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Summary. Peristaltic transport of a micropolar fluid in a circular tube is studied under low Reynolds

number and long wavelength approximations. The closed form solutions are obtained for velocity,

microrotation components, as well as the stream function and they contain new additional parameters

namely, N the coupling number and m the micropolar parameter. In the case of free pumping (pressure

difference Dp ¼ 0) the difference in pumping flux is observed to be very small for Newtonian and

micropolar fluids but in the case of pumping (Dp > 0) the characteristics are significantly altered for

different N and m. It is observed that the peristalsis in micropolar fluids works as a pump against a greater

pressure rise compared with a Newtonian fluid. Streamline patterns which depict trapping phenomena are

presented for different parameter ranges. The limit on the trapping of the center streamline is obtained.

The effects of N and m on friction force for different Dp are discussed.

1 Introduction

Peristaltic flows are generated by the propagation of waves along the flexible walls of a channel

or tube. The mechanism of peristalsis is involved in many biological and biomedical systems.

The biological systems which involve peristalsis are urine transport from kidney to the bladder

through the ureter, the transportation of chyme in the gastro-intestinal tract, the movement of

spermatozoa in the ductus of efferentus of the male reproductive tract, movement of ovum in

the fallopian tube, and vasomotion in small blood vessels. Peristaltic pumping is used in

biomedical devices like heart lung machine to pump the blood. Peristaltic flows are also ex-

ploited in industrial pumping as they provide an efficient means for sanitary fluid transport.

The industrial use of peristaltic pumping in roller/finger pumps is well known.

Several attempts, experimental and theoretical, have been made to understand the peristaltic

transport in both mechanical and physiological situations under various approximations.

Shapiro et al. [1] studied the peristaltic transport of Newtonian fluid using wave frame of

reference under long wave length approximation and proved that the peristaltic wave move-

ment of the walls really pump fluid against pressure rise even when the wave amplitude is small.

They have also identified two important features of the peristaltic flows, trapping and reflux, in

the context of physiological applications. Another mode to study the fluid mechanics of small

amplitude peristaltic waves is by using laboratory frame of reference as given by Fung and Yih

[2].

The behavior of most of the physiological fluids is known to be non–Newtonian. Hence in

recent years the study of peristaltic transport of non–Newtonian fluids in channels or pipes has
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gained much attention. Several investigators [3], [4], [5], [6] have analyzed the peristaltic

transport in physiological situations of interest. Most of these analytical studies use asymptotic

expansions with small Reynolds number, wave number, amplitude ratio as the perturbation

parameters. The model of micropolar fluid introduced by Eringen [7] represents fluids con-

sisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium where

the deformation of the particles is ignored. Micropolar fluids exhibit some microscopic effects

arising from the local structure and micromotion of the fluid elements. Further, they can

sustain couple stresses. The micropolar fluid is considered to model the blood flow in small

arteries and the calculation of theoretical velocity profiles is observed in good agreement with

the experimental data. A detailed survey of microcontinum fluid mechanics with several ap-

plications in physiological fluid flows has been presented by Ariman et al. [8]. Some interesting

aspects of theory and applications of micropolar fluids are dealt in a recent book by

Lukasazewicz [9].

Although, it is known that the fluids are suspensions of particulate matter in microscopically

contiuous media, only a few recent studies [10], [11], [12] on the peristaltic transport have

considered this aspect. Srivastava [10] has studied the peristlatic transport of couple stress fluid

which takes particle size in to account. Philip and Chandra [11] have investigated the peristaltic

transport of a simple microfluid which accounts for microrotation and microstretching of the

particles contained in a small volume element, using long wavelength approximation. Girija

Devi and Devanathan [12] have considered the peristaltic transport of micropolar fluid in a

laboratory frame of reference. Under this frame of reference people have studied mainly the

streamline pattern and velocity variations but not the pumping characteristics and the trapping

associated with it. Recently, Muthu et al. [13] have studied the influence of wall properties on

the peristaltic transport of a micropolar fluid and even in this paper the pumping characteristics

are not discussed. It is speculated that blood flow in arteries exhibit peristalsis, Fung and Yih

[2], Antanovskii and Ramkissoon [14] and it is well-known that blood behaves like a non-

Newtonian fluid in microcirculation. Therefore, modelling blood by a micropolar fluid may be

more appropriate.

In the present study, the peristaltic transport of an incompressible micropolar fluid is in-

vestigated. The analysis has been carried out in the wave frame of reference with long wave-

length and zero Reynolds number assumption. The relationship between pressure gradient and

time mean flow rate for various micropolar parameters and coupling numbers is obtained. The

pumping characteristics and trapping phenomena are discussed in detail. Further, the friction

force is analyzed for various micropolar parameters in all pumping ranges.

2 Mathematical formulation

Let (r0; h;x0) be the cylindrical polar coordinate system with r0 ¼ 0 as the axis of symmetry of

the tube. Consider the flow of an incompressible micropolar fluid in an axisymmetric tube of

radius a, with a periodic peristaltic wave travelling along the wall with velocity c, wavelength k,
amplitude b and its instantaneous radius at any axial station x0 is given by

r0 ¼ H
x0 � ct

k

� �
: ð2:1Þ

The flow is unsteady in the fixed frame (laboratory frame) of reference (r0; h;x0). However, in

a coordinate system moving with the wave speed c (wave frame) (r; h;x) the boundary shape is

stationary. The transformation from fixed frame to wave frame is given by
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r ¼ r0; x ¼ x0 � ct; Vx ¼ V 0x � c; and Vr ¼ V 0r; ð2:2Þ

where (V 0r;V
0
x) and (Vr;Vx) are radial and axial velocity components in the stationary and

moving coordinate system respectively. In the waveframe, the flow remains steady for a pre-

scribed constant pressure gradient under the assumption that the tube length is an integral

multiple of wavelength, see Shapiro et al. [1].

The equations governing the steady flow of an incompressible micropolar fluid in the absence

of body force and body couple are:

r � ~VV ¼ 0; ð2:3Þ

qð~VV � r~VVÞ ¼ �rpþ kr� ~wwþ ðlþ kÞr2~VV ; ð2:4Þ

qjð~VV � r~wwÞ ¼ �2k~wwþ kr� ~VV � cðr �r� ~wwÞ þ ðaþ bþ cÞrðr � ~wwÞ; ð2:5Þ

where ~VV is the velocity vector, ~ww is the microrotation vector, p is the fluid pressure, q and j are

the fluid density and microgyration parameters. Further, the material constants l; k; a; b, and c
satisfy the following inequalities [7]:

2lþ k � 0; k � 0 3aþ bþ c � 0 c � jbj: ð2:6Þ

Since the flow is axisymmetric, all the variables are independent of h. Hence, for this flow the

velocity vector is given by ~VV ¼ ðVr; 0;VxÞ and microrotation vector is ~ww ¼ ð0; vh; 0Þ. Intro-
ducing the following nondimensional variables

r ¼ a~rr; x ¼ k~xx; Vx ¼ c ~VVx; Vr ¼
ca

k
~VVr; vh ¼

c

a
~vvh;

p ¼ kcl
a2

~pp; t ¼ k
c

~tt; h ¼ H

a
; j ¼ ~jja2;

ð2:7Þ

into Eqs. (2.3), (2.4), (2.5) and dropping the tildes, we get

@Vr

@r
þ Vr

r
þ @Vx

@x
¼ 0; ð2:8Þ

Red
3

Vr

@Vr

@r
þ Vx

@Vr

@x

� �

¼ � @p

@r
þ d2

1� N
�N

@vh

@x
þ @

2Vr

@r2
þ 1

r

@Vr

@r
� Vr

r2
þ d2 @

2Vr

@x2

� �
; ð2:9Þ

Red Vr

@Vx

@r
þ Vx

@Vx

@x

� �

¼ � @p

@x
þ 1

1� N

N

r

@ðrvhÞ
@r

þ @
2Vx

@r2
þ 1

r

@Vx

@r
þ d2 @

2Vx

@x2

� �
; ð2:10Þ

jRedð1� NÞ
N

Vr

@vh

@r
þ Vx

@vh

@x

� �

¼ �2vh þ d2 @Vr

@x
� @Vx

@r

� �
þ 2� N

m2

@

@r

1

r

@ðrvhÞ
@r

� �
þ d2 @

2vh

@x2

� �
; ð2:11Þ

where d ¼ a=k;Re ¼ qac=l is the Reynolds number, N ¼ k=ðlþ kÞ is the coupling number

(0 � N < 1) [15], and m2 ¼ a2kð2lþ kÞ=ðcðlþ kÞÞ is the micropolar parameter [7] and a; b do

not appear in the governing equation as the microrotation vector ~ww is solenoidal. In the limit
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k! 0 i.e., N ! 0, the Eqs. (2.9) (2.10) are uncoupled with (2.11) and they reduce to classical

Navier-Stokes equations.

Under the assumptions of long wavelength d� 1 and neglecting inertia terms (Re ¼ 0),

Eqs. (2.9), (2.10), (2.11) reduce to

@Vr

@r
þ Vr

r
þ @Vx

@x
¼ 0; ð2:12Þ

@p

@r
¼ 0; ð2:13Þ

N

r

@ðrvhÞ
@r

þ @2Vx

@r2
þ 1

r

@Vx

@r

� �
¼ ð1� NÞ @p

@x
; ð2:14Þ

2vh þ
@Vx

@r

� �
� 2� N

m2

@

@r

1

r

@ðrvhÞ
@r

� �
¼ 0: ð2:15Þ

The corresponding boundary conditions in the wave frame are

@Vx

@r
¼ 0 at r ¼ 0; ð2:16Þ

Vx ¼ �1 at r ¼ h; ð2:17Þ

vh ¼ 0 at r ¼ h; ð2:18Þ

and

Vx and vh are finite at r ¼ 0: ð2:19Þ

In the limit of micropolar parameters tending to the proper values in Eqs. (2.12)–(2.19), we

recover the governing equations for peristaltic flow given by Shapiro et al. [1].

3 Analytical solution

Noting the fact that p is a function of x only from (2.13), Eq. (2.14) is rewritten in the form:

@

@r
r
@Vx

@r
þ Nrvh � ð1� NÞ r

2

2

dp

dx

� �
¼ 0: ð3:1Þ

Integrating (3.1) and dividing by r, we get

@Vx

@r
¼ ð1� NÞ r

2

dp

dx
þ C1ðxÞ

r

� �
� Nvh: ð3:2Þ

Using (3.2) in (2.15), we get

@2vh

@r2
þ 1

r

@vh

@r
� ðm2 þ 1

r2
Þvh ¼

m2ð1� NÞ
2� N

r

2

dp

dx
þ C1ðxÞ

r

� �
: ð3:3Þ

The general solution of (3.3) is

vh ¼ C2ðxÞI1ðmrÞ þ C3ðxÞK1ðmrÞ � 1� N

ð2� NÞ
r

2

dp

dx
þ C1ðxÞ

r

� �
; ð3:4Þ

where I1ðmrÞ and K1ðmrÞ are modified Bessel functions of first order, first and second kind,

respectively. Substituting (3.4) into (3.2) and integrating we obtain:
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Vx ¼
N

m
½�C2ðxÞI0ðmrÞ þ C3ðxÞK0ðmrÞ�

þ 1� N

ð2� NÞ
r2

2

dp

dx
þ 2C1ðxÞ log r

� �
þ C4ðxÞ; ð3:5Þ

where I0 and K0 are modified Bessel functions of zeroth-order. The arbitrary functions

C1ðxÞ ¼ C3ðxÞ ¼ 0 in (3.4) as we require vh to be finite on r ¼ 0. The other constants C2ðxÞ and
C4ðxÞ are determined using (2.17), (2.18) and the solutions are given by

Vx ¼ �1þ 1� N

2ð2� NÞ
dp

dx
r2 � h2 þ Nh

m

I0ðmhÞ � I0ðmrÞ
I1ðmhÞ

� �� �
; ð3:6Þ

vh ¼
1� N

2ð2� NÞ
dp

dx

hI1ðmrÞ
I1ðmhÞ � r

� �
: ð3:7Þ

From (3.7), we observe that vh ¼ 0 on r ¼ 0 as we expect microrotation to become zero on

the axis, Eringen [7]. The corresponding stream function ðVr ¼ � 1
r

@w
@x

and Vx ¼ 1
r

@w
@r
Þ is

w ¼ � r2

2
þ 1� N

2ð2� NÞ
dp

dx

r4

4
� h2r2

2
þ Nh

mI1ðmhÞ
r2I0ðmhÞ

2
� rI1ðmrÞ

m

� �� �
ð3:8Þ

The dimensionless flux (q ¼ q0=pa2c; q0 being the flux in the wave frame) is given by

q ¼
Z h

0

2rVxdr ¼ �h2 � 1� N

4ð2� NÞ
dp

dx
½h4 þ f ðhÞ�; ð3:9Þ

where

f ðhÞ ¼ 4Nh

m

ðh=mÞI1ðmhÞ � ðh2=2ÞI0ðmhÞ
I1ðmhÞ

� �
: ð3:10Þ

The pressure gradient is obtained from Eq. (3.9) as

dp

dx
¼ � 4ð2� NÞ

ð1� NÞ
qþ h2

h4 þ f ðhÞ

� �
: ð3:11Þ

Integrating (3.11) over one wave length, we get

Dp ¼ p1 � p0 ¼ �
4ð2� NÞ
ð1� NÞ ðqL1 þ L2Þ; ð3:12Þ

where

L1 ¼
Z 1

0

dx

h4 þ f ðhÞ and L2 ¼
Z 1

0

h2dx

h4 þ f ðhÞ :

The physical quantity of interest, the nondimensional time averaged flux �QQ over one period in

the fixed frame of reference [1], is

�QQ ¼ 1

T

Z T

0

ðqþ h2Þdt ¼ qþ q1; ð3:13Þ

where q1 ¼
R 1

0
h2dx. From (3.12) and (3.13), the relation between Dp and �QQ is obtained as

Dp ¼ � 4ð2� NÞ
ð1� NÞ

�QQ� q1

� �
L1 þ L2

� �
: ð3:14Þ
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Equation (3.14) is rewritten in the form:

�QQ ¼ q1 �
L2

L1
� 1� N

4ð2� NÞ

� �
Dp

L1
: ð3:15Þ

In the limit of micropolar parameter N ! 0, (3.14) and (3.15) reduce to the corresponding

relations for a viscous fluid given by Shapiro et al. [1].

4 Discussion of the results

4.1 Pumping characteristics

Pumping characteristics are analyzed by choosing three types of nondimensional wave forms,

namely sinusoidal, expansion (+sign) and contraction (�sign) waves, given by

hðxÞ ¼ 1þ / sinð2pxÞ 0 � x � 1; ð4:1Þ

hðxÞ ¼ 1� / sinðpx=kcÞ 0 � x � kc

¼ 1 kc � x � 1

)
; ð4:2Þ

where / ¼ b=a the amplitude ratio. The wave of expansion or contraction given by Eq. (4.2)

are confined to a portion of length kc and remains same over the rest of the wavelength giving

straight section. The expression for q1 in (3.13) depends on the wave form one chooses. When

pressure difference Dp ¼ 0, (i.e pð1Þ ¼ pð0Þ) which is called free pumping and the corre-

sponding time average flux is denoted by �QQ0. The maximum pressure against which the peri-

stalsis works as a pump i.e Dp corresponding to �QQ ¼ 0 is denoted by P0. When Dp < 0, the

pressure assists the flow and it is known as copumping. The integrals L1 and L2 in (3.15) are

evaluated using a numerical quadrature of Matlab package.

The variation of Dp with �QQ for the waveform given by (4.1) with / ¼ 0:4;m ¼ 2:0 for

different values of N is shown in Fig. 1. It is observed that the pumping region (0 � Dp � P0)

increases as the coupling number N increases and N ¼ 0 corresponds to the case of New-

tonian fluid. It appears from Fig. 1a that free pumping is independent of N but it is not true

as seen from the enlargement shown in Fig. 1b. It is interesting to note that the lines for

different values of N intersects in the region Dp < 0. Figure 2 depicts the pressure gradient

Dp versus �QQ with / ¼ 0:4, N ¼ 0:8 and for different values of the micropolar parameter m.

Here, we observe the pumping region increases with decreasing m and greater than the case

of a Newtonian fluid. The enlargement of the free pumping in Fig. 2b indicates that the lines

for different m intersect in a narrow region around Dp ¼ 0. Thus, there is no considerable

difference in free pumping flux for Newtonian or micropolar fluids but the peristalsis in

micropolar fluids works as a pump against greater pressure rise compared to Newtonian

fluid. similar results were observed by [10, 11] when couple stresses are taken into account in

the fluid model.

Provost and Schwarz [3] have observed an interesting phenomena in free pumping for a

certain non-Newtonian (Reiner-Philippoff) fluid model that the mean flow rate is zero or

negative for a straight section dominated (SSD) expansion or contraction waves similar to ones

given in (4.2) and stressed the importance of wave shape in peristaltic transport. In what

follows, we have examined whether this type of result is possible in the case of micropolar

fluids. For the wave shape given in (4.2) for expansion and contraction waves with / ¼ 0:4 and

kc ¼ 0:3 we have plotted the variation of Dp with �QQ for different values of N and m in Figs. 3
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and 4, respectively. It is seen from the figures that the time mean flow rate is always positive for

all favourable pressure differences in pumping region and never goes to the third quadrant as

observed by [3, 5] for any choice of m and N. This is not surprising as �QQ for micropolar fluids

with any m and N is always greater than that of a Newtonian fluid.

b
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4.2 Friction force

It is very interesting to note that for fluids in microcontinum (couple stress fluids, micropolar

fluids, polar fluids, dipolar fluids, etc) the stress tensor is not symmetric. The nonzero dimen-

sionless shear stresses in our problem are given by

szr ¼
@Vx

@r
� N

1� N
vh; ð4:3Þ

srz ¼
1

1� N

@Vx

@r
þ N

1� N
vh: ð4:4Þ

Now, the dimensionless friction force F1 on the inner wall of the tube using (4.3) over one

wavelength is (see Bird et al. [17]).

F1 ¼ �2

Z 1

0

hðxÞðszrÞr¼hðxÞdx ¼ �2

Z 1

0

hðxÞ @Vx

@r

� �
r¼hðxÞ

dx; ð4:5Þ

as vh ¼ 0 at r ¼ hðxÞ. Substituting for Vx from (3.6) in (4.5) and using (3.11), (3.15) after some

simplification, we get

F1 ¼ �ð1� NÞ
Z 1

0

h2 dp

dx
dx ¼ 4ð2� NÞ L3 �

L2
2

L1

� �
� ð1� NÞDp

L2

L1
; ð4:6Þ

where L3 ¼
Z 1

0

h4dx

h4 þ f ðhÞ :
Similarly, using the other expression srz we get the frictional force as

F2 ¼ �
Z 1

0

h2 dp

dx
dx: ð4:7Þ

The nondimensional friction force F1 given in (4.6) is numerically calculated for a sinusoidal

wave as a function of/ for differentm andN in pumping, copumping and free pumping cases and

is presented inFig. 5. Figure 5a shows the variation ofF1 withm ¼ 10 for a different values ofN in

free pumping (Dp ¼ 0) and copumping (Dp ¼ �2:0) cases. It is observed that the friction force

reduces with increasingN but it increases with increasing /. Further, we observe that the friction
force for a Newtonian fluid is always greater than that for a micropolar fluid. Similar things are

observed for fixedN and differentm as shown in Fig. 5c.When/ ¼ 0, friction force depends onN

only but not on m in pumping and copumping ranges as seen from Fig. 5. However, we observe

some interesting feature in pumping case namely the friction force increaseswith increasingNnear

/ ¼ 0 where as opposite happens near / ¼ 0:9 as depicted in Fig. 5b.Many authors dealing with

fluids of microcontinum like Srivastava [10], Philip and Peeyush [11], etc. have discussed the

frictional force given by F2 in (4.7) only. The frictional force F2 calculated from (4.7) for different

valueofN is shown inFig. 5d.Hereweobserve that the friction force increaseswith themicropolar

parameterN as well as with / in all pumping ranges of pressure gradient. The friction force for a

Newtonian fluid is always less than that for amicropolar fluid. This is similar to the observation of

Srivastava [10] for the couple stress fluid. The only nonzeromicrorotation component vh gives rise

to stress couple componentsmrh, andmhr. It is observed that they do not contribute to peristaltic

pumping and therefore are not studied here.

4.3 Trapping phenomena

Another interesting physical phenomena of peristalsis is trapping, the formation of an inter-

nally circulating bolus of fluid which moves along with the wave. The presence of center line
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trapping is the existence of stagnation points in the wave frame which can be located at the

intersection of both velocity component (Vx ¼ 0 and Vr ¼ 0) and center line r ¼ 0. From

Eqs. (3.6) and (3.11), the stagnation points are given by

Vxjr¼0 ¼ �1� 2
ð �QQ� 1� /2

2
þ h2Þ

h4 þ f ðhÞ �h2 þ Nh

m

I0ðmhÞ � 1

I1ðmhÞ

� �� �
¼ 0; ð4:8Þ

as Vr ¼ 0 at r ¼ 0. This implies

�QQ ¼ 1þ /2

2
� h2 þ h2 þ f ðhÞ

2 h2 � Nh
m

I0ðmhÞ�1
I1ðmhÞ

	 
h i : ð4:9Þ

We consider here the trapping phenomena only for the sinusoidal wave form. The stagnation

points are real if the roots of Eq. (4.8) satisfy [16],
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Fig. 5. Variation of friction force F1 with amplitude ratio /; a with m ¼ 10 for different values of N
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1� / � h � 1þ /:

By analyzing from Eq. (4.9), one gets the trapping when �QQ lies between

QL � �QQ � QM ; ð4:10Þ

where QL ¼ �QQjh¼1þ/ and QM ¼ �QQjh¼1�/. The lower limit (QL) and upper limit (QM) are always

less than the corresponding limits for the Newtonian fluid and lie in the pumping region.

Further, in the limit N ! 0, they reduce to the Newtonian fluid case.

Figure 6 illustrates the streamline pattern for different values of N with m ¼ 2:0; / ¼ 0:4;
�QQ ¼ 0:1. It is observed that the size of the trapping bolus increases as N increases. There is no

trapped bolus for N ¼ 0 Fig. 6a, as the flux �QQ ¼ 0:1 is less than the lower trapping limit for a

Newtonian fluid where as it lies within the limit of trapping for a micropolar fluid. Streamlines

for �QQ ¼ 0:25 with m ¼ 2:0, and / ¼ 0:4 are plotted in Fig. 7. We observe the trapping bolus

shifting towards the boundary wall as the flux �QQ ¼ 0:25 lies in the copumping region and this is

similar to the observation made by Ramachandra Rao and Usha [18]. Here also the effect of N

on trapping is same as in the copumping case namely the size of trapped region increases with

increasing N. The effects of micropolar parameter m on the trapping with fixed values

of N ¼ 0:8;/ ¼ 0:4 and �QQ ¼ 0:1 are shown through the streamline patterns in Fig 8. It is
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Fig. 6. Streamlines for m ¼ 2:0;/ ¼ 0:4 and �QQ ¼ 0:1; a N ¼ 0, b N ¼ 0:1, c N ¼ 0:4, and d N ¼ 0:8
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interesting to observe that the trapped bolus size increases with m upto a certain value of m and

shows incipient decrease later. As the value of �QQ ¼ 0:1 is chosen to lie outside the limit of center

streamline trapping, we do not see any trapping in Fig 8a.

5 Conclusions

A mathematical model on peristaltic pumping of an incompressible micropolar fluid is an-

alyzed in the waveframe of reference with the assumptions of long wavelength and zero

Reynolds number. It is interesting to observe that the pumping is improved for all choice of

parameters for a micropolar fluid compared to Newtonian fluid. As it is speculated that

blood flow in vasomotion is by peristalsis, modeling of blood in these vessels by a micropolar

fluid is better. Recently, it is noticed that in the transport of grannular material the couple

stresses play an important role [19], [20]. Provost and Schwarz [3] predicted that any devi-

ation from Newtonian fluid allows one to find at least one non-trivial waveform for which

the time mean flow rate is zero or negative for a favorable pressure gradient. But for a

micropolar fluid we observe that the time mean flow rate does not follow the predictions

made by [3] for the micropolar parameters considered. The limits on mean flow rate on the
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Fig. 7. Streamlines for m ¼ 2:0;/ ¼ 0:4 and �QQ ¼ 0:25; a N ¼ 0, b N ¼ 0:3, c N ¼ 0:6, and d N ¼ 0:9
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center streamline trapping is obtained and the interesting phenomena is that the micropolar

parameters increase the size of the trapped bolous. The micropolar parameter effects on

friction forces are discussed.
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