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ABSTRACT
In this paper, we describe a model for reasoning using forward 
chaining for predicate logic rules and facts with coarse-coded 
distributed representations for instantiated predicates in a 
connectionist frame work. Distributed representations are known 
to give advantages of good generalization, error correction and 
graceful degradation of performance under noise conditions. The 
system supports usage of complex rules which involve multiple
conjunctions and disjunctions. The system supports parallel and 
independent execution of predicate logic rule chains in a 
connectionist environment. The system solves the variable 
binding problem in a new way using coarse-coded distributed 
representations of instantiated predicates. Its performance with 
regard to generalization on unseen inputs and its ability to exhibit 
fault tolerance under noise conditions is studied and has been 
found to give good results.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models – neural nets.

General Terms
Design, Reliability, Experimentation.

Keywords
Coarse-Coding, Connectionist, Parallel Rule Chains, Reasoning,
Fault Tolerance.

1. INTRODUCTION
Traditionally reasoning systems using predicate logic have been 
implemented using symbolic methods of artificial intelligence. 
Connectionist methods of implementation of reasoning systems 
describe an alternative paradigm. Among the connectionist 
systems they use two types of representational schemes. They are 
1) localist and 2) distributed representational schemes. 

Localist representational schemes represent each concept with an 
individual unit or neuron. In the distributed representational 
schemes [2] each unit or neuron is used in representation of 
multiple concepts and multiple units or neurons are used to 
represent a single concept. In the literature, some localist methods 
for reasoning using connectionist networks have been described. 
The connectionist inference system SHRUTI [6] described a 
localist method where temporal synchrony was used to create 
bindings between variables and entities they represent.
CONSYDERR [1] described another localist method for variable
binding and forward reasoning. Since, these systems used localist 
representations, advantages of distributed representations are not 
obtainable by them and hence the motivation for a distributed 
representation based reasoning system. In our previous works, we 
have designed and developed connectionist reasoning systems
which use distributed representations [3, 4, 5].

In this present work, we describe the design and implementation 
of a connectionist reasoning system which uses coarse-coded 
distributed representations and supports parallel execution of 
predicate logic rule chains. The organization of the paper is as 
follows. In section 2, we describe the rules and facts base. In 
section 3, we explain the connectionist reasoning using forward 
chaining of rules and in section 4 we describe obtaining the 
coarse-coded representations. In section 5, we describe 
connectionist reasoning system and in section 6 parallel execution 
of rule chains. In section 7, we describe testing and results and in 
section 8 conclusions.

2. RULES AND FACTS BASE
Our system represents and reasons with the following 

predicate logic rules and facts: 
● give(x, y, z) →  own(y, z)                                                 (1)
● buy(y, z) →  own(y, z) )                                                    (2)
● own(y, z) → candonate(y, z) )                                          (3)
● own(y, z) ∧ wantstobuy(w, z)∧(hasrequiredmoney(w, m)∨

hasgoodcreditrating(w)) → cansell(y, w, z) )                             (4)
● give(John, Mary, Book-1) )                                              (5)
●buy( Chris, Book-2) )                                                        (6)
● wantstobuy(Walter, Book-2) )                                          (7)
● hasrequiredmoney(Walter, Money) )                               (8)
●. hasgoodcreditrating(Walter) )                                        (9)

Using the above knowledge base, some of the inferences made by 
the system are shown below.

1. own(Mary, Book-1);
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2. candonate(Mary, Book-1);
3. own(Chris, Book-2); 
4. cansell(Chris, Walter, Book-2);

Our objective is to start with the above knowledge base and 
obtain the results of inference correctly by the coarse-coded 
connectionist reasoning system. First, we describe how inference 
is performed in a localist model of reasoning using neural 
networks. This is because, we start with localist representations of 
predicates instantiated with arguments and then later convert them 
to coarse-coded distributed representations. 

3. CONNECTIONIST FORWARD 
REASONING 
We describe here, briefly with an example how forward reasoning 
using localist representations [1], [6] is made using a 
connectionist system. Let us consider the rule 1: give(x,y,z)—>  
own(y,z) from the knowledge base. The localist pattern for the 
LHS of rule 1 can be written as 0001 001  001 001  1. The first 4 
bit value denotes the predicate give, the next 3 bit value denotes 
an object getting bound to variable x, ‘John’, the next 3 bit value 
denotes an object getting bound to variable y , ‘Mary’ and the 
next value denotes, ‘Book-1’. The last bit indicates the truth value 
of predicate give. This instantiation will activate rule 1 and make 
variables on the right hand side of the rule ‘y’ and ‘z’ be assigned 
the values ‘001’ and ‘001’ representing the objects ‘Mary’ and ‘
Book-1’ respectively. Because of the rule activation the localist 
pattern representation for RHS will be 0010 001 001 1 denoting
own(Mary,Book-1). This triggers the rules whose left hand sides 
match RHS of rule 1 and through this   forward chaining, forward 
reasoning using localist representations is accomplished. The 
binding information is similarly passed on in these rules for the 
variables. In this manner, forward reasoning is accomplished 
using localist representations in a connectionist reasoning system.

4. OBTAINING COARSE-CODED 
REPRESENTATIONS

4.1 Localist Representation Vectors for the 
Instantiated Predicates
In the knowledge base, there are 8 predicates. They are give, buy, 
own, candonate, wantstobuy, hasrequiredmoney, 
hasgoodcreditrating and cansell. We need separate predicate 
codes to represent these predicates. We represent each of these 
predicates by a separate code which is the localist representation 
for its predicate identification code. In Table 1 below we show a 
sample of localist vectors used for the predicate give in the rule 
base.

Table 1. Shows a sample of localist tuples used by predicate 
give

S.No of  Tuple 215

Predicate ‘id’ code 00001000000

Localist Value of  x 0000100000

Localist Value of   y 0000100000

Localist Value of   z 0000010000

Truth  Value of 
Predicate

00001

4.2 Coarse-Coded Representation Vectors for 
the Instantiated Predicates
Consider the following tuple from the localist representation table 
of predicate give(x,y,z), ‘00001000000  0000000001  0000000010  
0000000010  00001’.

We view the above vector as being kept in overlapping coarse 
zones of length of 4 consecutive bits and encode the zone as 1 if 
there is at least one 1 bit in that zone or else as 0. We then 
consider next coarse zone and encode it as 1 or 0 following above 
method. We do this process left to right starting from the left most 
bit. We do this encoding process for above localist tuple to get the 
following coarse-coded tuple
‘ 01111000000   0000001111  0000011110   0000011110   
01111’.
Coarse-coding increases the information capacity [2] by  
increasing the number of units active at a time compared to 
localist codes which have sparsely populated 1’s. The amount of 
information conveyed by a unit that has a probability p of being 
‘1’ is  – plog (p) – (1 - p)log(1 - p). We obtain the coarse-coded 
representations of tuples for all the  predicates in the rule base
using the above described method. We show in table 2 a sample 
of coarse-coded representation of the tuples for predicate give in 
the rule base.

Table 2. Shows a sample of Coarse-code Representation of 
data tuples used by predicate give

S.No of  Tuple 215

Predicate ‘id’ code 01111000000

Value of  x 0111100000

Value of  y 0111100000

Value of  z 0011110000

Truth  Value of 
Predicate

01111

5. CONNECTIONIST REASONING 
SYSTEM

5.1 Organization of Neural Networks 
The neural networks shown accomplish the forward reasoning 
using the coarse-coded tuples. They generate inferences by firing 
rules from the rule base. Consider the neural networks shown in 
figure 1. 

Figure 1. Neural Networks for processing rules (1) and (3)

When impressed on its inputs with one of the vectors vg from the 
predicate table give the network 1 generates on its outputs a 
vector vo  from the predicate table own. This way the rule give(x,
y, z) → own(y, z) was processed. This in turn impresses on the 
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inputs of network 2 to generate a vector vd on its outputs. This 
processed the rule own(y, z) → candonate(y, z). These vectors are 
in coarse-coded form and denote a predicate fact. So we see the 
rules 1 and 3 are getting activated in a forward chaining fashion.  
Similarly, rules (2), (3) are processed by neural networks 3 and 4. 
Neural networks 1, 2 and 3, 4 execute the following rule chains 
(I), (II) respectively. 

The rule chains (I), (II) are executed independently.

● give(x, y, z) → own(y, z) → candonate(y, z)                             (I)

● buy(y, z) → own(y, z) → candonate(y, z)                                (II)

5.2 Variable Binding during Processing of 
Complex Rule having Multiple Conjunctions 
and a Disjunction
We describe here, how variable binding is done in a complex 
predicate logic rule, having both conjunctions and a disjunction. 
Consider, the following complex rule which is the rule 4 in our 
knowledge base which involves multiple conjunctions and a 
disjunction: 

● own(y, z)∧wantstobuy(w, z)∧(hasrequiredmoney(w,  m) ∨
hasgoodcreditrating(w)) → cansell(y, w, z).                               (4)

This rule is having a disjunction which denotes an inclusive OR 
operation. The rule is processed by the connectionist architecture 
shown in figure 2. 

We use the vectors vo, vw, vh and vg from the predicate tables own, 
wantstobuy, hasrequiredmoney and hasgoodcreditrating 
respectively. These are coarse-coded vectors and their structure 
has the format of predicate code p, value of variable 1, value of 
variable 2,…, value of variable n and the predicate truth value 
T/F. These constituents of the vectors are distinguishable and 
hence they can be used directly. These constituents are present in 
the coarse-coded form. We use these vectors vo, vw, vh and vg to 
implement the complex rule under consideration. 

Component z is taken from both the vectors vo and vw and given as 
inputs to neural network 5. This network generates as output truth 
value T or F depending on the values of variable z given to it as 
inputs are equal or unequal respectively. Similarly, component w
is taken from both the vectors vw and vh and given as inputs to the 
neural network 6. This network generates output truth value of T
or F depending upon the values of variable w given to it as inputs 
are equal or unequal respectively. Similarly, component w is 
taken from both the vectors, vw and vg and given as inputs to the 
neural network 7. This network generates as output truth value of 
T or F depending upon the values of variable w given as inputs to 
it are equal or unequal respectively. The truth values from the 
outputs of neural network 6 and neural network 7 are given as 
inputs to the neural network 8. Neural network 8 outputs T, if 
either or both (inclusive or) of its inputs are having truth value T 
else outputs F. The truth values from outputs of neural network 5
and neural network 8 are given as inputs to the neural network 9.
Neural network 9 outputs T if both of its inputs have truth value T
else outputs F. The predicate code components of the vectors vo, 
vw, vh and vg are given as inputs to the neural network 10 which 
outputs predicate code p for cansell. The values of y, w and z are 
passed on to the output lines as shown in figure 2 from the vectors 
vo, vw and vo respectively. If neural network 9’s output is ‘T’ the 

values of y, w and z are accepted as belonging to vector vc of the 
predicate table of cansell.

Figure 2. Neural Networks for processing the rule chain shown 
in (III) 

Using this method, we had processed the complex rule having two 
conjunctions and a disjunction. The variable binding problem has 
been solved as described above, while processing the complex 
rule which is involving multiple conjunctions and a disjunction. 
We used a divide and conquer approach and distributed the total 
variable binding task to a set of neural networks which together 
accomplished the same. This approach enables us to perform 
easily variable binding in more complex rules which involve more 
number of conjunctions and disjunctions in them.

6. PARALLEL EXECUTION OF RULE 
CHAINS
The rule (4) which involves multiple conjunctions and a 
disjunction is part of the two rule chains shown below in (III) and 
(IV).
• give(x, y, z) → own(y, z) ∧ wantstobuy(w, z)∧(hasrequiredmoney(w, m)∨ hasgoodcreditrating(w)) →
cansell(y, w, z);                                                                         (III)
• buy(y, z) → own(y, z) ∧ wantstobuy(w, z)∧(hasrequiredmoney(w, m) ∨ hasgoodcreditrating(w)) →
cansell(y, w, z);                                                                         (IV)

The connectionist architecture shown in figure 2 has processed 
the rule chain shown in (III). Since, rule 4 is part of two different 
rule chains, the connectionist architectures for processing the rule 
in these two rule chains will be identical but separate and they 
will be processing the rule independently of each other. The 
connectionist architecture for processing the rule chain shown in 
(IV) is shown in figure 3. Neural Networks 5A, 6A, 7A, 8A, 9A 
and 10A shown in figure 3 have the same architecture as neural 
networks 5, 6, 7, 8, 9 and 10 shown in figure 2 respectively. They 
will be processing the rule 4 in an identical way as neural 
networks 5, 6, 7, 8, 9 and 10 respectively. Rule chains shown in 
(III) and (IV) are processed separately by the connectionist 
architectures shown in figures 2 and 3 respectively. Hence, these 
rule chains can be executed in parallel and independently.
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Figure 3. Neural Networks for processing the rule chain shown 
in (IV) 

7. TESTING
Reasoning task was successfully accomplished to give expected 
inference results using the rules and facts shown in section 2. The 
performance of the above coarse-coded reasoning system was 
compared for error tolerance under noise conditions with a 
localist representation based reasoning system (which was having 
identical number of input, hidden and output units for its neural 
networks). 

Table 3. Shows the details of test1
Test 1 No. of

training 
patterns

No.of test 
patterns

No.of 
output 

patterns 
correctly 
generated

Localist 
reasoning 

system 750 300 207

Coarse-
coded 

reasoning 
system

750 300 274

In the test 1, neural network 11 (implementing rule 1 for larger 
data) with 66 input units, 56 hidden units and 52 output units was
trained with 750 patterns. 300 of these training patterns were 
made test patterns after introducing 1 bit error at a random 
location in each of the input patterns leaving the output patterns 
unchanged. If output pattern is correctly produced by the neural 
network 11 despite having a 1 bit error in the input side of the test 
pattern, it indicates the fault tolerance property of the 
connectionist system. Results are as shown in table 3. In tests 2
and 3, Neural network 11 was tested with coarse-coded patterns 
for generalization on unseen test patterns as shown in table 4.

Table 4. Shows the details of tests 2 and 3
Tests Training 

Patterns
Unseen 
Test 
Patterns

Correctly 
Generalized

Not 
Correctly 
Generalized

2 650 350 342 8

3 700 300 300 0

8. CONCLUSIONS
We have designed and tested a connectionist forward chaining 
reasoning system using distributed coarse-coded representations 
on a given reasoning task. The system has successfully performed 
the given reasoning task. We have solved the variable binding 
problem faced while implementing multiple conjunctions and a 
disjunction in a complex rule using coarse-coded representations 
without the need to decode them into localist representations. The 
system supported parallel predicate logic rule chains in a 
connectionist environment. These rule chains were executed in a 
parallel and independent way. Thus, system supports parallel 
processing of rule chains. The coarse-coded reasoning system was 
found to be much more fault tolerant to errors compared to 
localist reasoning system as was indicated by tests performed. The 
system has displayed good generalization ability on unseen test 
patterns. 
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