

Note

Zinc chloride-catalyzed one-pot synthesis of 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]-pyrazol-1-yl)thiazol-4-yl]-chromen-2-ones *via* a three component reaction

P Vijaya Kumar, K Manoher Reddy & V Rajeswar Rao*

Department of Chemistry, National Institute of Technology,
Warangal 506 004, India

E-mail: vrajesw@yahoo.com

Received 17 September 2007; accepted (revised) 09 March 2010

A simple and convenient procedure for the synthesis of 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]-chromen-2-ones **4a-f** is described through anhydrous zinc chloride-catalyzed one pot condensation of 3-(2-bromoacetyl)coumarin, thiosemicarbazide and 2-acetylbutyrolactone in good yields. The title compounds **4a-f** are also synthesized *via* an alternative procedure.

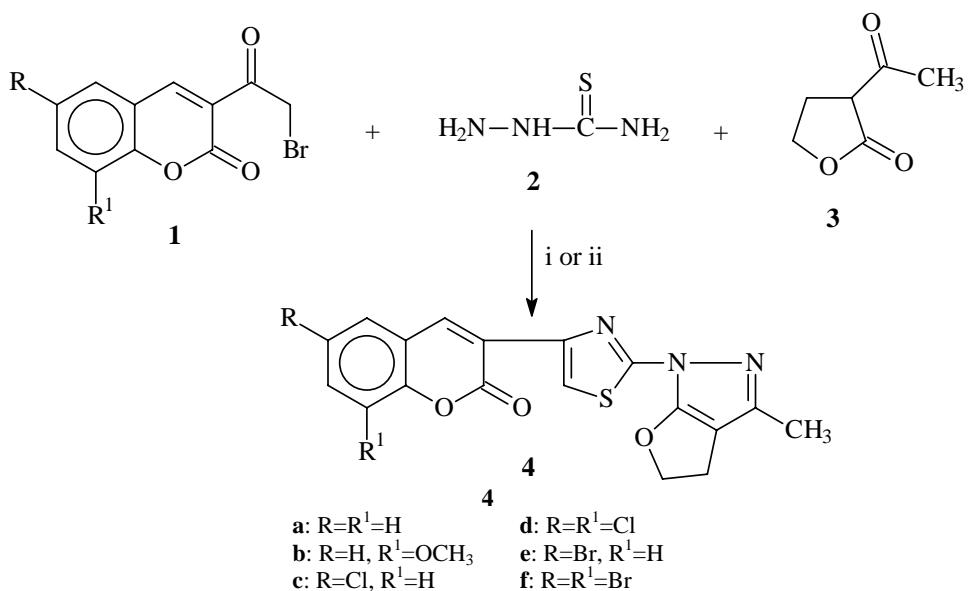
Keywords: 2-Acetylbutyrolactone, thiazole, pyrazole, benzopyran-2-one, 4,5-dihydrofuropyrazole, one-pot synthesis

Coumarins occur extensively in the plant kingdom, and many of them exhibit a variety of biological activity such as anthelmintic, anticoagulant, hypnotic and insecticide activities¹. Various simple and 3-substituted coumarins have been isolated² from natural sources. Coumarins bearing a heterocyclic moiety at 3rd position are uricosuric³ and CNS active agents⁴, further thiazoles⁵ and also coumarin derivatives with a heterocyclic system at 3rd position exhibit promising biological activities⁶. A literature survey revealed that thiazoles are generally prepared by Hantzsch thiazole synthesis from α -halo ketones and thioureas and thioamides⁷.

Later King *et al*^{8,9} and other workers¹⁰ synthesized amino thiazoles by replacing α -halo ketones with ketone and halogen. Despite this modification the method still remains cumbersome and time consuming (24-25 hr reflux). Herein, we report a simple procedure for the formation of thiazole, pyrazole and furan rings at a time at the 3rd position of coumarin.

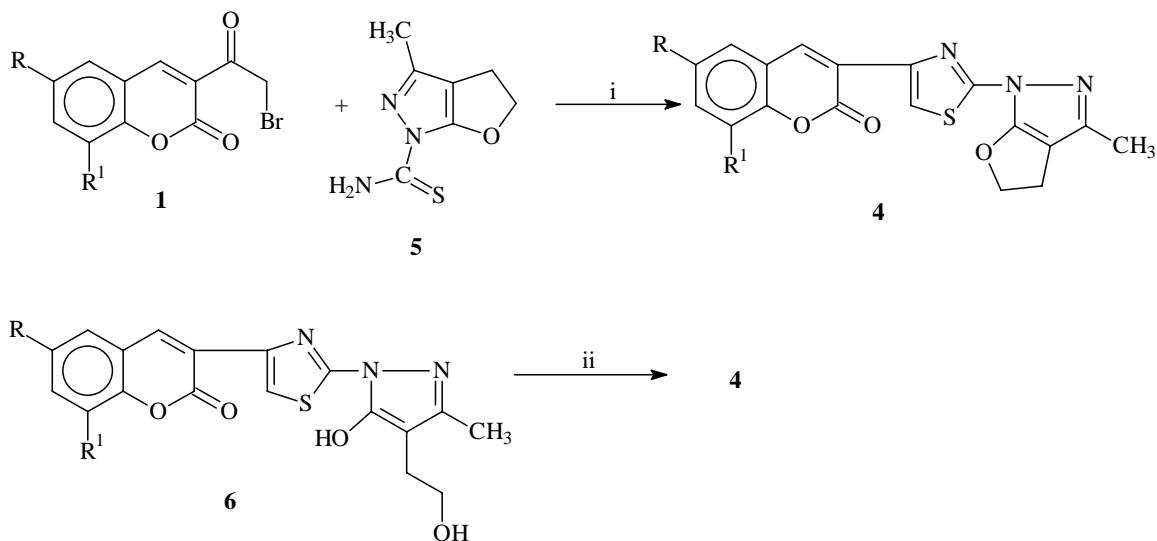
In continuation of our earlier work^{11,12} on the synthesis of heterocyclic systems derived from coumarin¹³ we report herein a multi component reaction that involves the Hantzsch thiazole synthesis

and a new synthetic route for the preparation of 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]-pyrazol-1-yl)-thiazol-4-yl]-chromen-2-ones in one step.


The synthesis of 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)-thiazol-4-yl]-chromen-2-ones has not been reported at 3rd position of coumarin in the literature. Hence, a convenient procedure for the synthesis of the title compounds is described through anhydrous zinc chloride catalyzed one pot condensation of 3-(2-bromoacetyl)coumarin, thiosemicarbazide and 2-acetyl butyrolactone in good yields (82-90%).

In the **Method I**, condensation of 3-(2-bromoacetyl)coumarin¹⁴, thiosemicarbazide and α -acetylbutyrolactone in toluene in presence of anhy. $ZnCl_2$ at refluxing temperature gave crystalline solid **4a**. The same compounds **4a-f** were also obtained when reaction is carried out in acetic acid under reflux. The yields of the products **4a-f** are good (82-90%, **Method I**). It is a one step synthesis.

The yields of **4a-f** are excellent in **Method I** using $ZnCl_2$ in toluene when compared with acetic acid. The reactions are fairly general, rapid, facile and efficient and devoid of any side products. The experimental procedures are very simple.


Compound **4a-f** can also be synthesized by an alternative method involving condensation of 3-(2-bromoacetyl)-chromen-2-one **1** with 3-methyl-4,5-dihydrofuro[2,3-*c*]pyrazol-1-carbothioic acid amide **5** in anhydrous ethanol *via* Hantzsch thiazole synthesis to yield corresponding 3-[2-(3-methyl-4,5-dihydrofuro[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]-chromen-2-ones **4** in 70-75% (**Method II**). The compound **4** can also be synthesized by cyclo condensation of 3-[2-(5-hydroxy-4-(2-hydroxy ethyl)-3-methyl pyrazol-1-yl)thiazol-4-yl]chromen-2-one (ref. 6) in acetic acid. The products obtained by both methods (**Methods I** and **II**) were found to be identical (**Schemes I** and **II**) by their mixed m.p. measurements, co-TLC and IR spectra.

In order to study the scope of this reaction, six different substituted 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)-thiazol-4-yl]-chromen-2-ones were synthesized. The synthetic strategy permits the introduction of a diverse array of substituents on to the benzene ring. To the best of our knowledge, this is the first report of its kind to construct three rings like

Reagents and Conditions: i) Anhy. ZnCl₂/Toluene, 2 hr, reflux; ii) CH₃COOH/1 hr, reflux

Scheme I — One pot synthesis, method I

Reaction conditions: i) Anhy. C₂H₅OH, 1 hr, reflux; ii) CH₃COOH/1 hr, reflux

Scheme II — Alternative synthesis, method II

thiazole, pyrazole and furan in a single step at 3rd position of coumarin. The characterization data for some representative compounds **4a-f** has been given (**Table I**). The structures of newly prepared compounds **4a-f** were confirmed on the basis of IR, ¹H NMR and mass spectra.

Experimental Section

All melting points were recorded on a Cintex melting point apparatus and are uncorrected. IR spectra were recorded in KBr on a Perkin-Elmer 337 spectrophotometer. ¹H NMR spectra on a Varian Gemini 200 MHz spectrometer using TMS as internal

Table I — Physical characterization data of compounds **4a-f**

Compd*	R R ¹	Yield (%)		Mol.formula (M.wt)	m.p. (°C)
		Method I	Method II		
4a	H H	90	75	C ₁₈ H ₁₃ N ₃ O ₃ S (351)	235-37
4b	H OCH ₃	88	73	C ₁₉ H ₁₅ N ₃ O ₄ S (381)	203-06
4c	Cl H	86	71	C ₁₈ H ₁₂ N ₃ O ₃ SCl (385.5)	196-98
4d	Cl Cl	85	70	C ₁₈ H ₁₁ N ₃ O ₃ SCl ₂ (420)	183-85
4e	Br H	84	76	C ₁₈ H ₁₂ N ₃ O ₃ SBr (430)	186-88
4f	Br Br	82	74	C ₁₈ H ₁₁ N ₃ O ₃ SBr ₂ (509)	188-200

*The compounds **4a-f** were recrystallized from methanol and all the compounds gave satisfactory C, H and N analyses.

standard (chemical shifts in δ , ppm); and mass spectra on a Jeol-JMS-D mass spectrometer at 70 eV.

The various derivatives of 3-(2-bromoacetyl)-coumarins were prepared according to literature method¹⁴. Representative methods of preparation of compounds **4**, **5** and **6** are described below.

General procedure for the synthesis of 3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)-thiazol-4-yl]-chromen-2-one **4a**

Method Ia: A mixture of 3-(2-bromoacetyl)-chromen-2-one (1.33 g, 5 mmoles), thiosemicarbazide (0.455 g, 5 mmoles) and 2-acetyl butyrolactone (0.53 mL, 5 mmoles) was taken in 20 mL of toluene and treated with anhydrous ZnCl₂ (0.30 to 0.5 g) and the reaction-mixture was refluxed for 1 hr, cooled, neutralized by 5% aq. NaHCO₃ solution and extracted with ether (4 \times 25 mL). The ether extract was washed with water until the washing were neutral to pH = 7, which was then dried over anhydrous Na₂SO₄ and evaporated in vacuum. The solid thus obtained was recrystallized from methanol. All the other compounds **4b-f** were prepared similarly. Yield: 82-90%.

General procedure for the synthesis of 3-[2-(3-methyl-4,5-dihydro-furo-[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]-chromen-2-one **4a**

Method Ib: A mixture of 3-(2-bromoacetyl)-chromen-2-one (1.33 g, 5 mmoles, ref. 14), thiosemicarbazide (0.455 g, 55 mmoles) and 2-acetylbutyrolactone (0.53 mL, 55 mmoles) was taken in 20 mL of acetic acid and refluxed for 1 hr. The reaction-mixture

was cooled to RT and filtered. The solid thus obtained was washed with water, dried and recrystallized from methanol. All the other compounds **4b-f** were prepared similarly. The yields of the products are 70-75%.

Typical procedure for the preparation of **4** and **5**

Method IIa: A mixture of 3-(2-bromoacetyl)-chromen-2-one (1.33 g, 5 mmoles) with 3-methyl-4,5-dihydro-furo[2,3-*c*]-pyrazole-1-carbothioic acid amide (0.915 g, 5 mmoles) was taken in 20 mL of anhydrous ethanol and refluxed for 1-2 hr. The reaction-mixture was cooled to RT and filtered. The solid thus obtained was washed with water, dried and crystallized from methanol. All the other compounds **4b-f** were prepared similarly.

Preparation of **4** from **6**

Method IIb: 3-[2-[5-hydroxy-4-(2-hydroxyethyl)-3-methyl-pyrazol-1-yl]thiazol-4-yl]chromen-2-one¹³ **6** (1.845 g, 5 mmole) was taken in 20 mL acetic acid and refluxed for 1 hr. The reaction-mixture was cooled to RT and the solid obtained was filtered, washed with water, dried and crystallized from methanol.

3-[2-(3-Methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]chromen-2-one **4a.** m.p. 235-37°C. IR (KBr): 1731, 1604 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 2.26 (s, 3H, -CH₃), 2.54 (t, 2H, *J* = 7Hz, -CH₂-), 4.06 (t, 2H, *J* = 7Hz, -O-CH₂), 7.40-7.50 (m, 2H, C₆ & C₈ of coumarin), 7.63-7.68 (m, 1H, C₇ of coumarin), 7.82 (d, 1H, *J* = 6 Hz, C₅ of coumarin), 8.12 (s, 1H, C₅ of thiazole) and 8.80 (s, 1H, C₄ of coumarin); EI-MS:

351 (M^+ , 100%). Anal. Calcd. For $C_{18}H_{13}N_3O_3S$: C, 60.53; H, 3.73; N, 11.96; S, 9.12. Found: C, 60.50; H, 3.70; N, 11.93; S, 9.10%.

8-Methoxy-3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]-pyrazol-1-yl)thiazol-4-yl]chromen-2-one 4b

m.p. 204-206°C. IR (KBr): 1736, 1606, 1542 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.28 (s, 3H, -CH₃), 2.60 (t, 2H, *J* = 6 Hz, -CH₂), 3.40 (s, 3H, -OCH₃), 3.90 (t, 2H, *J* = 7 Hz, -OCH₂-), 7.70 - 7.80 (m, 1H, Ar-H), 7.82 - 7.98 (m, 2H, Ar-H), 8.10 (s, 1H, C₅ of thiazole) and 8.78 (s, 1H, C₄ of coumarin). Anal. Calcd. For $C_{19}H_{15}N_3O_4S$: C, 59.84; H, 3.96; N, 11.03; S, 8.44. Found: C, 59.81; H, 3.93; N, 11.00; S, 8.40%.

6-Chloro-3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]chromen-2-one 4c

m.p. 196-98°C. IR (KBr): 1736, 1604, 1554 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.26 (s, 3H, -CH₃), 2.60 (t, 2H, *J* = 6 Hz, -CH₂-), 3.80 (t, 2H, *J* = 7 Hz, -OCH₂-), 7.60 - 7.70 (m, 3H, Ar-H), 8.20 (s, 1H, C₅ of thiazole) and 8.80 (s, 1H, C₄ of coumarin). Anal. Calcd. For $C_{18}H_{12}N_3O_3SCl$: C, 56.03; H, 3.13; N, 10.89; S, 8.31. Found: C, 56.00; H, 3.10; N, 10.85; S, 8.28%.

6,8-Dichloro-3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]-pyrazol-1-yl)-thiazol-4-yl]chromen-2-one 4d

m.p. 183-85°C. IR (KBr): 1731, 1603, 1540 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.10 (s, 3H, -CH₃), 2.5 (t, 2H, *J* = 7 Hz, -CH₂-), 3.65 (t, 2H, *J* = 7 Hz, -O-CH₂-), 7.10-7.30 (m, 3H, Ar-H), 8.14 (s, 1H, C₅ of thiazole) and 8.80 (s, 1H, C₄ of coumarin). Anal. Calcd. For $C_{18}H_{11}N_3O_3SCl_2$: C, 51.44; H, 2.64; N, 10.00; S, 7.63. Found: C, 51.40; H, 2.60; N, 9.98; S, 7.60%.

6-Bromo-3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)-thiazol-4-yl]-chromen-2-one 4e

m.p. 186-88°C. IR (KBr): 1731, 1600, 1540 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.30 (s, 3H, -CH₃), 2.50 (t, 2H, *J* = 6 Hz, -CH₂-), 3.70 (t, 2H, *J* = 7 Hz, -O-CH₂-), 7.20 - 7.35 (m, 2H, C₇ and C₈ of coumarin), 7.60-7.70 (m, 1H, C₅ of coumarin), 8.10 (s, 1H, C₅ of thiazole) and 8.75 (s, 1H, C₄ of coumarin). Anal. Calcd. For $C_{18}H_{12}N_3O_3SBr$: C, 50.25; H, 2.81; N, 9.79; S, 7.45. Found: C, 50.21; H, 2.78; N, 9.74; S, 7.41%.

6,8-Dibromo-3-[2-(3-methyl-4,5-dihydro-furo[2,3-*c*]pyrazol-1-yl)thiazol-4-yl]-chromen-2-one 4f

m.p. 188-200°C. IR (KBr): 1716, 1606, 1551 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.28 (s, 3H, -CH₃), 2.39 (t, 2H, *J* = 6 Hz, -CH₂-), 3.99 (t, 2H, *J* = 7 Hz, -O-CH₂-),

7.40 - 7.51 (m, 3H, Ar-H), 8.12 (s, 1H, C₅ of thiazole) and 8.98 (s, 1H, C₄ of coumarin). Anal. Calcd. For $C_{18}H_{11}N_3O_3SBr_2$: C, 42.46; H, 2.18; N, 8.25; S, 6.30. Found: C, 42.43; H, 2.14; N, 8.21; S, 6.27%.

3-Methyl-4,5-dihydro-furo[2,3-*c*]pyrazole-1-carbothioic acid amide 5

m.p. 183-85°C. IR (KBr): 3340, 1608, 1526 cm^{-1} ; 1H NMR (DMSO-*d*₆): δ 2.20 (s, 3H, -CH₃), 2.40 (t, 2H, *J* = 6 Hz, -CH₂-), 3.0 (t, 2H, *J* = 7.5 Hz, -O-CH₂-) and 9.2 (s, 2H, NH₂, D₂O exchangeable). EIMS (*m/z*): 183 (M^+). Anal. Calcd. For $C_7H_9N_3OS$: C, 45.90; H, 4.90; N, 22.95; S, 17.48. Found: C, 45.86; H, 4.89; N, 22.91; S, 17.45%.

Acknowledgements

The authors are thankful to Head, RSIC, IIT Chennai for analytical and spectral data. Further, the authors thank UGC, New Delhi for the financial support (No. F-12-106/2001, SR-I).

References

- 1 O'Kennedy R & Thorne R D, *Coumarins: Biology, Applications and Mode of Action* (Wiley, Chichester), **1997**.
- 2 Murray R D H, Mendez J & Brown S A, *The natural coumarins, occurrence, chemistry and biochemistry*, (Wiley Interscience, New York), **1982**; Murray R D H, *Progress in the Chemistry of Organic Natural products, Naturally occurring plant coumarins*, (Springer Wien, New York), **1991**, 58, 83; Murray R D H, *Progress in the chemistry of Organic Natural Products, Naturally Occurring Plant Coumarins*, (Springer Wien, New York), **1997**, 12, 1.
- 3 Baker W & Hosese C S, *J Chem Soc*, **119**, **1953**.
- 4 Nakabayashi T, Miyazaki H & Tokaroyama T, *J Pharm Soc Japan*, **13**, **1953**, 565.
- 5 Friedmann M D, Stoller P L, Porter T H & Folkers K, *J Med Chem*, **16**, **1973**, 1314.
- 6 Sawhney S N, Singh S P & Arora S K, *Indian J Chem*, **15B**, **1977**, 729.
- 7 Hantzsch A & Weber H J, *Berichte*, **20**, **1887**, 3118.
- 8 Hantzsch A, *Justus Liebigs Ann Chem* **1**, **1888**, 249; Dodson R M & King L C, *J Am Chem Soc*, **67**, **1945**, 2242.
- 9 King L C & Halvacek R J, *J Am Chem Soc*, **72**, **1950**, 3722.
- 10 Rajeswar Rao V, Mohan Rao G, Kumar V R & Vardhan V A, *Phosphorus Sulfur Silicon and Related elements*, **47**, **1996**, 113.
- 11 Rajeswar Rao V & Vijaya Kumar P, *J Chem Res*, **4**, **2005**, 267.
- 12 Rajeswar Rao V, Vijaya Kumar P, Ravinder Reddy V & Manohar Reddy K, *Heterocycl Commun*, **11**, **2005**, 273; Ravinder Reddy V & Rajeswar Rao V, *Heterocycl Commun*, **11**, **2005**, 299.
- 13 Rajeswar Rao V & Vijaya Kumar P, *Synth Commun*, **36**, **2006**, 2157.
- 14 Koelsch C F, *J Am Chem Soc*, **72**, **1950**, 2993; Rajeswar Rao V & Padmanabha Rao T V, *Indian J Chem*, **25B**, **1986**, 413.