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Abstract

A method of inner boundary condition is presented for solving two-point singular
boundary value problem. The original interval is divided into two parts. An inner
boundary condition is obtained by using a series solution. Then, a special finite differ-
ence method of order two is employed to solve the problem in the interval [0, 1]. The
method is implemented on several numerical examples and results are compared with
exact solutions.
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1. Introduction

Consider a linear second order differential equation

v"(2) + P()v' (1) + Q(1)o(1) = R(1), (1)
with boundary conditions

v(0) =a (la)
and

v(l) =b. (1b)
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The coefficient functions P(¢) and Q(¢) fail to be analytic at t = 0, where ¢ and »
are given constants. These problems are called as singular boundary value
problems.

In the last few years, considerable effort has been made in developing
methods for numerically solving singular boundary value problems. Typically,
these problems arise very frequently in chemical and mechanical engineering,
physics and many other applications. Finite difference methods have been
widely used for scalar equations by Jamet [5], Gustafsson [4], De Hoog and
Weiss [2]. Weinmuller [9] has studied analytical properties of these problems.
Kadalbajoo and Raman [6] studied the discrete invariant imbedding approach.

In this paper, we present an inner boundary condition for solving two-point
singular boundary value problem. The original interval is divided into two
parts. An inner boundary condition is obtained by using a series solution.
Then, a special finite difference method of order two is employed to solve the
problem in the interval [J, 1]. The method is implemented on several numerical
examples and results are compared with exact solutions.

2. Derivation of inner boundary condition

We use series expansion in a small interval near ¢ and Eq. (1) has a solution
of the form

o(t) = Za,t’*m, ay # 0. (2)
r=0

The indicial roots m and coefficients a, are obtained by differentiating (2)
substituting in (1), and comparing the coefficients of like powers of z on the two
sides of the equation. In general, the solution can be written as

ZﬁL )+ Lo (1), n<2. (3)

For t € (0,0], where L, (¢) and L,(¢) are two linearly independent solutions of
Eq. (1), and L,(¢) is the particular solution to (1). Keller [7] and Coddington
and Levinson [1] have discussed the basic theoretical results of series expansion
about a singular point. Series solution may be valid for entire interval, but due
to its slow convergence, we find the series expansion in the interval (0, J] only.
To derive the regular problem, we thus have to derive the inner boundary
condition at . To do this, we have from Eq. (3)

Li(0)p1 + La(0) By = v(d) = Lns1(9), )
Li(0)B1 + L3(0) B, = v'(0) — L, (9), ()
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where the prime denotes the differentiation. From Egs. (4) and (5), we have

0(0) — L1 (9)]L5 L. (6)]Ly(0
/31:[ (0) — ((;])L/z((é)) [v ((5)) () (9)1La( )7 ©)
v (0L (0 v(0) — L1 (0)|L7 (0

/32:[() ,1+(())]L(()) [((a))L'l()()] (9) ™
We have from Egs. (1b) and (3)

Li(0)By + La(0) By = v(0) — Ly+1(0). (8)
From Egs. (6)-(8), we have

ROMO) _ROL0) ) | FOLO)-ROLG),

=a—L,1(0), ©)

where

R(2) = v(t) = L (2), (10)

S(1) = Li () L(1) — La()Z4 (1): (11)
For our convince Eq. (9) can be written as

[L1(0)L3(0) — L2(0)L} ()]R(S) + [L1(6)L2(0) — La(8)L1 (0)]R' ()

= S(d)[a — Ln1(0)] (12)

or

po(0) +qv'(d) =, (13)
where

p=Li(0)L5(0) — La(0)L; (), (14)

q = Li(0)L(0) — L2(5)L(0) (15)
and

r==58(9)[a — Ly1(0)] + pLy1(0) + gL, (0). (16)

Thus the regular boundary value problem over [0, 1] is given by Egs. (1), (13)
and (1b).
3. Special second order finite difference method

A finite difference scheme is often a convenient choice of method for the
numerical solution of two point boundary value problems [3,8]. We briefly
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describe the special second order Finite difference scheme for a general two-
point boundary value problem given:

v"(t) + a(0)v'(1) — b(t)v(t) = £ (1), (17)
for 1y <t<t, with U(f]) =L, and U(lz) =L, (18)

where a(¢), b(¢) and f(¢) are assumed to be sufficiently continuously differen-
tiable functions b(r) >0, a(¢) > 0 on [f1,%] and L;, L, are given constants.
Throughout the discussion the symbols u, ¢ denote the usual central difference
operators and E, D denote the displacement and differentiation respectively,
defined by Fox. As usual, we divide the interval [f, %] into N equal parts of
mesh size h. Consider a typical pivotal point in the mesh, at ¢ = ¢, + rh. The
following expression can written for v, v and v”:

v, =o(t; +rh) = E'v(t;), (19)
v, = Du,, (20)
V! = D%, (21)

The displacement operator
E =¢" (22)

can be related to the central difference operators p, 0 by using the following
expressions (for details, see [3, pp. 10-11]);

hD = o — tud® + 5ud® + - -, (23)
h2D2:52—é54+91—056+"' (24)

Substituting Egs. (22)-(24) in Egs. (19)-(21), we get

b= [+ 0+ 10 0P = D’ + PP = Do e, (29)
1 1 1

Vo= ud+rd® += (3% — Hud® + —=r(27 = 1)o* + - |u;, (26)

" h 6 12

"o 1 52+ 53+6}’2*154+r(2r2*3) 55+ (27)

L 12 I o

Now, we substitute Egs. (25)—(27) in Eq. (17) with » = 1/2, to obtain
2
(V41 = 20 4+ Vi) + a2 (Vi — v;) — §bi+l/2(3vi+1 + 60, — v;_1)

=W fiap+ Pit1/2Vi5 (28)
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where

1 1 h 1
Prv1/2 = { _5”53_ﬁ54+”.}+ﬁai+l/2{ﬂ53+§54+...}

h2 L !
+Ebi+l/2 — uo _§5 o

A similar procedure can be followed with » = —1/2, to obtain

h2
(Vi1 = 20+ viy) + hai (0 — viy) — gbi71/2(301>1 + 6v; — v;41)

= hzftfl/Z + Q12U (29)

1 1 h 1
@f1/2:{§M53_ﬁ54+" } 24(11 1/2{,[15 ——54 }

W 3 4
+Ebi—l/2 1o —§5 T

A set of difference equations similar to that of the classical finite difference
scheme can be obtained by adding Egs. (28) and (29), as

Evi_y — Fv; + Givi = Hi + ov;, (30)
where
h h?
E =1 _Eaifl/Z_E(3bi—l/2_bi+l/2)v (31)
h 2
F=2+ 3 (@iv12 — aim1p) + S (bivi2 + bic1)2), (32)
h 2
G =14 zai12+2(bimip — 3biy1)2), (33)
2 16
h2
H; =— (fi+1/2 + fic12), (34)
o= ——54+—(56 + i( a;) 534‘&(561-)544‘"'
5760 24 RO Tgglodi
+ —h—(éb) 5 - i (ub;)o* + (35)
30 OO T g K '

Eqgs. (30)—(34) are the basis of the present scheme. They can be observed
from (35) that the magnitude of each term in the truncation error is reduced by
at least a factor of two from the classical finite difference scheme. It is of in-
terest to note that a feature of the present scheme which is different from the
classical finite difference scheme is that to evaluate the coefficients (31)-(34),
values of a(z), b(¢), and f(¢) are required at the grid locations (# + 4/2) and
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(t; — h/2). If the truncation error term in (30) is neglected. The matrix problem
associated with (30) is a tridiagonal algebraic system and the solution of this
tridiagonal system can easily be obtained by using Thomas algorithm.

Repeat the numerical scheme for different choices of ¢ (terminal point) until
the solution profiles do not differ materially from iteration. For computational
point of view, we use absolute error criteria, namely

0" (1) — " ()] <o, <<,

where v”(¢) is the solution for the mth iterate of § and o is the prescribed
tolerance bound.

4. Numerical experiments

To demonstrate the applicability of this numerical method, we have applied
to three examples. These examples have been chosen because either analytical
or approximate solutions are available for comparison.

Example 1. Consider the problem
v —?v/ =-1, 0<t<1withv(0)=35, v(1)=5.

The exact solution is given by v(¢) = 5 — 2 + /2.
The computational results are presented in Table 1.

Example 2. Now consider the problem
(V) = B[4+ p— 1)+ pflo, 0<t<1,
with boundary conditions v(0) =1, v(1) =e.

Table 1
Numerical results for Example 1
t o(f) exact 0 =0.1 0=02 0=0.5

h=1/80 h=1/160 h=1/80 h=1/160 h=1/80 h=1/160

0.1  5.021623 5.021606  5.021629

0.2 5.049443 5.049427  5.049469 5.049436  5.049445

0.3 5.074317 5.074309  5.074330  5.074321 5.074304

0.4 5.092982  5.092986  5.092996  5.092995 5.092976

0.5 5.103553 5.103554 5103570  5.103561 5.103556  5.103521 5.103548
0.6  5.104758 5.104753 5.104773 5.104757  5.104760  5.104723 5.104751
0.7 5.095662  5.095659  5.095666  5.095660  5.095654  5.095634  5.095648
0.8  5.075541 5.075541 5.075547 5.075541 5.075537  5.075522  5.075534
0.9 5.043815 5.043816  5.043809 5.043817  5.043805 5.043809 5.043805
1.0 5.000000  5.000000  5.000000  5.000000  5.000000  5.000000  5.000000
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Table 2
Numerical results for Example 2
t o(f) exact 0 =0.1 0=02 0=0.5
h=1/80 h=1/160 h=1/80 h=1/160 h=1/80 h=1/160
0.1  1.000100 1.001025 1.001150
0.2 1.001601 1.002264 1.002397 1.001537 1.001606
0.3 1.008133 1.008598 1.008736 1.008045 1.008134
0.4  1.025931 1.026236 1.026376 1.025823 1.025926
0.5 1.064494 1.064668 1.064814 1.064369 1.064485 1.064658 1.064701
0.6 1.138373 1.138435 1.138589 1.138228 1.138359 1.138430 1.138512
0.7 1.271376 1.271349 1.271502 1.271216 1.271352 1.271348 1.271453
0.8 1.506216 1.506127 1.506274 1.506050 1.506186 1.506128 1.506247
0.9 1.927262 1.927157 1.927275 1.927123 1.927237 1.927158 1.927266
1.0 2718283  2.718282  2.718282  2.718282  2.718282  2.718282  2.718282

The exact solution is given by v(¢

presented in Table 2 for o« = 0.5, f = 4

Example 3. We consider the problem

(tl/zu/)/ _

170 =134+

with boundary conditions v(0) = 1,
The exact solution is given by v( )

are presented in Table 3.

v(1) =2eL.

0<t<,

xp(¢#). The computational results are

(12 + 1)e™". The computational results

Table 3

Numerical results for Example 3
t o(f) exact 0 =0.1 0=02 0=04

h=1/80 h=1/160 h=1/80 h=1/160 h=1/80 h=1/160

0.1  1.190972 1.191462 1.191037
0.2 1.184878 1.185297 1.184948 1.185046 1.184929
0.3 1.146581 1.146922 1.146643 1.146723 1.146624
0.4 1.094268 1.094541 1.094316 1.094383 1.094297 1.094311 1.094259
0.5 1.035413 1.035628 1.035445 1.035505 1.035427 1.035448 1.035398
0.6 0973919  0.974084  0.973939  0.973990  0.973922  0.973946  0.973901
0.7 0912058  0.912176 ~ 0.912067  0.912109  0.912054  0.912077  0.912040
0.8 0.851221 0.851296 0.851223 0.851253 0.851215 0.851233 0.851206
0.9  0.792275 0.792312 0.792276 0.792291 0.792271 0.792281 0.792268
1.0 0.735759 0.735759 0.735759 0.735759 0.735759 0.735759 0.735759
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5. Discussion and conclusion

We have described and to demonstrated the applicability of the special
second order finite difference method, by solving some model examples. It is
observed from the results that the present method is simple, accurate, stable
and easy to implement on computer. The numerical results for examples for
different mesh sizes and three different values of ¢ are presented in Tables 1-3.
It can be observed from these tables that the computed solutions compare well
with the exact solutions.
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