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Summary. Peristaltic transport of a micropolar fluid in a circular tube is studied under low Reynolds
number and long wavelength approximations. The closed form solutions are obtained for velocity,
microrotation components, as well as the stream function and they contain new additional parameters
namely, N the coupling number and m the micropolar parameter. In the case of free pumping (pressure
difference Ap = 0) the difference in pumping flux is observed to be very small for Newtonian and
micropolar fluids but in the case of pumping (Ap > 0) the characteristics are significantly altered for
different N and m. It is observed that the peristalsis in micropolar fluids works as a pump against a greater
pressure rise compared with a Newtonian fluid. Streamline patterns which depict trapping phenomena are
presented for different parameter ranges. The limit on the trapping of the center streamline is obtained.
The effects of N and m on friction force for different Ap are discussed.

1 Introduction

Peristaltic flows are generated by the propagation of waves along the flexible walls of a channel
or tube. The mechanism of peristalsis is involved in many biological and biomedical systems.
The biological systems which involve peristalsis are urine transport from kidney to the bladder
through the ureter, the transportation of chyme in the gastro-intestinal tract, the movement of
spermatozoa in the ductus of efferentus of the male reproductive tract, movement of ovum in
the fallopian tube, and vasomotion in small blood vessels. Peristaltic pumping is used in
biomedical devices like heart lung machine to pump the blood. Peristaltic flows are also ex-
ploited in industrial pumping as they provide an efficient means for sanitary fluid transport.
The industrial use of peristaltic pumping in roller/finger pumps is well known.

Several attempts, experimental and theoretical, have been made to understand the peristaltic
transport in both mechanical and physiological situations under various approximations.
Shapiro et al. [1] studied the peristaltic transport of Newtonian fluid using wave frame of
reference under long wave length approximation and proved that the peristaltic wave move-
ment of the walls really pump fluid against pressure rise even when the wave amplitude is small.
They have also identified two important features of the peristaltic flows, trapping and reflux, in
the context of physiological applications. Another mode to study the fluid mechanics of small
amplitude peristaltic waves is by using laboratory frame of reference as given by Fung and Yih
[2].

The behavior of most of the physiological fluids is known to be non—Newtonian. Hence in
recent years the study of peristaltic transport of non—Newtonian fluids in channels or pipes has
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gained much attention. Several investigators [3], [4], [5], [6] have analyzed the peristaltic
transport in physiological situations of interest. Most of these analytical studies use asymptotic
expansions with small Reynolds number, wave number, amplitude ratio as the perturbation
parameters. The model of micropolar fluid introduced by Eringen [7] represents fluids con-
sisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium where
the deformation of the particles is ignored. Micropolar fluids exhibit some microscopic effects
arising from the local structure and micromotion of the fluid elements. Further, they can
sustain couple stresses. The micropolar fluid is considered to model the blood flow in small
arteries and the calculation of theoretical velocity profiles is observed in good agreement with
the experimental data. A detailed survey of microcontinum fluid mechanics with several ap-
plications in physiological fluid flows has been presented by Ariman et al. [§]. Some interesting
aspects of theory and applications of micropolar fluids are dealt in a recent book by
Lukasazewicz [9].

Although, it is known that the fluids are suspensions of particulate matter in microscopically
contiuous media, only a few recent studies [10], [11], [12] on the peristaltic transport have
considered this aspect. Srivastava [10] has studied the peristlatic transport of couple stress fluid
which takes particle size in to account. Philip and Chandra [11] have investigated the peristaltic
transport of a simple microfluid which accounts for microrotation and microstretching of the
particles contained in a small volume element, using long wavelength approximation. Girija
Devi and Devanathan [12] have considered the peristaltic transport of micropolar fluid in a
laboratory frame of reference. Under this frame of reference people have studied mainly the
streamline pattern and velocity variations but not the pumping characteristics and the trapping
associated with it. Recently, Muthu et al. [13] have studied the influence of wall properties on
the peristaltic transport of a micropolar fluid and even in this paper the pumping characteristics
are not discussed. It is speculated that blood flow in arteries exhibit peristalsis, Fung and Yih
[2], Antanovskii and Ramkissoon [14] and it is well-known that blood behaves like a non-
Newtonian fluid in microcirculation. Therefore, modelling blood by a micropolar fluid may be
more appropriate.

In the present study, the peristaltic transport of an incompressible micropolar fluid is in-
vestigated. The analysis has been carried out in the wave frame of reference with long wave-
length and zero Reynolds number assumption. The relationship between pressure gradient and
time mean flow rate for various micropolar parameters and coupling numbers is obtained. The
pumping characteristics and trapping phenomena are discussed in detail. Further, the friction
force is analyzed for various micropolar parameters in all pumping ranges.

2 Mathematical formulation

Let (+,0,2") be the cylindrical polar coordinate system with 7' = 0 as the axis of symmetry of
the tube. Consider the flow of an incompressible micropolar fluid in an axisymmetric tube of
radius a, with a periodic peristaltic wave travelling along the wall with velocity ¢, wavelength A,
amplitude b and its instantaneous radius at any axial station &’ is given by

” :H<x/ T0t>. 1)

A

The flow is unsteady in the fixed frame (laboratory frame) of reference (+’, 0,2'). However, in
a coordinate system moving with the wave speed ¢ (wave frame) (7, 0, x) the boundary shape is
stationary. The transformation from fixed frame to wave frame is given by
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/

r=v, x=a'—c, V,=V, —c¢, and V,=V], (2.2)

where (V/,V)) and (V,,V,) are radial and axial velocity components in the stationary and
moving coordinate system respectively. In the waveframe, the flow remains steady for a pre-
scribed constant pressure gradient under the assumption that the tube length is an integral
multiple of wavelength, see Shapiro et al. [1].

The equations governing the steady flow of an incompressible micropolar fluid in the absence
of body force and body couple are:

V-V =0, (2.3)
p(V-VV) = —Vp +kV X % + (u+k)V?V, (2.4)
pi(V - V) = =20 + kV x V —p(V x V x @) + (a4 f+3)V(V - %), (2.5)

where V is the velocity vector, %0 is the microrotation vector, p is the fluid pressure, p and j are
the fluid density and microgyration parameters. Further, the material constants u, k, «, f, and y
satisfy the following inequalities [7]:

2u+k >0, k>0 Ba+pB+y>0 y>|p (2.6)

Since the flow is axisymmetric, all the variables are independent of 0. Hence, for this flow the
velocity vector is given by V = (V,,0,V,) and microrotation vector is 2w = (0,vy,0). Intro-
ducing the following nondimensional variables

- - - ca =~ C .
r=arv, x=x, Vy=cVy, V,=—7V, v9g=—7y,
A a

2.7
ey - A H . - 2.7)
p:Tpa t=-t, h:77 J=Ja-,
a c a
into Egs. (2.3), (2.4), (2.5) and dropping the tildes, we get
v, V. oV,
o +7+ o 0, (2.8)
av, v,
3 - T
Red (VT or +Va 6:1:)
_op & g OV, 19V, V, &V,
*‘5*@(* oo v 2t ) (29)
oV, oV,
R.6 (VTW +Vy %>
_ ap 1 Na(m()) 82 VT 1 aVa: 2 82 Vr
_7%+17N<7 or oz or 0 ox? )’ (2.10)
JR:6(1 —N) vy vy
—  Ar T in
N Vor tVeg,
2V, 8V 2—-NTJ0O 16(7”09) 8209
_ 2 ro X I 27
=2+ (b ox 87") + m2 [87" (7” or +9o o2 |’ (2.11)

where 0 = a/A, R, = pac/u is the Reynolds number, N = k/(1+ k) is the coupling number
(0 <N < 1)[15], and m? = a®k(2u + k) /(y(u + k)) is the micropolar parameter [7] and o, f do
not appear in the governing equation as the microrotation vector w is solenoidal. In the limit
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k — 01ie., N — 0, the Egs. (2.9) (2.10) are uncoupled with (2.11) and they reduce to classical

Navier-Stokes equations.

Under the assumptions of long wavelength 6 < 1 and neglecting inertia terms (R, = 0),

Egs. (2.9), (2.10), (2.11) reduce to

aVT_F&_'_%—O

o r  ox

op

o=

No(rvg)  (0PV, 10V,\ Op
T or (87”2 vor ) =N

20y + (%> _2-ND <18(m;)) ~0.

or me Or\r Oor

The corresponding boundary conditions in the wave frame are

V, and wvy are finite at » =0.

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

In the limit of micropolar parameters tending to the proper values in Egs. (2.12)—(2.19), we

recover the governing equations for peristaltic flow given by Shapiro et al. [1].

3 Analytical solution

Noting the fact that p is a function of x only from (2.13), Eq. (2.14) is rewritten in the form:

o OV, r2dp

Integrating (3.1) and dividing by r, we get

oV, rdp Ci(x)
or —(I—N)[éa‘k r —NUQ.

Using (3.2) in (2.15), we get

vy 100y 5 1 m?(1—N) [rdp Ci(x)
2 oy ™ *ﬁ““ﬁ[** ]

2dx v

The general solution of (3.3) is

vy = Co(2)[1(mr) + Cs(x)K; (mr) — 1-N rdp G (‘”)},

2-N)|2dv 7

(3.1)

(3.2)

(3.3)

(3.4)

where I; (mr) and K, (mr) are modified Bessel functions of first order, first and second kind,

respectively. Substituting (3.4) into (3.2) and integrating we obtain:
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V, = % [—Ca(x)lo(mr) + Cs(x)Ko(mr)]
_ 2
+ (; _x) (%Z—i +2C1 (%) log V) + Cy(x), (3.5)

where [y and K, are modified Bessel functions of zeroth-order. The arbitrary functions
Ci(x) = Cs(x) = 0in (3.4) as we require vy to be finite on = 0. The other constants Cs(x) and
Cy(x) are determined using (2.17), (2.18) and the solutions are given by

1-N dp|, 9  Nh (Iy(mh) — Iy(mr)
Vei==-1l4———|r—-HK+—(—F——F—|, 3.6
: toE - Nydx [V L™ T(mh) (36)

1-N dp [hii(mr)

_ oy _ 3.7
YT 5@ " Nydx {Il(mh) (8.7)
From (3.7), we observe that vy =0 on 7 = 0 as we expect microrotation to become zero on
the axis, Eringen [7]. The corresponding stream function (V, = — %% and V, = %%) is

2 1-=N dp[rt h*? Nh r2Io(mh) vl (mr
2 22-=N)dx |4 2 mili(mh) 2 m
The dimensionless flux (g = q'/na’c,q’ being the flux in the wave frame) is given by
h 1-N dp
= [ 2V,dr=-h*————~——[h'+f(h 3.9
q /O rVidr 4(2_N)dx[ +f(n)), (39)
where
AN (/)L (mh) — (2 /2)]s ()
h)=—— . 3.10
s =28 s (3.10)
The pressure gradient is obtained from Eq. (3.9) as
42 —-N 2
dp _ _4@=N)[ ¢+I" | (3.11)
dx (1=N) |h*+f(h)
Integrating (3.11) over one wave length, we get
42-N
C=) (o1 + Lo), (312)

Ap =p1 —po = *W

where

1 1 32
dx h*dx
Ly = ———— and Ly = —
: /0 W) : /0 EEN0
The physical quantity of interest, the nondimensional time averaged flux @ over one period in
the fixed frame of reference [1], is

_ 1 /T
Qz?/ (q+R¥dt =q+q, (3.13)
0

where q; = fol h%dz. From (3.12) and (3.13), the relation between Ap and @ is obtained as

tp =~ 1@ - ) + L] (314
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Equation (3.14) is rewritten in the form:

- Lo 1-N JAp
=q1 I I

PTERT (3.15)

In the limit of micropolar parameter N — 0, (3.14) and (3.15) reduce to the corresponding
relations for a viscous fluid given by Shapiro et al. [1].

4 Discussion of the results
4.1 Pumping characteristics

Pumping characteristics are analyzed by choosing three types of nondimensional wave forms,
namely sinusoidal, expansion (+sign) and contraction (—sign) waves, given by

hx) =1+ ¢sin@nxr) 0<zx<1, (4.1)
h(x) = 1+ ¢sin(nx/i) 0<x < }7 (42)
= 1 e <a <1

where ¢ = b/a the amplitude ratio. The wave of expansion or contraction given by Eq. (4.2)
are confined to a portion of length /. and remains same over the rest of the wavelength giving
straight section. The expression for ¢; in (3.13) depends on the wave form one chooses. When
pressure difference Ap =0, (i.e p(1) = p(0)) which is called free pumping and the corre-
sponding time average flux is denoted by @,. The maximum pressure against which the peri-
stalsis works as a pump i.e Ap corresponding to @ = 0 is denoted by Py. When Ap < 0, the
pressure assists the flow and it is known as copumping. The integrals L; and Lg in (3.15) are
evaluated using a numerical quadrature of Matlab package.

The variation of Ap with @ for the waveform given by (4.1) with ¢ = 0.4,m = 2.0 for
different values of N is shown in Fig. 1. It is observed that the pumping region (0 < Ap < Py)
increases as the coupling number N increases and N = 0 corresponds to the case of New-
tonian fluid. It appears from Fig. 1a that free pumping is independent of N but it is not true
as seen from the enlargement shown in Fig. 1b. It is interesting to note that the lines for
different values of N intersects in the region Ap < 0. Figure 2 depicts the pressure gradient
Ap versus @ with ¢ = 0.4, N = 0.8 and for different values of the micropolar parameter .
Here, we observe the pumping region increases with decreasing m and greater than the case
of a Newtonian fluid. The enlargement of the free pumping in Fig. 2b indicates that the lines
for different m intersect in a narrow region around Ap = 0. Thus, there is no considerable
difference in free pumping flux for Newtonian or micropolar fluids but the peristalsis in
micropolar fluids works as a pump against greater pressure rise compared to Newtonian
fluid. similar results were observed by [10, 11] when couple stresses are taken into account in
the fluid model.

Provost and Schwarz [3] have observed an interesting phenomena in free pumping for a
certain non-Newtonian (Reiner-Philippoff) fluid model that the mean flow rate is zero or
negative for a straight section dominated (SSD) expansion or contraction waves similar to ones
given in (4.2) and stressed the importance of wave shape in peristaltic transport. In what
follows, we have examined whether this type of result is possible in the case of micropolar
fluids. For the wave shape given in (4.2) for expansion and contraction waves with ¢ = 0.4 and
J. = 0.3 we have plotted the variation of Ap with @ for different values of N and m in Figs. 3
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and 4, respectively. It is seen from the figures that the time mean flow rate is always positive for
all favourable pressure differences in pumping region and never goes to the third quadrant as
observed by [3, 5] for any choice of 72 and N. This is not surprising as @ for micropolar fluids
with any m and N is always greater than that of a Newtonian fluid.
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Fig. 3. Variation of Ap with @ for the
expansion wave with ¢ =04,
e = 0.3; a m = 2.0 for different val-
ues of N, b N = 0.8 and for different
values of m

Fig. 4. Variation of Ap with @ for the
contraction wave with ¢ =04,
e =03; a m=2.0 for different
values of N, b N = 0.8 and for differ-
ent values of m
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4.2 Friction force

It is very interesting to note that for fluids in microcontinum (couple stress fluids, micropolar
fluids, polar fluids, dipolar fluids, etc) the stress tensor is not symmetric. The nonzero dimen-
sionless shear stresses in our problem are given by

oV, N

Toy = ar 1 _NU(), (43)
1 oV, N
=1 Nor T1-N"" (*4)

Now, the dimensionless friction force F'; on the inner wall of the tube using (4.3) over one
wavelength is (see Bird et al. [17]).

1 1 8Vx
Fl = —2/ h(x)(fzy)rzh<x>dx = —2/ h(x) a— dﬂ'f, (45)
0 0 r r=h(x)

as vg = 0 at » = h(x). Substituting for V. from (3.6) in (4.5) and using (3.11), (3.15) after some
simplification, we get

1 2
dp L Lo
Fi=-(1-N) | h*—=dr=4(2-N)(Ls—2) - (1-N)Ap—= 4.6
=8 [P =48 (1 - 72) - - Man g, (4.6)
1 34
h*dx
where Ly = | —/————~.
’ /oh4+f(h)
Similarly, using the other expression t,, we get the frictional force as
1
dp
Fo=— [ h*——dx. 4.7
y=— [ w2 (47)

The nondimensional friction force F'; given in (4.6) is numerically calculated for a sinusoidal
wave as a function of ¢ for different m and N in pumping, copumping and free pumping cases and
is presented in Fig. 5. Figure 5a shows the variation of F'; withm = 10 for a different values of Nin
free pumping (Ap = 0) and copumping (Ap = —2.0) cases. It is observed that the friction force
reduces with increasing N but it increases with increasing ¢. Further, we observe that the friction
force for a Newtonian fluid is always greater than that for a micropolar fluid. Similar things are
observed for fixed N and different m as shown in Fig. 5c. When ¢ = 0, friction force depends on N
only but not on m in pumping and copumping ranges as seen from Fig. 5. However, we observe
some interesting feature in pumping case namely the friction force increases with increasing N near
¢ = 0 where as opposite happens near ¢ = 0.9 as depicted in Fig. 5b. Many authors dealing with
fluids of microcontinum like Srivastava [10], Philip and Peeyush [11], etc. have discussed the
frictional force given by F'5 in (4.7) only. The frictional force F's calculated from (4.7) for different
value of Nisshownin Fig. 5d. Here we observe that the friction force increases with the micropolar
parameter N as well as with ¢ in all pumping ranges of pressure gradient. The friction force for a
Newtonian fluid is always less than that for a micropolar fluid. This is similar to the observation of
Srivastava [10] for the couple stress fluid. The only nonzero microrotation component vy gives rise
to stress couple components 72,9, and m2g,. It is observed that they do not contribute to peristaltic
pumping and therefore are not studied here.

4.3 Trapping phenomena

Another interesting physical phenomena of peristalsis is trapping, the formation of an inter-
nally circulating bolus of fluid which moves along with the wave. The presence of center line
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trapping is the existence of stagnation points in the wave frame which can be located at the
intersection of both velocity component (V, =0 and V, = 0) and center line » = 0. From
Egs. (3.6) and (3.11), the stagnation points are given by

— 2
B @Q—-1-%+r2)[ , Nh(l(mn)—1\]

Vo =2 | e T )T (45)
as V, = 0 at » = 0. This implies

2 2
G148 AW (4.9)

2 2 [hz __Nh (Io(mh)fl)}

m \ I,(mh)

We consider here the trapping phenomena only for the sinusoidal wave form. The stagnation
points are real if the roots of Eq. (4.8) satisfy [16],
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1-¢p<h<1+¢.
By analyzing from Eq. (4.9), one gets the trapping when @ lies between

QL < Q < Qu, (4.10)

where @, = Q|,,_; 4 and @y = Ql;,—, - The lower limit (@) and upper limit (Qy) are always
less than the corresponding limits for the Newtonian fluid and lie in the pumping region.
Further, in the limit N — 0, they reduce to the Newtonian fluid case.

Figure 6 illustrates the streamline pattern for different values of N with m = 2.0, ¢ = 0.4,
Q = 0.1. It is observed that the size of the trapping bolus increases as N increases. There is no
trapped bolus for N = 0 Fig. 6a, as the flux @ = 0.1 is less than the lower trapping limit for a
Newtonian fluid where as it lies within the limit of trapping for a micropolar fluid. Streamlines
for @ = 0.25 with m = 2.0, and ¢ = 0.4 are plotted in Fig. 7. We observe the trapping bolus
shifting towards the boundary wall as the flux @ = 0.25 lies in the copumping region and this is
similar to the observation made by Ramachandra Rao and Usha [18]. Here also the effect of N
on trapping is same as in the copumping case namely the size of trapped region increases with
increasing N. The effects of micropolar parameter m on the trapping with fixed values
of N=0.8,¢=0.4 and Q = 0.1 are shown through the streamline patterns in Fig 8. It is

N\

0

9.

0.5

(2
S

0.2 0 0.2 0.4 0.6 d -0.2 0 0.2 0.4 0.6

C

Fig. 6. Streamlines for m =2.0,¢ =04 and Q =0.1;aN=0,bN =0.1,¢cN=04,andd N =0.8
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interesting to observe that the trapped bolus size increases with 72 upto a certain value of 7 and
shows incipient decrease later. As the value of @ = 0.1 is chosen to lie outside the limit of center
streamline trapping, we do not see any trapping in Fig 8a.

5 Conclusions

A mathematical model on peristaltic pumping of an incompressible micropolar fluid is an-
alyzed in the waveframe of reference with the assumptions of long wavelength and zero
Reynolds number. It is interesting to observe that the pumping is improved for all choice of
parameters for a micropolar fluid compared to Newtonian fluid. As it is speculated that
blood flow in vasomotion is by peristalsis, modeling of blood in these vessels by a micropolar
fluid is better. Recently, it is noticed that in the transport of grannular material the couple
stresses play an important role [19], [20]. Provost and Schwarz [3] predicted that any devi-
ation from Newtonian fluid allows one to find at least one non-trivial waveform for which
the time mean flow rate is zero or negative for a favorable pressure gradient. But for a
micropolar fluid we observe that the time mean flow rate does not follow the predictions
made by [3] for the micropolar parameters considered. The limits on mean flow rate on the
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Fig. 8. Streamlines for N =0.8,¢ =04 and @ =0.1;am=0.1,bm=1,cm="7,and d m = 10

center streamline trapping is obtained and the interesting phenomena is that the micropolar
parameters increase the size of the trapped bolous. The micropolar parameter effects on
friction forces are discussed.
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