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BUOYANCY-AIDED MIXED CONVECTION WITH
CONDUCTION AND SURFACE RADIATION FROM A
VERTICAL ELECTRONIC BOARD WITH A TRAVERSABLE
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C. Gururaja Rao

Department of Mechanical Engineering, National Institute of Technology,
[Formerly, Regional Engineering College Warangal],

Warangal, India

This article presents the results of a comprehensive fundamental numerical study of the
problem of buoyancy-aided mixed convection with conduction and surface radiation from a
vertical electronic board provided with a traversable, flush-mounted, discrete heat source.
Air, a radiatively transparent medium, is considered to be the cooling agent. The governing
equations in primitive variables for fluid flow and heat transfer are first converted into
stream function—vorticity form, and are later converted into algebraic form using the finite-
volume method. The resulting finite-difference equations are solved by Gauss-Seidel itera-
tive technique. The governing equation for temperature distribution along the electronic
board is obtained by appropriate energy balance. The effects of pertinent parameters, viz.,
location of the discrete heat source, surface emissivity of the board, and modified
Richardson number, on various results, including local temperature distribution along the
board, maximum board temperature, and contributions of convection and surface radiation
to heat dissipation from the board, are studied in great detail. The fact that any design
calculation that ignores surface radiation in problems of this kind would be error-prone is
clearly highlighted.

INTRODUCTION

Multimode heat transfer continues to be a fertile area of research because of its
role in several fields, including the cooling of electronic equipment and the design of
solar collectors. With regard to electronic equipment cooling, vertical board-mounted
electronic components are typically cooled by the removal of the heat generated in the
components using air as one of the most promising cooling agents. In most of these
applications, there will invariably be an interaction of buoyancy-aided mixed
(combined free and forced) convection with conduction and surface radiation.

Studies on mixed convection that involve conduction and (or) surface radiation
seem to be relatively few. Among the earliest works reported on multimode heat
transfer for the vertical plate geometry is the one of Zinnes [1]. He investigated

Received 13 June 2003; accepted 1 December 2003.
Address correspondence to C. Gururaja Rao, Department of Mechanical Engineering, National
Institute of Technology, Warangal 506 004, India. E-mail: cgrr@nitw.ernet.in

935



936 C. GURURAJA RAO
NOMENCLATURE
A, nondimensional heat source posi- ¢ thickness of the electronic board
tion in the electronic board as well as the discrete heat
(=L,/L) source, m
Ay, A geometric ratios, defined as (L/1), T temperature at any location in the
(L/Ly), respectively computational domain, K
a- mean friction coefficient T, uniform surface temperature of
[=(2/ReL) ]01 (QU/0Y)y_y dX] the vertical board in the asympto-
g acceleration due to gravity tic limit, K
(=9.81 m/s?) T free-stream temperature of the
Gr, Grashof number based on L fluid, K
[=gB(T,, — Too)L?/v] u vertical velocity, m/s
Gr} modified Grashof number based Uno free-stream velocity of the fluid,
on L (= gB ATt L3 /V?) m/s
hy local convection heat transfer U nondimensional vertical velocity
coefficient defined for asymptotic (= u/ux or OY/0Y)
case, W/m? K v horizontal or cross velocity, m/s
H W height and width of the V nondimensional horizontal or
computational domain, cross velocity
respectively, m (= v/ux or —OY/0X)
k thermal conductivity, W/m K X,y vertical and horizontal distances,
L height of the electronic board, m respectively, m
L, height of the discrete heat X, Y nondimensional vertical and non-
source, m dimensional horizontal distances
L, heat source position in the (x/L, y/L, respectively)
board, m o thermal diffusivity of the fluid,
M, N number of grid points in m?/s
horizontal and vertical directions, B isobaric cubic expansivity of the
respectively fluid [= —(1/p)(8p/3T),], 1/K
N, number of grid points along the Y thermal conductance parameter
electronic board (= kyL/kst)
Ny radiation-flow interaction para- O, convergence criterion, in frac-
tional form [= - ,
meter {: GT‘io/[(kf/L) ATref]} ATt modified reft[srerll(ci;;eremégi’ﬁt/lfrng‘ !
Nu, local Nusselt number along the difference [= q,Lyt/ks], K
board defined for the asymptotic Ax height of the board element
case (= hyx/ky) chosen for energy balance, m
P pressure at any location in the AX nondimensional height of the
computational domain, Pa board element (= Ax/L)
Pe; Peclet number based on Ay horizontal distance measured
L [(Rey Pr) or (usL/a)] between any grid point along the
Pr Prandtl number (= v/a) board and its adjacent grid
qv volumetric heat generation in the point, m
discrete heat source, W/m3 AY nondimensional horizontal dis-
0 rate of heat transfer, W tance between any grid point
Re,, Reynolds number based on along the board and its adjacent
L (= us, L)V) grid point (= Ay/L)
Ri, Richardson number based on € surface emissivity of the electronic
L {= (Gr./Re}) board
or [gB(TW —Tw)L /uzo ]} 0 nondimensional temperature at
Ri} modified Richardson number any location in the computational
based on domain {= (T — T)/ATr
L [= (Gr} /Re}) or(gB AT lor (T—Tw)/(Tw — Two)
L/u2)] in the asymptotic limiting case|}
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4 any variable (\, ®, or 0), over Subscripts
which convergence is being
tested for av, max average and maximum

v kinematic viscosity of the temperatures of the
fluid, m?/s electronic board,

p density of the fluid, kg/m3 respectively

Pe characteristic density of the cond, conv  conduction and convection,
fluid, kg/m3 respectively

c Stefan-Boltzmann constant fis fluid and solid (board material),
(=5.6697x 10~ 8 W/m? K*) respectively

o vorticity, 1/s new, old values of the dependent

® nondimensional vorticity variable (\, o, or 0) obtained
[= (o'L/us) or (0'S/us)] from the present and

7 stream function, mz/s previous iterations,

\ nondimensional stream function respectively
[= (¥ /uxL) or P local temperature along the board

(V' /usS), problem — specific] rad radiation

steady, constant-property, two-dimensional, laminar natural convection from a
vertical, heat-conducting, flat plate of finite thickness with an arbitrary heating
distribution on its surface. Tewari and Jaluria [2] conducted an experimental study
on the fundamental aspects of conjugate mixed convection from two heat sources of
finite width and negligible thickness and having a uniform heat flux input at the
surface. Gorski and Plumb [3] investigated, numerically, the problem of conjugate
laminar forced convection from a single discrete heat source, flush-mounted on a flat
plate. Kishinami et al. [4, 5] made a numerical and experimental study of laminar
mixed convection from a vertical composite plate, provided with isolated, dis-
continuous, surface heating elements. They simplified the problem by neglecting heat
conduction in the unheated portion of the plate.

Hossain and Takhar [6] did a numerical study of the effect of surface radiation
on combined forced and free convection from a heated vertical flat plate for the case
of uniform free-stream and uniform surface temperatures. Here, the governing
boundary-layer equations were first reduced to local nonsimilarity equations, which
were later solved through an implicit finite-difference method. Vynnycky and
Kimura [7] investigated, both analytically and numerically, two-dimensional con-
jugate free convection from a vertical plate in communication with a semi-infinite
fluid region. Merkin and Pop [8] numerically solved conjugate free convection from a
vertical surface, in which the governing boundary-layer equations for fluid flow were
made dimensionless, involving only the Prandtl number. Cole [9] numerically solved
the problem of electronic cooling during the steady flow of a viscous fluid over a
heated strip on a flat plate using the principles of scaling. Wang et al. [10]
investigated, numerically, using a multigrid technique, the two-dimensional,
conjugate, laminar natural-convection air cooling of a vertical plate, provided with
five wall-attached, protruding, discretely heated integrated circuit (IC) packages.
Kimura et al. [11] probed, analytically and experimentally, into the problem of
conjugate laminar as well as turbulent natural convection from a vertical plate.
Mendez and Trevino [12] did a numerical study of conjugate natural convection
from a thin vertical strip with nonuniform internal heat generation.
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The foregoing survey of literature on multimode heat transfer based on the
vertical plate geometry reveals the following points. No available study seems to
address, in sufficient detail, the effect of surface radiation on conjugate buoyancy-
aided mixed convection from a vertical electronic board provided with a traver-
sable flush-mounted discrete heat source. Keeping the above in mind, the present
article aims at probing into multimode heat dissipation from a vertical, heat-
conducting, electronic board, equipped with a flush-mounted discrete heat source
that could take up any position (starting from the leading edge to the trailing edge)
along the board.

MATHEMATICAL FORMULATION

The schematic of the problem geometry, which consists of a vertical electronic
board with a flush-mounted discrete heat source, along with the system of co-
ordinates, is shown in Figure 1a. The electronic board is of height L and thickness .
The board has a thermal conductivity k; and surface emissivity €. The discrete heat
source is of height L, and thickness 7, which is the same as that of the board itself.
The heat source is located at a distance L; from the leading edge of the board. The
heat source here is traversable, i.e., it may take up any position along the board,
starting from its leading edge [i.e., L; = 0] to the trailing edge [i.e., L; = (L — L;)].
Heat is generated in the discrete heat source at a uniform rate of ¢ W/m?, which
may be varied. The heat generated in the heat source is lost to the flowing fluid
(air) directly by buoyancy-aided mixed convection and surface radiation, as well as
indirectly by conduction into the board and by mixed convection and surface
radiation thereafter from the board surface. Air is considered to possess constant
thermophysical properties, with the Boussinesq approximation assumed valid. The
basic equations governing the fluid flow and heat transfer are the equation of
continuity, the two momentum equations, and the equation of energy. These
equations, in terms of primitive variables, are

Ou Ov
1220 1
6x+6y (1)
ua_u Ua_u _la_P+ &—I—V 62_u+az_” (2)
ox Oy p Ox & p oxz  0y? &

oo 1P (@0 P
Ox v@y_ p Oy ox?  0y?
0T oT T T

( ) )

ua‘f‘va:d @—Fa—yz

The Navier-Stokes equations, viz., Egs. (2) and (3), are converted into stream
function—vorticity form, and this results in

do o oT (o e

( ) (5

ua"f'l)a:—gﬁa‘i‘v w—Fa—yz
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Traversable discrete
heat source (qy, )

B
~
R PP

K—Tt —
Qcond, X
©)

Figure 1. (a) Schematic of the problem geometry considered in the present study and (b) typical element
chosen for demonstrating energy balance.

Substitution of the definitions for # and v (in terms of \') into the definition for '
gives

62\11/ aZ\II/
- _ = — / 6
o T2 © (6)

Thus, the final set of governing equations for the present problem comprises the
vorticity—transport equation [Eq. (5)], the stream-function equation [Eq. (6)], and the
undisturbed energy equation [Eq. (4)]. The above governing equations are later
normalized, and during this normalization, since no obvious reference temperature
difference exists here, a modified reference temperature difference is introduced as
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AT,.s = q,Lyt/ks. This helps in defining a nondimensional temperature as
0 = (T — Tw)/ATs. The normalized governing equations turn out to be

G0 o 0 1 (Do o
il - = _Rif—4— ([— 44— —
Vax ™oy 'L3Y " Re; (ax2+ay2) @
oy M
et = )
00 0 1 /00 2%
Uﬁ”ﬁp@(@*@) ®)

It is pertinent to note that the modified Richardson number (Ri}) in Eq. (7) is based
on the modified reference temperature difference introduced above. Ri; assumes the
role of the parameter governing mixed convection, with larger values of it signifying
free-convection dominance and smaller values of it implying the dominance of forced
convection. A value of Rij ~ | means the mixed-convection regime with buoyancy
and inertial forces becoming comparable.

COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS

The computational domain is extended beyond the trailing edge of the board
by a height equal to that of the board (L). The width (W) of the computational
domain is taken equal to the board height (L) itself. The above dimensions for the
computational domain have been decided based on some initial studies, the results of
which will be summarized at a later stage. The computational domain, along with all
the boundary conditions therein, is as shown in Figure 2.

Since the fluid enters from the bottom with a uniform velocity u, it follows
that (0y/0Y) = 1 or y = Y. The vorticity (o) is taken equal to zero along the bottom
boundary, which means the flow is irrotational there. With regard to temperature at
the bottom, since the fluid enters at uniform temperature 7, the nondimensional
temperature 8 =0. The left boundary comprises two sections, the bottom half is the
vertical board itself (solid boundary), while the top half is the extended length (free
or open boundary). With regard to boundary conditions along the board, the stream
function (\) is taken equal to zero. For vorticity (®), the same condition as used by
Gururaja Rao et al. [13] is used, i.e., @ = —0*/0Y2. The temperature boundary
condition along the electronic board is derived using a simple energy balance. For
example, consider a typical element, pertaining to the region along the board
(excluding the bottom and top insulated ends), which possesses the discrete heat
source, is as shown in Figure 15, along with various energy interactions it is involved
in. The energy balance on this element leads to

Qcondﬁx +qv Axt= Qcond,(x+Ax) + Oconv + Orad (10)

Using Taylor’s series expansion for the first term on the right side of Eq. (10) and
substituting relevant expressions for the other terms, one gets
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0X
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Figure 2. Computational domain used in the present study, along with boundary conditions.

Oox

—kf <Z—T> Ax
Y y=0

Simplification and appropriate nondimensionalization leads Eq. (11) to the gov-
erning equation for temperature distribution for the region along the board, without
the bottom and top insulated ends and possessing the discrete heat source, as

(T_i)u] o (12)

a X
Ocondx + qvAx t = (Qcond,x + Ocond, Ax>

+ + [og(T* = TL) Ax]

0%0 00
i — A, A, —
6X2+Y<GY>YO+ 1Ar, — eYNrE
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For the remainder of the board (other than the top and bottom ends), the energy

balance gives
%0 o0 T\*
m + 'Y(W))/_O_SYNRF [(i) —11 =0 (13)

The governing equations for the temperatures of the bottom and top insulated ends
of the board, respectively, are obtained by making energy balance on the semi-
elements pertaining to these ends, and these turn out to be

20 (AX)y_o (00
<6X>X_o+ > Nav),.,

AX AX |/ T\
+Ar|Ar2 T_S'YNRF 7 (T_OO) —l‘| =0 (14)
00\ (AX)y_, (96
ox), 2 "\av),,

AX AX
— Ay A, N + eYNRF >

<%)4—1] =0 (15)

The third term in Egs. (14) and (15), which corresponds to heat generation,
would be absent in all those cases, where the bottom and top ends do not form part
of the discrete heat source. It is to be remembered that the heat source in the present
problem is traversable and thus may or may not be at the ends of the board. With
regard to extended length, because of symmetry, the cross or horizontal velocity
(V) = 0. This means that (0y/0X) = 0, and this, in turn, implies that { is a constant
along the extended left boundary. Since \y =0 along the board, the same condition is
also used for the extended length of the left boundary. Based on the definition of w, it
follows that @ =0 on the extended left boundary, implying irrotationality condition.
With regard to temperature, (00/0Y) = 0 satisfies the symmetry condition. At the
top boundary, it is assumed that the stream function satisfies the fully developed
condition, viz., (0y/0X) = 0. For vorticity, since the computational domain is
extended well beyond the trailing edge of the board (by a height equal to the board
height) along the flow direction, irrotationality is satisfied along the top, which
implies ®=0. With regard to temperature (0), when the vertical velocity (U) is
positive, the fully developed condition, viz., (00/0X) = 0, is appropriate. Conversely,
when U is negative, indicating an incoming flow, the temperature is taken equal to
that of the free stream, implying 6 =0. As far as the right free (open) boundary is
concerned, three different options are possible for specifying the stream function,
and all of them have been tried in the present study, to converge on the option that
best suites the entire mixed-convection regime. The first option is to assume the cross
velocity (V) =0, implying (0y/0X) = 0. The second possibility is to consider the
vertical velocity (U)=0, which means (0y//0Y) = 0. Both of the above appear jus-
tifiable from a physical standpoint—the former in the asymptotic forced-convection
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limit and the latter in the asymptotic free-convection limit. However, since the
present study encompasses the whole range of mixed convection (forced, mixed, and
free), neither of the above conditions is appropriate. Instead, the best possible option
is a less restrictive condition on the stream function that is given as (0U/0X) =
(dV/2Y) = (0°y/0XdY) = 0. With regard to vorticity, since the right boundary is
far away from the board (by a distance equal to the board height), the flow can be
assumed irrotational, i.e., ®=0. Using similar arguments, the temperature on the
right boundary is equal to the free-stream temperature (7',) (i.e., 6 =0).

GRID SYSTEM

The temperature variation along the electronic board depends on the height
(L) and also the position L; of the discrete heat source, in addition to its depen-
dence on various other parameters as well. It is therefore imperative to discretize the
computational domain such that it mirrors the physics of the problem accurately.
There should always be a certain minimum number of closely packed grids near the
leading edge of the board from where the flow begins. A certain minimum number of
finer grids is needed along the discrete heat source as well, owing to the fact that the
temperature gradients will be larger there. The grid pattern along the board, beyond
the heat source, depends on the location of the heat source itself. In the extended
region, beyond the board, it suffices to have grids, which become gradually coarse.
Perpendicular to the board, it is adequate to have grids that are closely spaced near
the board and become gradually coarse away from the board. In view of the above
prerequisites the grid pattern has to satisfy, a hybrid grid system has been evolved.
Based on the results of a grid sensitivity test to be presented later, a grid size of
121 x 121 has been used. A semicosine function is chosen for generating the grids
perpendicular to the board (in the Y direction). Along the board, cosine grids are
used from the leading edge up to the discrete heat source, while semicosine grids are
used along the discrete heat source. Beyond the heat source, up to the trailing edge of
the board, the grids are generated using geometric progression. In the extended
domain, in the X direction, always a fixed number of 21 grids, generated using
geometric progression, are used, while there is no change in the grid pattern in the Y
direction.

METHOD OF SOLUTION

The normalized governing equations [Egs. (7)—(9)] are nonlinear partial dif-
ferential equations, the solution for which is evolved in two stages. The first stage
involves transforming the governing equations into finite-difference equations using
a finite-volume-based finite-difference method of Gosman et al. [14]. The advection
terms in Egs. (7) and (9) are tackled using second upwinding. The resulting algebraic
equations, together with the boundary conditions, are solved in the subsequent stage
using the Gauss-Seidel iterative procedure. Underrelaxation (relaxation para-
meter =0.5) is used on stream function () and vorticity (®), while full relaxation
(relaxation parameter =1) is used on temperature (0). Very stringent convergence
criteria (8,) of 5x 10 =% 1x 107 %, and 1 x 10~ © have been imposed on vorticity (),
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stream function (), and temperature (0), respectively. Three-point formulas, using a
second-degree Lagrangian polynomial, are used for evaluating all the derivatives
present in all the boundary conditions, and also those derivatives that are needed in
the rest of the calculations. The integrations required in all the calculations are
performed using the extended Simpson’s 1/3 rule for nonuniform step sizes. The
velocities and temperatures in the entire computational domain [including non-
dimensional local board temperatures, 0,(X)] are obtained as part of the solution.
The nondimensional maximum board temperature (0,,,,) is determined from the
local values of nondimensional temperature along the board. The nondimensional
average board temperature is evaluated as 0,, = fo 0p dX. The net convection heat
transfer rate from the board is calculated as Q¢ = _kaTref fo (08/0Y)y_,dX. The
net radiation heat transfer rate from the board is obtained as Qr = eNgrks

AT fol {[l + eP(ATref/TOC)]4—] } dX. The mean friction coefficient is determined as

Cr=(2/Rey) [, (&Y),_, dX.

All the calculations are performed using air (Pr=0.71) as the cooling agent.
The height of the electronic board (L) is taken to be 233.4 mm, which is typical of a
printed circuit board in practice. The thickness of the board (¢) is taken equal to
1.5 mm while the height of the discrete heat source (L) is taken equal to 1/8th the
board height (i.e., 29.2 mm). The heat source position is varied from the leading
edge (4;=0) to the trailing edge (4, =0.875) of the board, where A4, is the non-
dimensional position of the heat source given as (L;/L). The thermal conductivity of
the board material is varied between 0.25 and 1 W/m K, keeping in mind that the
thermal conductivity of electronic boards is typically of the order of unity (e.g.,
epoxy glass, with k; ~ 0.26 W/mXK). The board surface emissivity is varied between
0.05 (a good reflector, e.g., polished aluminum foil) and 0.85 (a good emitter, e.g.,
black paint). Before deciding on the appropriate range for Rij, the problem has been
solved for different values of Rij = 2,500, 250, 25, 1, 0.25, and 0.1, for a typical case
with ¢, =10° W/m?, k,=0.25 W/m K, and & = 0.85. The nature of variation of the
maximum board temperature (0,,.c) with the position of the heat source (4;) has
been studied for all the above values of Ri; . No significant change has been observed
in B, between Ri; =2,500 and 25. For example, for 4; =0, 8,,,,x decreases by only
3.3% as Ri; decreases from 2,500 to 25. However, the decrease in 8, has been
found to be fairly large toward lower values of Rij. For example, for 4; =0, 0,.x
decreases by as much as 14.5% as Rij decreases from 0.25 to 0.1. The trends have
been observed to be similar for other positions of the heat source and for other
surface emissivities as well. Therefore, from the point of view of 0., which is of
prime interest in applications such as cooling of electronic equipment,
0.1 <Ri; <25 has been considered the most appropriate range for Ri; in all
calculations.

RESULTS AND DISCUSSION
Grid-Independence Test

To study the effect of grid size (M x N) on the solution, a typical case with
g,=5x%x10° W/m3, A1=0.4375 (heat source located at the center of the board),
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ky=0.25 W/m K, e=0.45, Re; = 1,275, and Ri; =1 has been considered. The grid
independence has been tested in two stages—first with M fixed (to decide on the
value of N) and later with N fixed (to decide on the value of M). The results of
the above test are summarized in Table 1. The first stage of the study shows that the
difference in 0,,,,, between grid sizes 121 x 121 and 121 x 141 is only 0.06%, while the
difference in C; between the same grid sizes is 0.62%. The results of the second stage
of the grid-independence test performed keeping N fixed reveal that the differences
in the values of 0,,,, and Z”f between grid sizes 121 x 121 and 141 x 121 are 0.07%
and 0.54%, respectively. In view of the above, M and N have both been fixed as 121
for all the subsequent calculations pertaining to the present study.

Effect of Height and Width of the Computational Domain

To analyze the role the height (H) of the computational domain plays in the
present problem, results have been obtained for the same typical case as considered
in the foregoing grid-independence test, by solving the problem with computational
domains of different heights. It has been noticed that the difference in 6,,,, between
H/L =2 and =2.5is 0.71%, while the difference in C, between the same two values
of H/L is only 0.04%. Because of these results, a computational domain of height
H = 2L has been used for all the subsequent computations for this problem. With
regard to width (W) of the computational domain, similar studies have been made
and a value of W = L has been found to be adequate for making calculations.

Testing the Results for Mass and Energy Balance

The results of the present problem have been tested for mass and energy bal-
ance. This is done by comparing the mass inflow with the mass outflow and the total
rate of heat transfer by mixed convection and surface radiation with the total rate
at which heat is generated in the heat source, respectively. A typical case with
¢y=5x10° W/m®, k,=0.5 W/m K, €=0.45, Re; =2,250, and Ri} =1 has been
considered. As many as 13 different locations for the heat source (0 < 4; <0.875) are
chosen, starting from the leading edge to the trailing edge of the electronic board.
The mass balance and the energy balance are found to be satisfactory, with the

Table 1. Grid-independence test to decide the values of M and N*

Grid size, Percentage Percentage
Stage Mx N Omax change (abs.) Cr change (abs.)
(1) M fixed at 121, 121 x 101 1.0429 — 0.0642 —
N varied 121 x 121 1.0348 0.78 0.0648 0.86
121 x 141 1.0355 0.06 0.0644 0.62
(2) N fixed at 121, 101 x 121 1.0357 — 0.0652 —
M varied 121 x 121 1.0348 0.09 0.0648 0.57
141 x 121 1.0341 0.07 0.0644 0.54

4L =233.4 mm, r=1.5 mm, L, =29.2 mm, 4, =0.4375, g,=5x 10°W/m®, k,=0.25 W/m K, £=0.45,
ky=0.03 W/m K, Re; = 1,275, and Rij =1.



946 C. GURURAJA RAO

maximum deviations limited to +0.008% and =+3.92%, respectively. Similar
observations hold with regard to other cases considered in the present study.

Validation

The fluid flow and heat transfer results of the present problem are validated
with available analytical results in the asymptotic limits. In order to be able to do
this, the present complex problem of an electronic board with longitudinally varying
surface temperature (owing to discrete internal heat generation followed by con-
duction with subsequent convection and surface radiation) is degenerated to the
limiting case of an isothermal electronic board. Later, the results for the asymptotic
forced-convection limit are verified against the well-known exact solutions of Blasius
[15] and Pohlhausen [16]. The calculations in the asymptotic free-convection limit are
validated with the exact solution of Ostrach [17]. The mean friction coefficient cal-
culation is validated with that of Blasius [15] in the asymptotic forced-convection
limit.

Validation for velocity and temperature. The nondimensional vertical
velocity (U) and temperature (0) profiles at the trailing edge of the electronic board
are compared with those of Blasius [15] and Pohlhausen [16] in the asymptotic
forced-convection limit (Ri,=10""), as shown in Figure 3a. In the asymptotic
free-convection limit (Ri; = 10°), on the other hand, the comparison is made with
reference to Ostrach [17], as shown in Figure 3b. The above two plots [Figure 3a
and 3b] are drawn for Pr=1. The figures reveal that the present results, though
obtained for the asymptotic limiting cases, are in fairly good agreement with the
forced-convection and free-convection results of Blasius-Pohlhausen and Ostrach,
respectively.

Validation for mean friction coefficient. The validation for C; has been
done for the asymptotic forced-convection limit (Ri; = 10~ ) with the exact solution
of Blasius [15]. Excellent agreement between the two has been found. Also, based on
a set of 21 data, obtained from the present study, encompassing a wide range of
Reynolds numbers (0.016 x 10°< Re; <1.6x 105), a single-variable correlation for
Cr has been developed as Cy = 1.276 Re;*>. The C determined from this correlation
differs from that obtained using the Blasius solution [Cy= 1.328 Re;*°] by only
3.9% for all Reynolds numbers.

Validation for local Nusselt number. In order to further validate the heat
transfer results of the present problem for the limiting case of an isothermal electro-
nic board, a local Nusselt number Nu, has been defined as Nu, = (h,x/k). Figure 4
shows the variation of local Nusselt number (Nu,) along the electronic board for the
case with Pr=1 and Gr; = 10° in the asymptotic forced- and free-convection limits,
with Ri; =10~ and 10°, respectively. The figure shows absolute agreement between
the present results and the exact analytical solution of Pohlhausen [16] and Ostrach
[17], respectively. It can also be observed that the local Nusselt number (Nuy)
decreases monotonically along the board from the leading edge to the trailing edge
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in both cases. A small increase in Nusselt number near the trailing edge can be seen
in the results of the present study, which could be attributed to the sudden change in
the temperature boundary condition along the left free (or open) extended boundary,
beyond the trailing edge of the board.

Variation of Local Board Temperature with Other Parameters

Temperature distribution along the board is of prime interest in the present
problem. This depends on the rate of volumetric heat generation in the discrete heat
source (g,), the location of the heat source (L), the thermal conductivity (k;), the
surface emissivity (€), and the free-stream velocity (u,) (or, in other words, Rij).

Figure 5 shows the local board temperature [0p(X)] profiles for the case where
the heat source is positioned at the center of the board (i.e., 4;=0.4375), with
¢,=5x10"> W/m?, k;=0.5 W/m K and € =0.85. The free-stream velocity is varied
to cover four values of Rij (viz., 25, 1, 0.25, and 0.1). From the figure, it can be seen
that the board temperature increases gently near the leading edge and then rises
sharply to a maximum at a location near the center of the board. Again, the tem-
perature drops sharply to some lower value, and from there on, it undergoes an
asymptotic decrease toward the trailing edge of the board. The temperature will be
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Figure 5. Nondimensional local board temperature profiles for a given heat source position and for
different Richardson numbers.

reasonably large even at the trailing edge of the board. Further, excluding some
initial distance from the leading edge, where the temperatures are very close to the
ambient, temperature at any location along the board decreases with increasing Re;,
or (decreasing Ri;). This is because of the increase in the rate of convection heat
transfer as one moves from the free-convection-dominant regime (Ri; = 25) to the
forced-convection-dominant regime (Ri; = 0.1). For example, the peak board tem-
perature comes down by about 29% as Ri; decreases from 25 to 0.1, with all other
parameters held fixed, in the specific example considered in Figure 5.

Figure 6 shows a family of local board temperature profiles for the case with
the same values of 4,, ¢,, and k; as in Figure 5, but with u . chosen such that, for all
the curves, Re; =250 and Ri; = 25. The plots are drawn for three different values of
surface emissivity (viz., € =0.05, 0.45, and 0.85). The figure shows that at any given
location along the board, the temperature decreases with €. This is because the rate
of heat transfer by radiation increases with €, thus bringing down the board tem-
perature. For example, the peak temperature in the board decreases by about 28% as
its surface emissivity (€) increases from 0.05 to 0.85.

It is to be noted that all the curves in Figures 5 and 6 correspond to a single
position of the discrete heat source, wherein the heat source is located at the board
centre (i.e., 4, =0.4375). In view of this, a family of curves has been drawn, as shown
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Figure 6. Nondimensional local board temperature profiles for a given Richardson number and for
different surface emissivities.

in Figure 7, depicting the nature of variation of local temperature [0p(X)] along the
board, for five different positions of the discrete heat source, viz., A; [or (L;/L)]=0,
0.05, 0.4375, 0.825, and 0.875. The curves pertaining to Figure 7 are plotted for the
case with ¢,=10° W/m3, ky=0.5 W/m K, e=0.45, Re; =1,800, and Ri; =0.1. It
can be seen from the figure that the value of the maximum board temperature, as
well as the location at which the maximum occurs, will vary with the position (A4;)
of the heat source. Further, the peak temperature increases as the heat source is
traversed from the leading edge to the trailing edge of the board.

Variation of Maximum Board Temperature with Other Parameters

A study of the variation of maximum board temperature (0,,,,) with the po-
sition of the discrete heat source along the board indicates the best possible location
for the heat source from the viewpoint of minimizing the maximum temperature
attained by the board under a given set of operating conditions.

In this context, Figure 8 shows a family of curves giving the variation of 0,
with A, for four values of free-stream velocity (and hence four values of Ri;, viz., 25,
1, 0.25, and 0.1). It may be noted that 4, represents the position of the beginning of
the discrete heat source, and the maximum possible value for 4, is 0.875. It may also
be noted that the plot does not indicate the location along the board at which 0,
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Figure 7. Nondimensional local board temperature profiles for a given Richardson number and for
different positions of the heat source along the board.

occurs. Instead, it gives the values of 0,,,, the board assumes for different positions
of the heat source. These curves correspond to ¢,=10° W/m3, ky=0.25 W/m K,
and € =0.85. From the figure, it is clear that there is a sharp increase in 0,,,, from
A;=01t0 A; =0.05 and again from 4, =0.825 to A; =0.875. There is a considerably
slower rate of increase in 0,,,,x for 4, between 0.05 and 0.825. As Ri; decreases from
25 to 0.1, the amount by which 6,,,, increases between the positions 4; =0.05 and
A1 =0.825 also increases. In the case considered here, the increase in 0,,,,, between
A;=0.05and 4, =0.825, for Rij =25, is only 6.5%, while that for Ri; =0.1 is about
24%. The figure also shows that 0,,,, decreases with increasing u,, (and hence in-
creasing Rey ) or decreasing Rij, for any given position 4, for reasons already given.
The figure clearly indicates that the best possible position for the heat source is
A; =0 (the leading edge of the board), as would be expected. The least preferred
position is 4; =0.875 (the heat source ending on the trailing edge of the board) for
all values of Rij . In the present example, for Ri; =0.1 (asymptotic forced convection
limit for this problem), 0., increases by as much as 51% as the heat source
moves from 4, =0 to 4, =0.875. Similar trends are observed for other values of Ri}
as well.
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To study the effect of surface emissivity (€) of the electronic board on 6., in
the range of Richardson numbers (0.1 < Ri; < 25) considered in the present study, a
set of curves has been drawn as shown in Figure 9. These curves pertain to the case
with ¢, =10® W/m?, k,=0.25 W/m K, and are plotted for three values of Ri} (viz.,
25,1, and 0.1) and two values of € (viz., 0.05 and 0.85). It can be seen from the figure
that 6,,,x decreases as € increases for a given Rij (or u ). In the example taken here,
for Rij =1, 6,ax for 4, =0 decreases by 17%, while that for 4; =0.875 decreases by
25%, as € increases from 0.05 to 0.85. Another important feature is that the effect of
€ on 0, is more pronounced in the free-convection-dominant regime (1 < Ri; <
25) than in the forced-convection-dominant regime (0.1 <Ri; < 1). In the present
example, for Ri; =25 (asymptotic free convection limit), 8, for 4;=0.875 de-
creases by as much as 27.9% as e increases from 0.05 to 0.85. While for Ri; =0.1
(asymptotic forced-convection limit), 6,,., for the same heat source position (viz.,
A;=0.875) decreases by a smaller percentage of 17.8% as € increases between the
same limits (i.e., from 0.05 to 0.85).

Relative Contributions of Convection (Free and Forced) and Surface
Radiation to Heat Dissipation from the Electronic Board

The heat generated in the discrete heat source is dissipated from the right
surface of the board by convection (which includes free and forced convection) and
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Figure 9. Variation of maximum nondimensional board temperature with surface emissivity for various
positions of the heat source along the board.

surface radiation. It is interesting to study the role that radiation plays in compar-
ison to convection in the present problem.

Figure 10 shows the relative contributions of convection and radiation,
drawn against A4, for Ri; =25, 1, and 0.1, for the case ¢,= 10° W/rn3, k,=0.25
W/m K, and € =0.85. The most striking feature that is noticeable from Figure 10
is the behavior of the two curves pertaining to Ri; =25 (asymptotic
free-convection limit). It is seen that convection heat transfer decreases from 45%
for 4;=0 to about 41.5% for 4, =0.05, but from then increases monotonically
to a maximum of 65% for 4, =0.875. An exact mirror-image variation is noticed
for radiation, which increases from 55% for 4; =0 to about 58.5% for 4;=0.05,
and then decreases monotonically to a minimum of 35% for A4;=0.875. These
two curves cross each other at 4; =0.625, which denotes equal contributions to
heat transfer by convection and radiation. Similar trends are observed for Ri; =1
and 0.1. Figure 10 also clearly shows the role that surface radiation plays in all
three (free-convection-dominant, mixed-convection-dominant, and forced-convec-
tion dominant) regimes. As expected, there is a continuous decrease in the con-
tribution from radiation as one moves from the asymptotic free-convection limit
to the asymptotic forced-convection limit. In the present example, in the
asymptotic free-convection limit (Rij = 25), radiation is significant, with max-
imum and minimum contributions of 58.5% and 35%, respectively, depending on
the position (4;) of the heat source. Even in the asymptotic forced-convection
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Figure 10. Variation of relative contributions of convection and surface radiation to heat dissipation from
the board with heat source position in different regimes of mixed convection.

limit (Ri; = 0.1), where convection is expected to override radiation, the latter
plays a fairly important role, with maximum and minimum contributions of
30.5% and 18.5%, respectively. In the mixed-convection regime (i.e., Rij = 1), the
maximum and minimum contributions of radiation fall in between those for the
above two extremes. They have been found to vary between 44.5% and 28.3%,
respectively, in the present example, depending the position of the heat source
along the board.

To isolate the role of radiation further, the present problem has been solved for
three typical surface emissivities (€ = 0.05, 0.45, and 0.85) for the case ¢, = 10° W/m3,
k;=025 W/m K, Re,= 2,500, and Ri;=1. The results are shown in
Figure 11. It can be seen that the dominant mode of heat transfer for e =0.05 (a good
reflecting surface, such as polished aluminum) is convection, with very little
contribution from radiation. In the present example, for the case where the heat
source is located at the center of the board (4; =0.4375), for e =0.05, convection
takes away as much as 96% of the heat generated, while radiation contributes to a
mere 4%. The contribution by radiation increases with emissivity, with a propor-
tionate decrease in that by convection. In the present example, for the case where the
heat source is positioned at 4; =0.25, the radiation heat transfer is 4.5% only for
€=0.05. It increases to 30% for e =0.45, while, for e =0.85, the radiation con-
tribution is as much as 45%, implying a 10-fold increase compared to the case of
€=0.05.
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CONCLUSIONS

An exhaustive numerical study of the problem of buoyancy-aided mixed
convection, with conduction and surface radiation, from a vertical electronic board,
possessing a flush-mounted, traversable discrete heat source, has been made. From
the viewpoint of minimizing the maximum board temperature, the best position for
the heat source is the leading edge of the board, and the maximum board
temperature increases as the heat source moves away from the leading edge. The
least advisable position for the heat source is the trailing edge of the board, as it is
found to increase 0, by 35-50%, when compared to that for the case where the
heat source starts from the leading edge of the board. The peak temperature, for any
Ri; and for given values of ¢, and k,, decreases with increasing e. However, the
degree of decrease of 0,,,x with € decreases as one moves from the free-convection
limit (Ri; =25) to the forced-convection limit (Ri; =0.1). Radiation is found to
assume a significant role in all regimes of mixed convection. For example, for
€=0.85, for Rij =25, radiation contributes 35-60% to heat transfer, depending on
heat source position. For the same € =0.85, for Ri; =1 and 0.1, the radiation con-
tributions have been found to be 28-45% and 18-30%, respectively. For a given Rij,
convection is found to play a dominant role, taking away as much as 90-95% of the
heat in the case of a good reflecting surface (e =0.05), with radiation having an
insignificant role. However, the radiation contribution increases with € for the same
Rij. It may be as much as 45-50%, depending on the heat source position, for a
good emitting surface (e =0.85).
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