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Abstract

Artificial Neural Network (ANN) based models for estimation of monthly mean daily and hourly values

of solar global radiation are presented in this paper. Solar radiation data from 13 stations spread over India

around the year have been used for training and testing the ANN. The solar radiation data from 11 lo-

cations (six from South India and five from North India) were used for training the neural networks and

data from the remaining two locations (one each from South India and North India) were used for testing

the estimated values. The results of the ANN model have been compared with other empirical regression

models. The solar radiation estimations by ANN are in good agreement with the actual values and are

superior to those of other available models. The maximum mean absolute relative deviation of predicted
hourly global radiation tested is 4.07%. The results indicate that the ANN model shows promise for

evaluating solar global radiation possibilities at the places where monitoring stations are not established.
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1. Introduction

Solar radiation received at the flat surface is most important as far as designing of solar energy
systems, transpiration of crops and photosynthesis etc. are concerned. Solar radiation is one of
the most vital meteorological factors determining crop productivity. India is situated between
6� N and 32� N latitudes, and hence, most of the locations in India receive abundant solar energy.
Its geographic position favours the utilization of solar energy and development of solar energy
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systems. Solar energy system designers require solar radiation data in various forms, depending
on the exact nature of the application. Some of the diversified applications of global radiation
data are: engineering system design of solar collection and storage, evaluation of performance of
solar systems and future data prediction. For efficient conversion and utilization of solar energy,
an accurate detailed long term knowledge of monthly mean daily global solar radiation is of prime
importance. However, the mean daily solar radiation is not always the most suitable figure to
characterize the potential utility of solar energy. These data can be acquired from a network of
pyroheliometric and pyronometric measurements.

Various empirical models have been developed for different geographical and meteorological
conditions in Saudi Arabia [1–8]. Solar radiation on horizontal and inclined surfaces are reported
for India [9,10], Canada [11,12], Abu Dhabi, UAE [13], Lesotho, South Africa [14,15] and many
others. An empirical formula using the daily humidity, latitude, altitude, maximum temperature
and location relative to the water surface has been presented by Sabbagh et al. [16].

Kimball [17] first suggested that the sunshine fraction may be closely related to daily global
radiation. Angstrom [18] proposed a relation on the basis of monthly average daily radiation.
Subsequently, Prescott et al. [19] modified the Angstrom equation by including average daily clear
sky radiation.

H ¼ H0 a
�

þ b
n
D

�
ð1Þ

where a and b are correlation constants. The disadvantage of the modified Angstrom equation is
that the local effects on atmospheric transmittance of solar radiation are now considered with an

Nomenclature

H daily global radiation (kW/m2)
H0 daily extraterrestrial radiation (kW/m2)
n daily sunshine duration (h)
D astronomical day length (h)
Tmax maximum temperature (�C)
Tmin minimum temperature (�C)
Cw mean of total cloud cover of day time observations (h)
Ep sum of squares of error for output layer neurons
k index to neuron in output layer
p index to training vector
ypk output of kth output neuron for pth training vector
opk targeted output for kth output neuron for pth training vector
wkj weight on connection from jth neuron of hidden layer (immediately preceding output

layer) to kth output neuron
DGRp predicted daily global radiation (kW/m2)
DGRa actually measured daily global radiation (kW/m2)
MAE maximum absolute error, defined as maximum of absolute difference between actual

value and predicted value
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additional empirical constant, whereas it was previously considered through the local average
daily clear sky radiation.

Yet another method to estimate the daily global radiation, relating the difference between
maximum and minimum temperatures of the day to global radiation, has been proposed by
Hargreeves et al. [20], with data available on the Global Telecommunication System (GTS).

H ¼ aH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax � Tmin

p
þ c ð2Þ

where a and c are empirical constants. The estimation accuracy is limited when it is applied to
locations in Europe [21].

Supit and Van Kappel [22] proposed an empirical model by considering the cloud cover of the
daytime observations.

H ¼ H0 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax � Tmin

p"
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Cw

8

r #
þ c ð3Þ

where Cw is the mean of the total cloud cover of the daytime observations, and a, b and c are
empirical constants.

Most of the above models lack the detailed knowledge of various parameters, such as the
hourly variation of global radiation, latitude, longitude, altitude, month, time, wind speed, air
temperature and humidity. Therefore, in this regard, we have investigated the estimation of solar
radiation with an extensive knowledge of these parameters. In the present study, ANN based
models have been developed for predicting the monthly mean hourly and daily global solar ra-
diation. The trained and tested ANN models show greater accuracy for evaluating solar energy
possibilities in regions where a network of monitoring systems have not been established. The
predictions from ANN models would enable locating and designing solar energy systems in India
and identifying the best of the solar technologies.

2. Artificial neural network (ANN) based model

Artificial neural network techniques are based on some important facts that have been learned
by neuroscientists and others about the nervous system, though this acquired knowledge is far
from complete. The idea of neurons as structural constituents of the brain was introduced by
Ramon Cajal in 1911 [23]. A schematic of a biological neuron is shown in Fig. 1.

Biological neural networks are non-linear, highly parallel information processing systems that
are characterised by robustness, fault tolerance and the ability to learn by adapting the connection
strength to changes in the surrounding environment. In biological neurons, electrochemical sig-
nals (known as stimuli) are received through synapses to the neuron cell. Each synapse has its own
weight that determines in what way and to what extent stimuli coming to the neuron through that
synapse affects the output of the neuron. The weighted sum of the input stimuli are fed to the
nucleus that, in response to this, sends electrical impulses that are transmitted to other neurons or
sent to other biological units as actuation signals. The synaptic weights keep modifying during
learning. Neurons are interconnected with large numbers of neurons through synapses. Groups of
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neurons are organised into subsystems and the subsystems integrate to form the brain. A sim-
plified model of an ANN is illustrated in Fig. 2.

In the ANN technique, a simulation of a small part of the central nervous system is done
wherein stimulation inputs are fed to input neurons (synapses), and these stimuli are altered by
weights (synaptic weights). The weighted sum is operated upon by an activation function, and
outputs are fed to other neurons in the network. All these neurons are highly interconnected, and
the activation values may constitute the final output or may be fed to the next model. These
connection weights are modified during training to obtain better and better generalisation and
interpolation of training patterns presented to the network during training in order to achieve the
desired accuracy by the network. The most suitable architecture and nature of the neurons of the
ANN is problem specific.

ANNs have been used for range of objectives, such as constraint satisfaction, content ad-
dressable memories, control, data compression, diagnostics, forecasting, general mapping, multi-
sensor data fusion, optimization, pattern recognition etc. Difficulties, due to the uncertain nature
of solar radiation, in deriving relations that map reasonably the various spatial, temporal and
climatic parameters of solar radiation values and the modelling abilities of ANNs have inspired
the application of ANN techniques to determine solar radiation. Modelling of solar radiation on a

Fig. 1. Schematic of a biological neuron.
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horizontal surface in the Kingdom of Saudi Arabia has been done by using multi-layer perception
networks [24].

3. Multi-layer feed forward (MLFF) network

In MLFF networks, neurons are arranged in layers with connectivity between the neurons of
different layers. The layer that receives inputs is called the input layer, and that which gives the
output (or output vector) is called the output layer. Other layers, as they do not receive any direct
input or contribute to output directly, are called hidden layers. Input signals are propagated in
gradually modified form in the forward direction, finally reaching the output layer. The activation
function for neurons in a MLFF network can be linear or non-linear. A sigmoid function is a
widely used non-linear activation function whose output lies between 0 and 1 and is defined as

f ðxÞ ¼ 1

1þ e�x
ð4Þ

An important characteristic of this function that makes it suitable for use in conjunction with a
learning algorithm (the weight modification is done in proportion to the negative gradient of the
output) for a MLFF network is that it is differentiable throughout its domain. The error for
hidden layers is determined by propagating back the error determined for the output layer; hence
the technique is named backpropagation. During learning, the weights of the neurons are opti-
mised according to the Generalized Delta Rule (GDR), which is the learning algorithm for a
backpropagation MLFF network. The error that is minimized by the GDR is the sum of the
squares of the errors for all the output units, defined as:

Ep ¼
X
k

ðypk � opkÞ2 ð5Þ

Fig. 2. Block diagram of a simplified model of an artificial neuron.
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For modification of the weights of the output layer, the direction in which the weights need to be
shifted is determined by the negative gradient of Ep with respect to the weight wkj. The adjust-
ments in the weight for each neuron is the product of the error in the neuron�s output, the gradient
of the neuron�s output, the net input given to the neuron and a learning rate parameter. The
weight modification for a hidden layer is done in proportion to the gradient of Ep with respect to
the hidden layer weights. In this way, each updated weight in a hidden layer is dependent on all
the error terms of the output layer. Thus, the errors that could be exactly determined only for the
output layer are propagated back to the hidden layers. MLFF learning takes place under su-
pervision, and an important parameter that has a controlling influence is the learning rate con-
stant. It decides the magnitude of changes to the connection weights. A high learning rate
constant has the advantage of faster learning, but it may cause the weights to bounce around error
minima, thus failing to learn properly. On the other hand, if the learning rate constant is too
small, the learning may take a long time because of the slow descent along the error surface, which
may be favourable as the network may find a better error minimum and, hence, more accurate
learning.

4. Methodology

To estimate the global hourly mean radiation from the minimal data available on the position
for any location, a multi-layer feed forward network is trained and tested for its ability to gene-
ralise and interpolate. The selected ANN structure (Fig. 3) is a feed forward, fully connected
hierarchical network consisting of an input layer, two hidden layers and an output layer. The first
hidden layer has eight neurons, and the second hidden layer has seven neurons. There is a single
output neuron. Iterative backpropagation with the GDR algorithm has been implemented to
determine errors for the hidden layer neurons and subsequent weight modification according to
the GDR. In order to avoid undesirably long training time (in the event of inability of network
to map the presented pattern of training vectors or network being trapped in local error minima,
which causes error more than the acceptable limit etc.), a termination criterion has been adopted.
This criterion may be either completion of a maximum number of epochs (training cycles) or
achievement of the error goal.

The hourly solar radiation data for training and testing is taken from the Meteorological
Department. The data is extracted and formatted in accordance with the ANN demands. The
data is then normalised to suit the ANN. The formatted data are matrices of size [10� 280] and
[10� 336] for each of the three seasons (summer, rainy and winter) for North India, and South
India, respectively. To train the networks, five cities have been considered from North India, viz.
Ahmedabad, Calcutta, Mumbai, Nagpur and Jodhpur and six cities across South India, viz.
Bangalore, Kodaikanal, Madras, Port Blair, Vishakhapattnam and Poona. The geographical
positions of the cities considered are listed in Table 1. Each city has about 168 data sets around
the year. The following input parameters have been considered to estimate the radiation for each
city: latitude, longitude, altitude, month, time, air temperature, wind speed, relative humidity and
rainfall.

Initially, the network was trained with the total available data.The error in mapping was found
to be very high, and the network failed to give reliable results. In order to improve the perfor-

2524 K.S. Reddy, M. Ranjan / Energy Conversion and Management 44 (2003) 2519–2530



mance of the network, it was decided to divide the data. The entire training set was divided based
on region (South India and North India) and seasons (summer, rainy and winter), and all these
networks were trained and tested individually.

5. Results and discussion

The trained networks were tested for New Delhi (North India) and Mangalore (South India)
for each of the three seasons. The mean absolute relative deviations (MARD) of the ANN pre-
dicted hourly global radiation are listed in Table 2. MARD is defined as:

MARD ¼
P

Predicted�Actual
Actual



 

� 100
� �

D
ð6Þ

Fig. 3. ANN Architecture used for estimation of hourly global radiation.
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where D is the number of comparison data. It can be observed that for both cities, the deviations
are least in summer and then followed by the winter and rainy season, respectively. The maximum
MARD is about 4%.

Table 1

Geographical parameters

Location Latitude (�N) Longitude (�E) Altitude (m)

North India

Ahmedabad 23.07 72.63 55

Calcutta 22.65 88.45 6

Jodhpur 26.30 73.02 224

Mumbai 19.02 72.90 14

Nagpur 21.10 79.50 310

New Delhi 28.58 77.20 216

South India

Bangalore 12.97 77.58 921

Kodaikanal 10.23 77.47 2339

Madras 13.00 80.18 16

Mangalore 12.91 74.88 102

Port Blair 11.67 92.72 79

Poona 18.53 73.85 559

Vishakhapattnam 17.72 83.23 3

Table 2

Mean absolute relative deviation of ANN estimated monthly mean daily global radiation

Station Winter Summer Rain

New Delhi 2.98 2.24 4.07

Mangalore 2.64 2.37 3.84

Fig. 4. Comparison of estimated hourly global radiation values.
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To test the ability of the ANN, the hourly global radiation estimations of the ANN model have
been compared with the Gopinathan [25] model, for a typical summer day at New Delhi. The
comparison is shown in Fig. 4. The results show that the present model is superior to the
Gopinathan [25] model, which over predicted in the morning of the day and under predicted for
mid day hours whereas the predictions from the ANN model are very close to the actual radiation
values.

The diurnal variations of global radiation predicted by the ANN model and actual data for
New Delhi (North India) and Mangalore (South India) for the three seasons are illustrated in
Figs. 5(a)–(c) and 6(a)–(c), respectively. The predicted solar radiation values are very close to the
actual values for the summer and winter (Fig. 5(a) and (b)). The maximum absolute error (MAE)
values are only 0.021 and 0.016 W/m2, respectively. A small perceptible deviation is observed for
the rainy season (Fig. 5(c)), and the MAE is 0.075 W/m2. The ANN model for the rainy season
has over predicted the radiation values in the middle of the day, whereas the values are in
close agreement with actual values in the early hours and late hours of the day. The results
for Mangalore add to the confidence in the ability of ANN models to predict radiation values.
For the summer, winter and rainy seasons, the MAE values are 0.028, 0.06 and 0.032 W/m2

Fig. 5. (a) Variation of hourly global radiation at New Delhi for summer, (b) variation of hourly global radiation at

New Delhi for winter, (c) variation of hourly global radiation at New Delhi for rainy season.
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respectively. The small deviation from measured hourly global radiation in the rainy season is
seemingly because of the higher degree of climatic uncertainty.

Estimations of daily global radiation (DGR) by the ANN model are compared with other
empirical models. Predicted DGR values, along with their percentage relative deviation (PRD),
are listed in Table 3. The percentage relative deviation is defined as

PRD ¼ DGRp �DGRa

DGRa

100 ð7Þ

It is evident that the predictions from the ANN models are better as compared to the other re-
gression models. The percentage relative deviations are limited to 1.8% and 1.9% for summer and
winter, respectively, whereas the predictions from the other empirical models are deviating sig-
nificantly. Because of the climatic uncertainty in rainy seasons, the deviations for the ANN
models for Mangalore and New Delhi are 10.2% and 12.5%, respectively, which shows the good
prediction ability of the ANN models even when fuzzy information is presented.

Fig. 6. (a) Variation of hourly global radiation at Mangalore for summer, (b) variation of hourly global radiation at

Mangalore for winter, (c) variation of hourly global radiation at Mangalore for rainy season.
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6. Conclusions

Application of the artificial neural network technique for modelling the spatial and temporal
variation of global solar radiation has been reported. The results of validation and comparative
study indicate that the neural network method is more suitable to predict the solar radiation than
various proposed classical regression models. Although the training data lacked wide and uniform
geographical coverage and represented only one year from each of the 11 locations, the study
confirms the ability of the ANN to predict solar radiation values closely. Inclusion of more
identified parameters and data would further improve the models� mapping ability as the ANN
adaptations methods depend on learning from examples. These ANN models are more versatile
and can be used to predict radiation for any region provided comprehensive meteorological data
is available.
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