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Abstract

A method of inner boundary condition is presented for solving two-point singular

boundary value problem. The original interval is divided into two parts. An inner

boundary condition is obtained by using a series solution. Then, a special finite differ-

ence method of order two is employed to solve the problem in the interval ½d; 1�. The
method is implemented on several numerical examples and results are compared with

exact solutions.
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1. Introduction

Consider a linear second order differential equation

v00ðtÞ þ P ðtÞv0ðtÞ þ QðtÞvðtÞ ¼ RðtÞ; ð1Þ

with boundary conditions

vð0Þ ¼ a ð1aÞ

and

vð1Þ ¼ b: ð1bÞ
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The coefficient functions P ðtÞ and QðtÞ fail to be analytic at t ¼ 0, where a and b

are given constants. These problems are called as singular boundary value
problems.

In the last few years, considerable effort has been made in developing

methods for numerically solving singular boundary value problems. Typically,

these problems arise very frequently in chemical and mechanical engineering,

physics and many other applications. Finite difference methods have been

widely used for scalar equations by Jamet [5], Gustafsson [4], De Hoog and

Weiss [2]. Weinmuller [9] has studied analytical properties of these problems.

Kadalbajoo and Raman [6] studied the discrete invariant imbedding approach.
In this paper, we present an inner boundary condition for solving two-point

singular boundary value problem. The original interval is divided into two

parts. An inner boundary condition is obtained by using a series solution.

Then, a special finite difference method of order two is employed to solve the

problem in the interval ½d; 1�. The method is implemented on several numerical
examples and results are compared with exact solutions.

2. Derivation of inner boundary condition

We use series expansion in a small interval near d and Eq. (1) has a solution
of the form

vðtÞ ¼
X1
r¼0

artrþm; a0 6¼ 0: ð2Þ

The indicial roots m and coefficients ar are obtained by differentiating (2)
substituting in (1), and comparing the coefficients of like powers of t on the two

sides of the equation. In general, the solution can be written as

vðtÞ ¼
Xn

j¼1
bjLjðtÞ þ Lnþ1ðtÞ; n6 2: ð3Þ

For t 2 ð0; d�, where L1ðtÞ and L2ðtÞ are two linearly independent solutions of
Eq. (1), and Lnþ1ðtÞ is the particular solution to (1). Keller [7] and Coddington
and Levinson [1] have discussed the basic theoretical results of series expansion

about a singular point. Series solution may be valid for entire interval, but due

to its slow convergence, we find the series expansion in the interval ð0; d� only.
To derive the regular problem, we thus have to derive the inner boundary

condition at d. To do this, we have from Eq. (3)

L1ðdÞb1 þ L2ðdÞb2 ¼ vðdÞ � Lnþ1ðdÞ; ð4Þ

L0
1ðdÞb1 þ L0

2ðdÞb2 ¼ v0ðdÞ � L0
nþ1ðdÞ; ð5Þ
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where the prime denotes the differentiation. From Eqs. (4) and (5), we have

b1 ¼
½vðdÞ � Lnþ1ðdÞ�L0

2ðdÞ � ½v0ðdÞ � L0
nþ1ðdÞ�L2ðdÞ

L1ðdÞL0
2ðdÞ � L2ðdÞL0

1ðdÞ
; ð6Þ

b2 ¼
½v0ðdÞ � L0

nþ1ðdÞ�L1ðdÞ � ½vðdÞ � Lnþ1ðdÞ�L0
1ðdÞ

L1ðdÞL0
2ðdÞ � L2ðdÞL0

1ðdÞ
: ð7Þ

We have from Eqs. (1b) and (3)

L1ð0Þb1 þ L2ð0Þb2 ¼ vð0Þ � Lnþ1ð0Þ: ð8Þ

From Eqs. (6)–(8), we have

RðdÞL0
2ðdÞ � R0ðdÞL2ðdÞ

SðdÞ L1ð0Þ þ
R0ðdÞL1ðdÞ � RðdÞL0

1ðdÞ
SðdÞ L2ð0Þ

¼ a� Lnþ1ð0Þ; ð9Þ

where

RðtÞ ¼ vðtÞ � Lnþ1ðtÞ; ð10Þ
SðtÞ ¼ L1ðtÞL0

2ðtÞ � L2ðtÞL0
1ðtÞ: ð11Þ

For our convince Eq. (9) can be written as

½L1ð0ÞL0
2ðdÞ � L2ð0ÞL0

1ðdÞ�RðdÞ þ ½L1ðdÞL2ð0Þ � L2ðdÞL1ð0Þ�R0ðdÞ
¼ SðdÞ½a� Lnþ1ð0Þ� ð12Þ

or

pvðdÞ þ qv0ðdÞ ¼ r; ð13Þ

where

p ¼ L1ð0ÞL0
2ðdÞ � L2ð0ÞL0

1ðdÞ; ð14Þ
q ¼ L1ðdÞL2ð0Þ � L2ðdÞL1ð0Þ ð15Þ

and

r ¼ SðdÞ½a� Lnþ1ð0Þ� þ pLnþ1ðdÞ þ qL0
nþ1ðdÞ: ð16Þ

Thus the regular boundary value problem over ½d; 1� is given by Eqs. (1), (13)
and (1b).

3. Special second order finite difference method

A finite difference scheme is often a convenient choice of method for the

numerical solution of two point boundary value problems [3,8]. We briefly
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describe the special second order Finite difference scheme for a general two-

point boundary value problem given:

v00ðtÞ þ aðtÞv0ðtÞ � bðtÞvðtÞ ¼ f ðtÞ; ð17Þ

for t16 t6 t2 with vðt1Þ ¼ L1 and vðt2Þ ¼ L2; ð18Þ

where aðtÞ, bðtÞ and f ðtÞ are assumed to be sufficiently continuously differen-
tiable functions bðtÞP 0, aðtÞ > 0 on ½t1; t2� and L1, L2 are given constants.
Throughout the discussion the symbols l, d denote the usual central difference
operators and E, D denote the displacement and differentiation respectively,

defined by Fox. As usual, we divide the interval ½t1; t2� into N equal parts of

mesh size h. Consider a typical pivotal point in the mesh, at t ¼ ti þ rh. The
following expression can written for v, v0 and v00:

vr ¼ vðti þ rhÞ ¼ ErvðtiÞ; ð19Þ

v0r ¼ Dvr; ð20Þ

v00r ¼ D2vr: ð21Þ

The displacement operator

E ¼ ehD ð22Þ

can be related to the central difference operators l, d by using the following
expressions (for details, see [3, pp. 10–11]);

hD ¼ ld � 1
6
ld3 þ 1

30
ld5 þ � � � ; ð23Þ

h2D2 ¼ d2 � 1
12
d4 þ 1

90
d6 þ � � � ð24Þ

Substituting Eqs. (22)–(24) in Eqs. (19)–(21), we get

vr ¼ ½1þ rld þ 1
2
r2d2 þ 1

6
rðr2 � 1Þld3 þ 1

24
r2ðr2 � 1Þd4 þ � � ��vi; ð25Þ

v0r ¼
1

h
ld

�
þ rd2 þ 1

6
ð3r2 � 1Þld3 þ 1

12
rð2r2 � 1Þd4 þ � � �

�
vi; ð26Þ

v00r ¼
1

h2
d2

�
þ rld3 þ 6r

2 � 1
12

d4 þ rð2r2 � 3Þ
12

ld5 þ � � �
�
vi: ð27Þ

Now, we substitute Eqs. (25)–(27) in Eq. (17) with r ¼ 1=2, to obtain

ðviþ1 � 2vi þ vi�1Þ þ haiþ1=2ðviþ1 � viÞ �
h2

8
biþ1=2ð3viþ1 þ 6vi � vi�1Þ

¼ h2fiþ1=2 þ uiþ1=2vi; ð28Þ
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where

uiþ1=2 ¼
�
� 1
2
ld3 � 1

24
d4 þ � � �

�
þ h
24

aiþ1=2 ld3
�

þ 1
2
d4 þ � � �

�

þ h2

16
biþ1=2

�
� ld3 � 1

8
d4 þ � � �

�
:

A similar procedure can be followed with r ¼ �1=2, to obtain

ðviþ1 � 2vi þ vi�1Þ þ hai�1=2ðvi � vi�1Þ �
h2

8
bi�1=2ð3vi�1 þ 6vi � viþ1Þ

¼ h2fi�1=2 þ ui�1=2vi; ð29Þ

ui�1=2 ¼
1

2
ld3

�
� 1

24
d4 þ � � �

�
þ h
24

ai�1=2 ld3
�

� 1
2

d4 þ � � �
�

þ h2

16
bi�1=2 ld3

�
� 1
8

d4 þ � � �
�
:

A set of difference equations similar to that of the classical finite difference

scheme can be obtained by adding Eqs. (28) and (29), as

Eivi�1 � Fivi þ Giviþ1 ¼ Hi þ uvi; ð30Þ

where

Ei ¼ 1� h
2
ai�1=2 �

h2

16
ð3bi�1=2 � biþ1=2Þ; ð31Þ

Fi ¼ 2þ h
2
ðaiþ1=2 � ai�1=2Þ þ

3h2

8
ðbiþ1=2 þ bi�1=2Þ; ð32Þ

Gi ¼ 1þ h
2
aiþ1=2 þ

h2

16
ðbi�1=2 � 3biþ1=2Þ; ð33Þ

Hi ¼
h2

2
ðfiþ1=2 þ fi�1=2Þ; ð34Þ

u ¼
�
� 1

24
d4 þ 41

5760
d6 þ � � �

�
þ h

24
ðlaiÞld3

�
þ h
96

ðdaiÞd4 þ � � �
�

þ
�
� h2

32
ðdbiÞld3 � h2

128
ðlbiÞd4 þ � � �

�
: ð35Þ

Eqs. (30)–(34) are the basis of the present scheme. They can be observed

from (35) that the magnitude of each term in the truncation error is reduced by

at least a factor of two from the classical finite difference scheme. It is of in-
terest to note that a feature of the present scheme which is different from the

classical finite difference scheme is that to evaluate the coefficients (31)–(34),

values of aðtÞ, bðtÞ, and f ðtÞ are required at the grid locations ðti þ h=2Þ and
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ðti � h=2Þ. If the truncation error term in (30) is neglected. The matrix problem

associated with (30) is a tridiagonal algebraic system and the solution of this
tridiagonal system can easily be obtained by using Thomas algorithm.

Repeat the numerical scheme for different choices of d (terminal point) until
the solution profiles do not differ materially from iteration. For computational

point of view, we use absolute error criteria, namely

jvmþ1ðtÞ � vmðtÞj6 r; d6 t6 1;

where vmðtÞ is the solution for the mth iterate of d and r is the prescribed

tolerance bound.

4. Numerical experiments

To demonstrate the applicability of this numerical method, we have applied

to three examples. These examples have been chosen because either analytical

or approximate solutions are available for comparison.

Example 1. Consider the problem

v00 � 0:5
t
v0 ¼ �1; 0 < t < 1 with vð0Þ ¼ 5; vð1Þ ¼ 5:

The exact solution is given by vðtÞ ¼ 5� t2 þ t3=2.
The computational results are presented in Table 1.

Example 2. Now consider the problem

ðtav0Þ0 ¼ btðaþb�2Þ½ða þ b � 1Þ þ btb�v; 0 < t < 1;

with boundary conditions vð0Þ ¼ 1, vð1Þ ¼ e.

Table 1

Numerical results for Example 1

t vðtÞ exact d ¼ 0:1 d ¼ 0:2 d ¼ 0:5

h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160

0.1 5.021623 5.021606 5.021629

0.2 5.049443 5.049427 5.049469 5.049436 5.049445

0.3 5.074317 5.074309 5.074330 5.074321 5.074304

0.4 5.092982 5.092986 5.092996 5.092995 5.092976

0.5 5.103553 5.103554 5.103570 5.103561 5.103556 5.103521 5.103548

0.6 5.104758 5.104753 5.104773 5.104757 5.104760 5.104723 5.104751

0.7 5.095662 5.095659 5.095666 5.095660 5.095654 5.095634 5.095648

0.8 5.075541 5.075541 5.075547 5.075541 5.075537 5.075522 5.075534

0.9 5.043815 5.043816 5.043809 5.043817 5.043805 5.043809 5.043805

1.0 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
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The exact solution is given by vðtÞ ¼ expðtbÞ. The computational results are
presented in Table 2 for a ¼ 0:5, b ¼ 4.

Example 3. We consider the problem

ðt1=2v0Þ0 � t1=2v ¼ �1
2
ð3þ t�1=2Þe�t; 0 < t < 1;

with boundary conditions vð0Þ ¼ 1, vð1Þ ¼ 2e�1.
The exact solution is given by vðtÞ ¼ ðt1=2 þ 1Þe�t. The computational results

are presented in Table 3.

Table 2

Numerical results for Example 2

t vðtÞ exact d ¼ 0:1 d ¼ 0:2 d ¼ 0:5

h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160

0.1 1.000100 1.001025 1.001150

0.2 1.001601 1.002264 1.002397 1.001537 1.001606

0.3 1.008133 1.008598 1.008736 1.008045 1.008134

0.4 1.025931 1.026236 1.026376 1.025823 1.025926

0.5 1.064494 1.064668 1.064814 1.064369 1.064485 1.064658 1.064701

0.6 1.138373 1.138435 1.138589 1.138228 1.138359 1.138430 1.138512

0.7 1.271376 1.271349 1.271502 1.271216 1.271352 1.271348 1.271453

0.8 1.506216 1.506127 1.506274 1.506050 1.506186 1.506128 1.506247

0.9 1.927262 1.927157 1.927275 1.927123 1.927237 1.927158 1.927266

1.0 2.718283 2.718282 2.718282 2.718282 2.718282 2.718282 2.718282

Table 3

Numerical results for Example 3

t vðtÞ exact d ¼ 0:1 d ¼ 0:2 d ¼ 0:4

h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160 h ¼ 1=80 h ¼ 1=160

0.1 1.190972 1.191462 1.191037

0.2 1.184878 1.185297 1.184948 1.185046 1.184929

0.3 1.146581 1.146922 1.146643 1.146723 1.146624

0.4 1.094268 1.094541 1.094316 1.094383 1.094297 1.094311 1.094259

0.5 1.035413 1.035628 1.035445 1.035505 1.035427 1.035448 1.035398

0.6 0.973919 0.974084 0.973939 0.973990 0.973922 0.973946 0.973901

0.7 0.912058 0.912176 0.912067 0.912109 0.912054 0.912077 0.912040

0.8 0.851221 0.851296 0.851223 0.851253 0.851215 0.851233 0.851206

0.9 0.792275 0.792312 0.792276 0.792291 0.792271 0.792281 0.792268

1.0 0.735759 0.735759 0.735759 0.735759 0.735759 0.735759 0.735759
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5. Discussion and conclusion

We have described and to demonstrated the applicability of the special

second order finite difference method, by solving some model examples. It is

observed from the results that the present method is simple, accurate, stable

and easy to implement on computer. The numerical results for examples for

different mesh sizes and three different values of d are presented in Tables 1–3.
It can be observed from these tables that the computed solutions compare well

with the exact solutions.
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