.6321205 0.6321816

1.0000 0.0000000 0.0000000

108 Y.N. Reddy, P. Pramod Chakravarthy / Appl. Math. Comput. 155 (2004) 95–110
8. Discussion and conclusions

We have presented an initial-value approach for solving singularly per-

turbed two-point boundary value problems. In general, the numerical solution

of a boundary value problem will be more difficult matter than the numerical

solution of the corresponding initial-value problems. Hence, we prefer always

to convert the second order problem into first order problems. The solution of
the given singularly perturbed two-point boundary value problem is computed

numerically by solving three initial-value problems. It is worth to note that

these initial-value problems are independent of perturbation parameter e. We

have implemented the present method on three linear examples, three non-

linear examples, with left-end boundary layer and two examples with right-end

boundary layer by taking different values of e. To solve initial-value problems

we used the classical fourth order Runge–Kutta method. In fact any standard

analytical or numerical method can be used. Numerical results are presented in



Table 8

Numerical results of Example 7.2

x yðxÞ Exact solution

Panel A: e ¼ 10�3, h ¼ 10�3

0.000 1.0000000 1.0000000

0.200 0.8185673 0. 8187308

0.400 0.6700525 0.6703200

0.600 0.5484830 0.5488116

0.800 0.4489703 0.4493290

0.900 0.4062046 0.4065697

0.920 0.3981533 0.3985190

0.940 0.3902616 0.3906278

0.960 0.3825263 0.3828929

0.980 0.3749442 0.3753111

0.999 0.7355264 0.7357859

1.000 1.3678790 1.3678790

Panel B: e ¼ 10�4, h ¼ 10�4

0.0000 1.0000000 1.0000000

0.2000 0.8187149 0.8187308

0.4000 0.6702932 0.6703200

0.6000 0.5487787 0.5488117

0.8000 0.4492931 0.4493290

0.9000 0.4065330 0.4065697

0.9200 0.3984824 0.3985191

0.9400 0.3905911 0.3906278

0.9600 0.3828562 0.3828929

0.9800 0.3752744 0.3753111

0.9999 0.7357357 0.7356979

1.0000 1.3678790 1.3678790
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tables. It can be observed from the tables that the present method approxi-

mates the exact solution very well.
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