International Conference and Workshop on Emerging Trends in Technology ICWET 2010) — TCET, Mumbeai, India

Check for
Updates

Connectionist Predicate Logic Model with Parallel

Execution of Rule Chains

S G Sanjeevi

Dept. of Comp. Science & Engineering
N.L.T. Warangal,
Warangal, India
+91-870-2462711

sgsanjeevi@yahoo.com

ABSTRACT

In this paper, we describe a model for reasoning using forward
chaining for predicate logic rules and facts with coarse-coded
distributed representations for instantiated predicates in a
connectionist frame work. Distributed representations are known
to give advantages of good generalization, error correction and
graceful degradation of performance under noise conditions. The
system supports usage of complex rules which involve multiple
conjunctions and disjunctions. The system supports parallel and
independent execution of predicate logic rule chains in a
connectionist environment. The system solves the variable
binding problem in a new way using coarse-coded distributed
representations of instantiated predicates. Its performance with
regard to generalization on unseen inputs and its ability to exhibit
fault tolerance under noise conditions is studied and has been
found to give good results.

Categories and Subject Descriptors
1.5.1 [Pattern Recognition]: Models — neural nets.

General Terms
Design, Reliability, Experimentation.

Keywords
Coarse-Coding, Connectionist, Parallel Rule Chains, Reasoning,
Fault Tolerance.

1. INTRODUCTION

Traditionally reasoning systems using predicate logic have been
implemented using symbolic methods of artificial intelligence.
Connectionist methods of implementation of reasoning systems
describe an alternative paradigm. Among the connectionist
systems they use two types of representational schemes. They are
1) localist and 2) distributed representational schemes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICWET’10, February 26-27, 2010, Mumbai, Maharashtra, India.

Copyright 2010 ACM 978-1-60558-812-4...$10.00.

674

P Bhattacharyya
Dept. of Comp. Science & Engineering
IIT Bombay
Mumbai-400076
+91-22-5767718

pb@cse.iith.ac.in

Localist representational schemes represent each concept with an
individual unit or neuron. In the distributed representational
schemes [2] each unit or neuron is used in representation of
multiple concepts and multiple units or neurons are used to
represent a single concept. In the literature, some localist methods
for reasoning using connectionist networks have been described.
The connectionist inference system SHRUTI [6] described a
localist method where temporal synchrony was used to create
bindings between variables and entities they represent.
CONSYDERR [1] described another localist method for variable
binding and forward reasoning. Since, these systems used localist
representations, advantages of distributed representations are not
obtainable by them and hence the motivation for a distributed
representation based reasoning system. In our previous works, we
have designed and developed connectionist reasoning systems
which use distributed representations [3, 4, 5].

In this present work, we describe the design and implementation
of a connectionist reasoning system which uses coarse-coded
distributed representations and supports parallel execution of
predicate logic rule chains. The organization of the paper is as
follows. In section 2, we describe the rules and facts base. In
section 3, we explain the connectionist reasoning using forward
chaining of rules and in section 4 we describe obtaining the
coarse-coded representations. In section 5, we describe
connectionist reasoning system and in section 6 parallel execution
of rule chains. In section 7, we describe testing and results and in
section § conclusions.

2. RULES AND FACTS BASE

Our system represents and reasons with the following
predicate logic rules and facts:

® give(x, y, z) — own(y, z) (1
® buy(y, z) — own(y, z)) 2
® own(y, z) — candonate(y, z)) 3)

® own(y, z) N wantstobuy(w, z)A(hasrequiredmoney(w, m)V

hasgoodcreditrating(w)) — cansell(y, w, z)) 4)
e give(John, Mary, Book-1)) %)
e buy(Chris, Book-2)) (6)
o wantstobuy(Walter, Book-2)) 7
® hasrequiredmoney(Walter, Money)) ®)
®. hasgoodcreditrating(Walter)))

Using the above knowledge base, some of the inferences made by
the system are shown below.
1. own(Mary, Book-1);

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1741906.1742060&domain=pdf&date_stamp=2010-02-26

International Conference and Workshop on Emerging Trends in Technology ICWET 2010) — TCET, Mumbeai, India

2. candonate(Mary, Book-1);

3. own(Chris, Book-2);

4. cansell(Chris, Walter, Book-2);
Our objective is to start with the above knowledge base and
obtain the results of inference correctly by the coarse-coded
connectionist reasoning system. First, we describe how inference
is performed in a localist model of reasoning using neural
networks. This is because, we start with localist representations of
predicates instantiated with arguments and then later convert them
to coarse-coded distributed representations.

3. CONNECTIONIST FORWARD
REASONING

We describe here, briefly with an example how forward reasoning
using localist representations [1], [6] is made using a
connectionist system. Let us consider the rule 1: give(x,y,z)—>
own(y,z) from the knowledge base. The localist pattern for the
LHS of rule 1 can be written as 0001 001 001 001 1. The first4
bit value denotes the predicate give, the next 3 bit value denotes
an object getting bound to variable x, ‘John’, the next 3 bit value
denotes an object getting bound to variable y , ‘Mary’ and the
next value denotes, ‘Book-1". The last bit indicates the truth value
of predicate give. This instantiation will activate rule / and make
variables on the right hand side of the rule %y’ and z’ be assigned
the values ‘001’ and ‘001’ representing the objects ‘Mary’ and *
Book-1" respectively. Because of the rule activation the localist
pattern representation for RHS will be 0010 001 001 1 denoting
own(Mary,Book-1). This triggers the rules whose left hand sides
match RHS of rule / and through this forward chaining, forward
reasoning using localist representations is accomplished. The
binding information is similarly passed on in these rules for the
variables. In this manner, forward reasoning is accomplished
using localist representations in a connectionist reasoning system.

4. OBTAINING COARSE-CODED
REPRESENTATIONS

4.1 Localist Representation Vectors for the

Instantiated Predicates

In the knowledge base, there are § predicates. They are give, buy,
own, candonate, wantstobuy, hasrequiredmoney,
hasgoodcreditrating and cansell. We need separate predicate
codes to represent these predicates. We represent each of these
predicates by a separate code which is the localist representation
for its predicate identification code. In Table 1 below we show a
sample of localist vectors used for the predicate give in the rule
base.

Table 1. Shows a sample of localist tuples used by predicate

give
S.No of Tuple 215
Predicate ‘id’ code 00001000000
Localist Value of x | 0000100000
Localist Value of y | 0000100000
Localist Value of z | 0000010000
g;;l:i};cate vatue of 00001

675

4.2 Coarse-Coded Representation Vectors for

the Instantiated Predicates

Consider the following tuple from the localist representation table
of predicate give(x,y,z), ‘00001000000 0000000001 0000000010
0000000010 00001 .

We view the above vector as being kept in overlapping coarse
zones of length of 4 consecutive bits and encode the zone as [if
there is at least one / bit in that zone or else as 0. We then
consider next coarse zone and encode it as / or 0 following above
method. We do this process left to right starting from the left most
bit. We do this encoding process for above localist tuple to get the
following coarse-coded tuple

“ 01111000000 0000001111 0000011110 0000011110
01111".
Coarse-coding increases the information capacity [2] by

increasing the number of units active at a time compared to
localist codes which have sparsely populated 1’s. The amount of
information conveyed by a unit that has a probability p of being
‘1is — plog (p) — (1 - p)log(1 - p). We obtain the coarse-coded
representations of tuples for all the predicates in the rule base
using the above described method. We show in table 2 a sample
of coarse-coded representation of the tuples for predicate give in
the rule base.

Table 2. Shows a sample of Coarse-code Representation of
data tuples used by predicate give

S.No of Tuple 215
Predicate ‘id’ code 01111000000
Value of x 0111100000
Value of y 0111100000
Value of z 0011110000
g;;lcti}ilcate velue ot 01ttt

5. CONNECTIONIST REASONING
SYSTEM

5.1 Organization of Neural Networks

The neural networks shown accomplish the forward reasoning
using the coarse-coded tuples. They generate inferences by firing
rules from the rule base. Consider the neural networks shown in

figure 1.

give +— Networkl |—{ own [Network2 — Cando
X — nate
y — L 1y || Y
z z
— z - —

Figure 1. Neural Networks for processing rules (1) and (3)

When impressed on its inputs with one of the vectors v, from the
predicate table give the network 1 generates on its outputs a
vector v, from the predicate table own. This way the rule give(x,
v, z) — own(y, z) was processed. This in turn impresses on the

International Conference and Workshop on Emerging Trends in Technology ICWET 2010) — TCET, Mumbeai, India

inputs of network 2 to generate a vector v; on its outputs. This
processed the rule own(y, z) — candonate(y, z). These vectors are
in coarse-coded form and denote a predicate fact. So we see the
rules / and 3 are getting activated in a forward chaining fashion.
Similarly, rules (2), (3) are processed by neural networks 3 and 4.
Neural networks 7, 2 and 3, 4 execute the following rule chains
(D), (II) respectively.

The rule chains (I), (I) are executed independently.

® give(x, y, z) — own(y, z) — candonate(y, z)

@

® buy(y, z) — own(y, z) — candonate(y, z) (II)

5.2 Variable Binding during Processing of
Complex Rule having Multiple Conjunctions

and a Disjunction

We describe here, how variable binding is done in a complex
predicate logic rule, having both conjunctions and a disjunction.
Consider, the following complex rule which is the rule 4 in our
knowledge base which involves multiple conjunctions and a
disjunction:

o own(y, z)Awantstobuy(w, z)A(hasrequiredmoney(w,
hasgoodcreditrating(w)) — cansell(y, w, z).

m) vV
“

This rule is having a disjunction which denotes an inclusive OR
operation. The rule is processed by the connectionist architecture
shown in figure 2.

We use the vectors v,, v,, v, and v, from the predicate tables own,
wantstobuy, hasrequiredmoney and hasgoodcreditrating
respectively. These are coarse-coded vectors and their structure
has the format of predicate code p, value of variable I, value of
variable 2,..., value of variable n and the predicate truth value
T/F. These constituents of the vectors are distinguishable and
hence they can be used directly. These constituents are present in
the coarse-coded form. We use these vectors v,, v,, v, and v, to
implement the complex rule under consideration.

Component z is taken from both the vectors v, and v,, and given as
inputs to neural network 5. This network generates as output truth
value T or F depending on the values of variable z given to it as
inputs are equal or unequal respectively. Similarly, component w
is taken from both the vectors v,, and v, and given as inputs to the
neural network 6. This network generates output truth value of 7
or F depending upon the values of variable w given to it as inputs
are equal or unequal respectively. Similarly, component w is
taken from both the vectors, v,, and v, and given as inputs to the
neural network 7. This network generates as output truth value of
T or F depending upon the values of variable w given as inputs to
it are equal or unequal respectively. The truth values from the
outputs of neural network 6 and neural network 7 are given as
inputs to the neural network 8. Neural network 8 outputs 7, if
either or both (inclusive or) of its inputs are having truth value T’
else outputs F. The truth values from outputs of neural network 5
and neural network & are given as inputs to the neural network 9.
Neural network 9 outputs 7 if both of its inputs have truth value T
else outputs F. The predicate code components of the vectors v,
Vs ¥y and v, are given as inputs to the neural network /0 which
outputs predicate code p for cansell. The values of y, w and z are
passed on to the output lines as shown in figure 2 from the vectors
v, v, and v, respectively. If neural network 9’s output is ‘7" the

676

values of y, w and z are accepted as belonging to vector v, of the
predicate table of cansell.

¥ etwork |

—
|

[

Net-
L work
o |P

=z
=
E} o g
g
1
1
1
7
JE
=3 1
a 1
[I—

B
[y ey

o

Hasgoodereditrating
w

Ff

Figure 2. Neural Networks for processing the rule chain shown
in (IIT)

Using this method, we had processed the complex rule having two
conjunctions and a disjunction. The variable binding problem has
been solved as described above, while processing the complex
rule which is involving multiple conjunctions and a disjunction.
We used a divide and conquer approach and distributed the total
variable binding task to a set of neural networks which together
accomplished the same. This approach enables us to perform
easily variable binding in more complex rules which involve more
number of conjunctions and disjunctions in them.

6. PARALLEL EXECUTION OF RULE
CHAINS

The rule (4) which involves multiple conjunctions and a
disjunction is part of the two rule chains shown below in (III) and
(Iv).

o give(x, y, z) — own(y, z) A wantstobuy(w, z)
A(hasrequiredmoney(w, — m)V hasgoodcreditrating(w)) —
cansell(y, w, z); (II0)
o buy(y, z) — own(y, z) A wantstobuy(w, z)
A(hasrequiredmoney(w, m) V hasgoodcreditrating(w)) —
cansell(y, w, z); (IV)

The connectionist architecture shown in figure 2 has processed
the rule chain shown in (IIT). Since, rule 4 is part of two different
rule chains, the connectionist architectures for processing the rule
in these two rule chains will be identical but separate and they
will be processing the rule independently of each other. The
connectionist architecture for processing the rule chain shown in
(IV) is shown in figure 3. Neural Networks SA, 6A, 7A, 8A, 9A
and 10A shown in figure 3 have the same architecture as neural
networks 5, 6, 7, 8, 9 and /0 shown in figure 2 respectively. They
will be processing the rule 4 in an identical way as neural
networks 5, 6, 7, 8 9 and 10 respectively. Rule chains shown in
(III) and (IV) are processed separately by the connectionist
architectures shown in figures 2 and 3 respectively. Hence, these
rule chains can be executed in parallel and independently.

International Conference and Workshop on Emerging Trends in Technology ICWET 2010) — TCET, Mumbeai, India

Net-
work
04

TF

¥ etwotk 3
z | g —
| \
i LTI Hy
Wantstabuy I Metwork MNetwork : L
w & B4 e |
: n| - H Nt
i 1 L] work
PHov it s |P
—— A 1
b 1
w s
H 1
5 T | —
i ™, 1
m U 1
1
[w 1
1
Network 7A Lleoz
Hasgoodereditrating
w
:%:44444444447 "
w

Figure 3. Neural Networks for processing the rule chain shown

in (IV)

7. TESTING

Reasoning task was successfully accomplished to give expected
inference results using the rules and facts shown in section 2. The
performance of the above coarse-coded reasoning system was
compared for error tolerance under noise conditions with a
localist representation based reasoning system (which was having
identical number of input, hidden and output units for its neural
networks).

Table 3. Shows the details of testl

Test 1 No. of No.of test No.of
training patterns output
patterns patterns

correctly
generated
Localist
feasoning 750 300 207
system
Coarse-
ded

coces 750 300 274

reasoning

system

In the test 1, neural network 11 (implementing rule 1 for larger
data) with 66 input units, 56 hidden units and 52 output units was
trained with 750 patterns. 300 of these training patterns were
made test patterns after introducing / bit error at a random
location in each of the input patterns leaving the output patterns
unchanged. If output pattern is correctly produced by the neural
network 11 despite having a / bit error in the input side of the test
pattern, it indicates the fault tolerance property of the
connectionist system. Results are as shown in table 3. In tests 2
and 3, Neural network 11 was tested with coarse-coded patterns
for generalization on unseen test patterns as shown in table 4.

677

Table 4. Shows the details of tests 2 and 3

Tests | Training | Unseen | Correctly Not
Patterns | Test Generalized | Correctly
Patterns Generalized
2 650 350 342 8
3 700 300 300 0

8. CONCLUSIONS

We have designed and tested a connectionist forward chaining
reasoning system using distributed coarse-coded representations
on a given reasoning task. The system has successfully performed
the given reasoning task. We have solved the variable binding
problem faced while implementing multiple conjunctions and a
disjunction in a complex rule using coarse-coded representations
without the need to decode them into localist representations. The
system supported parallel predicate logic rule chains in a
connectionist environment. These rule chains were executed in a
parallel and independent way. Thus, system supports parallel
processing of rule chains. The coarse-coded reasoning system was
found to be much more fault tolerant to errors compared to
localist reasoning system as was indicated by tests performed. The
system has displayed good generalization ability on unseen test
patterns.

9. REFERENCES

[1] Browne, A., and Sun, R. Connectionist inference models.
Neural Networks. 14: 2001, 1331-1355.

Hinton, G.E., McClelland, J.L., and Rumelhart, D.E.
Distributed representations. Parallel Distributed Processing:
Explorations in Microstructure of Cognition. 1986, 1:77-
109, , MIT Press, Cambridge.

(2]

Sanjeevi, S.G., and Bhattacharyya, P., A Connectionist
Model for Predicate Logic Reasoning using Coarse-coded
Distributed Representations. In Proceedings of the 9th
International conference on Knowledge-based & Intelligent
Information and Engineering Systems(KES 2005),
Melbourne, Australia, Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin Heidelberg, No. 3682,
732-738.

Sanjeevi, S.G., and Bhattacharyya, P. Non-Monotonic
reasoning with connectionist networks using coarse-coded
Representations. In Proceedings of the 5™ IEEE International
conference on Machine Learning and Cybernetics (Dalian,
China, August 13™-16", 2006). Vol. 5, pp. 3048-3052.

Sanjeevi, S.G., and Bhattacharyya, P., A fault tolerant
connectionist model for predicate logic reasoning, variable
binding: using coarse-coded distributed representations.
WSEAS Transactions on Systems, 4, 4, (Apr. 2005), 331-
336.

Shastri, L. Advances in SHRUTTI: a neurally motivated
model of relational knowledge representation and rapid
inferencing using temporal synchrony. Applied Intelligence.
11(1), 1999, 79-108.

[5]

