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BUOYANCY-AIDED MIXED CONVECTION WITH
CONDUCTION AND SURFACE RADIATION FROM A
VERTICAL ELECTRONIC BOARD WITH A TRAVERSABLE
DISCRETE HEAT SOURCE

C. Gururaja Rao
Department of Mechanical Engineering, National Institute of Technology,
[Formerly, Regional Engineering College Warangal],
Warangal, India

This article presents the results of a comprehensive fundamental numerical study of the

problem of buoyancy-aided mixed convection with conduction and surface radiation from a

vertical electronic board provided with a traversable, flush-mounted, discrete heat source.

Air, a radiatively transparent medium, is considered to be the cooling agent. The governing

equations in primitive variables for fluid flow and heat transfer are first converted into

stream function–vorticity form, and are later converted into algebraic form using the finite-

volume method. The resulting finite-difference equations are solved by Gauss-Seidel itera-

tive technique. The governing equation for temperature distribution along the electronic

board is obtained by appropriate energy balance. The effects of pertinent parameters, viz.,

location of the discrete heat source, surface emissivity of the board, and modified

Richardson number, on various results, including local temperature distribution along the

board, maximum board temperature, and contributions of convection and surface radiation

to heat dissipation from the board, are studied in great detail. The fact that any design

calculation that ignores surface radiation in problems of this kind would be error-prone is

clearly highlighted.

INTRODUCTION

Multimode heat transfer continues to be a fertile area of research because of its
role in several fields, including the cooling of electronic equipment and the design of
solar collectors. With regard to electronic equipment cooling, vertical board-mounted
electronic components are typically cooled by the removal of the heat generated in the
components using air as one of the most promising cooling agents. In most of these
applications, there will invariably be an interaction of buoyancy-aided mixed
(combined free and forced) convection with conduction and surface radiation.

Studies on mixed convection that involve conduction and (or) surface radiation
seem to be relatively few. Among the earliest works reported on multimode heat
transfer for the vertical plate geometry is the one of Zinnes [1]. He investigated
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NOMENCLATURE

A1 nondimensional heat source posi-

tion in the electronic board

(¼L1=L)

Ar1 ;Ar2 geometric ratios, defined as (L=t),

(L=Lh), respectively

Cf mean friction coefficient

[¼ 2=ReLð Þ
R 1

0 qU=qYð ÞY¼0 dX]

g acceleration due to gravity

(¼ 9.81 m=s2)

GrL Grashof number based on L

[¼ gb(Tw7T1 )L3=n2]
Gr�L modified Grashof number based

on L ð¼ gbDTref L
3=n2Þ

hx local convection heat transfer

coefficient defined for asymptotic

case, W=m2 K

H, W height and width of the

computational domain,

respectively, m

k thermal conductivity, W=m K

L height of the electronic board, m

Lh height of the discrete heat

source, m

L1 heat source position in the

board, m

M, N number of grid points in

horizontal and vertical directions,

respectively

N1 number of grid points along the

electronic board

NRF radiation-flow interaction para-

meter ¼ sT4
1

�
kf=Lð ÞDTref½ �

� �
Nux local Nusselt number along the

board defined for the asymptotic

case ð¼ hxx=kfÞ
P pressure at any location in the

computational domain, Pa

PeL Peclet number based on

L ½ðReL PrÞ or ðu1L=aÞ�
Pr Prandtl number ð¼ n=aÞ
qV volumetric heat generation in the

discrete heat source, W=m3

Q rate of heat transfer, W

ReL Reynolds number based on

L ð¼ u1L=nÞ
RiL Richardson number based on

L ¼ GrL=Re
2
L

� ��
or gb Tw � T1ð ÞL=u21
� �

g
Ri�L modified Richardson number

based on

L ¼ Gr�L=Re
2
L

� �
or gbDTrefð

�
L=u21Þ�

t thickness of the electronic board

as well as the discrete heat

source, m

T temperature at any location in the

computational domain, K

Tw uniform surface temperature of

the vertical board in the asympto-

tic limit, K

T1 free-stream temperature of the

fluid, K

u vertical velocity, m=s

u1 free-stream velocity of the fluid,

m=s

U nondimensional vertical velocity

ð¼ u=u1 or qc=qYÞ
v horizontal or cross velocity, m=s

V nondimensional horizontal or

cross velocity

ð¼ v=u1 or � qc=qXÞ
x, y vertical and horizontal distances,

respectively, m

X, Y nondimensional vertical and non-

dimensional horizontal distances

(x=L; y=L, respectively)

a thermal diffusivity of the fluid,

m2=s

b isobaric cubic expansivity of the

fluid ¼ � 1=rð Þ qr=qTð ÞP
� �

; 1=K

g thermal conductance parameter

¼ kfL=kst
� �

dc convergence criterion, in frac-

tional form ¼ znew � zoldð Þ=znewj j½ �
DTref modified reference temperature

difference ¼ qvLht=ks½ �; K
Dx height of the board element

chosen for energy balance, m

DX nondimensional height of the

board element ð¼ Dx=LÞ
Dy horizontal distance measured

between any grid point along the

board and its adjacent grid

point, m

DY nondimensional horizontal dis-

tance between any grid point

along the board and its adjacent

grid point ð¼ Dy=LÞ
e surface emissivity of the electronic

board

y nondimensional temperature at

any location in the computational

domain ¼ ðT� T1Þ=DTreff
or ðT� T1Þ=ðTw � T1Þ½
in the asymptotic limiting case�g
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steady, constant-property, two-dimensional, laminar natural convection from a
vertical, heat-conducting, flat plate of finite thickness with an arbitrary heating
distribution on its surface. Tewari and Jaluria [2] conducted an experimental study
on the fundamental aspects of conjugate mixed convection from two heat sources of
finite width and negligible thickness and having a uniform heat flux input at the
surface. Gorski and Plumb [3] investigated, numerically, the problem of conjugate
laminar forced convection from a single discrete heat source, flush-mounted on a flat
plate. Kishinami et al. [4, 5] made a numerical and experimental study of laminar
mixed convection from a vertical composite plate, provided with isolated, dis-
continuous, surface heating elements. They simplified the problem by neglecting heat
conduction in the unheated portion of the plate.

Hossain and Takhar [6] did a numerical study of the effect of surface radiation
on combined forced and free convection from a heated vertical flat plate for the case
of uniform free-stream and uniform surface temperatures. Here, the governing
boundary-layer equations were first reduced to local nonsimilarity equations, which
were later solved through an implicit finite-difference method. Vynnycky and
Kimura [7] investigated, both analytically and numerically, two-dimensional con-
jugate free convection from a vertical plate in communication with a semi-infinite
fluid region. Merkin and Pop [8] numerically solved conjugate free convection from a
vertical surface, in which the governing boundary-layer equations for fluid flow were
made dimensionless, involving only the Prandtl number. Cole [9] numerically solved
the problem of electronic cooling during the steady flow of a viscous fluid over a
heated strip on a flat plate using the principles of scaling. Wang et al. [10]
investigated, numerically, using a multigrid technique, the two-dimensional,
conjugate, laminar natural-convection air cooling of a vertical plate, provided with
five wall-attached, protruding, discretely heated integrated circuit (IC) packages.
Kimura et al. [11] probed, analytically and experimentally, into the problem of
conjugate laminar as well as turbulent natural convection from a vertical plate.
Mendez and Trevino [12] did a numerical study of conjugate natural convection
from a thin vertical strip with nonuniform internal heat generation.

z any variable (c, o, or y), over
which convergence is being

tested for

n kinematic viscosity of the

fluid, m2=s

r density of the fluid, kg=m3

rc characteristic density of the

fluid, kg=m3

s Stefan-Boltzmann constant

(¼ 5.66976107 8 W=m2 K4)

o0 vorticity, 1=s

o nondimensional vorticity

½¼ ðo0L=u1Þ or ðo0S=u1Þ�
c0 stream function, m2=s

c nondimensional stream function

½¼ ðc0=u1LÞ or
ðc0=u1SÞ; problem� specific�

Subscripts

av, max average and maximum

temperatures of the

electronic board,

respectively

cond, conv conduction and convection,

respectively

f, s fluid and solid (board material),

respectively

new, old values of the dependent

variable (c, o, or y) obtained
from the present and

previous iterations,

respectively

P local temperature along the board

rad radiation
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The foregoing survey of literature on multimode heat transfer based on the
vertical plate geometry reveals the following points. No available study seems to
address, in sufficient detail, the effect of surface radiation on conjugate buoyancy-
aided mixed convection from a vertical electronic board provided with a traver-
sable flush-mounted discrete heat source. Keeping the above in mind, the present
article aims at probing into multimode heat dissipation from a vertical, heat-
conducting, electronic board, equipped with a flush-mounted discrete heat source
that could take up any position (starting from the leading edge to the trailing edge)
along the board.

MATHEMATICAL FORMULATION

The schematic of the problem geometry, which consists of a vertical electronic
board with a flush-mounted discrete heat source, along with the system of co-
ordinates, is shown in Figure 1a. The electronic board is of height L and thickness t.
The board has a thermal conductivity ks and surface emissivity e. The discrete heat
source is of height Lh and thickness t, which is the same as that of the board itself.
The heat source is located at a distance L1 from the leading edge of the board. The
heat source here is traversable, i.e., it may take up any position along the board,
starting from its leading edge [i.e., L1 ¼ 0] to the trailing edge [i.e., L1 ¼ ðL� LhÞ].
Heat is generated in the discrete heat source at a uniform rate of qV W=m3, which
may be varied. The heat generated in the heat source is lost to the flowing fluid
(air) directly by buoyancy-aided mixed convection and surface radiation, as well as
indirectly by conduction into the board and by mixed convection and surface
radiation thereafter from the board surface. Air is considered to possess constant
thermophysical properties, with the Boussinesq approximation assumed valid. The
basic equations governing the fluid flow and heat transfer are the equation of
continuity, the two momentum equations, and the equation of energy. These
equations, in terms of primitive variables, are

qu
qx

þ qv
qy

¼ 0 ð1Þ

u
qu
qx

þ v
qu
qy

¼ � 1

r
qP
qx

þ g
rc
r
þ n

q2u
qx2

þ q2u
qy2

	 

� g ð2Þ

u
qv
qx

þ v
qv
qy

¼ � 1

r
qP
qy

þ n
q2v
qx2

þ q2v
qy2

	 

ð3Þ

u
qT
qx

þ v
qT
qy

¼ a
q2T
qx2

þ q2T
qy2

	 

ð4Þ

The Navier-Stokes equations, viz., Eqs. (2) and (3), are converted into stream
function–vorticity form, and this results in

u
qo0

qx
þ v

qo0

qy
¼ �gb

qT
qy

þ n
q2o0

qx2
þ q2o0

qy2

	 

ð5Þ
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Substitution of the definitions for u and v (in terms of c0) into the definition for o0

gives

q2c0

qx2
þ q2c0

qy2
¼ �o0 ð6Þ

Thus, the final set of governing equations for the present problem comprises the
vorticity–transport equation [Eq. (5)], the stream-function equation [Eq. (6)], and the
undisturbed energy equation [Eq. (4)]. The above governing equations are later
normalized, and during this normalization, since no obvious reference temperature
difference exists here, a modified reference temperature difference is introduced as

Figure 1. (a) Schematic of the problem geometry considered in the present study and (b) typical element

chosen for demonstrating energy balance.
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DTref ¼ qvLht=ks. This helps in defining a nondimensional temperature as
y ¼ T� T1ð Þ=DTref . The normalized governing equations turn out to be

U
qo
qX

þ V
qo
qY

¼ �Ri �L
qy
qY

þ 1

ReL

q2o
qX 2

þ q2o
qY 2

	 

ð7Þ

q2c
qX2

þ q2c
qY2

¼ �o ð8Þ

U
qy
qX

þ V
qy
qY

¼ 1

PeL

q2y
qX 2

þ q2y
qY 2

	 

ð9Þ

It is pertinent to note that the modified Richardson number (Ri�L) in Eq. (7) is based
on the modified reference temperature difference introduced above. Ri�L assumes the
role of the parameter governing mixed convection, with larger values of it signifying
free-convection dominance and smaller values of it implying the dominance of forced
convection. A value of Ri�L � 1 means the mixed-convection regime with buoyancy
and inertial forces becoming comparable.

COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS

The computational domain is extended beyond the trailing edge of the board
by a height equal to that of the board ðLÞ. The width ðWÞ of the computational
domain is taken equal to the board height (L) itself. The above dimensions for the
computational domain have been decided based on some initial studies, the results of
which will be summarized at a later stage. The computational domain, along with all
the boundary conditions therein, is as shown in Figure 2.

Since the fluid enters from the bottom with a uniform velocity u1, it follows
that ðqc=qYÞ ¼ 1 or c ¼ Y. The vorticity (o) is taken equal to zero along the bottom
boundary, which means the flow is irrotational there. With regard to temperature at
the bottom, since the fluid enters at uniform temperature T1, the nondimensional
temperature y¼ 0. The left boundary comprises two sections, the bottom half is the
vertical board itself (solid boundary), while the top half is the extended length (free
or open boundary). With regard to boundary conditions along the board, the stream
function (c) is taken equal to zero. For vorticity (o), the same condition as used by
Gururaja Rao et al. [13] is used, i.e., o ¼ �q2c=qY2. The temperature boundary
condition along the electronic board is derived using a simple energy balance. For
example, consider a typical element, pertaining to the region along the board
(excluding the bottom and top insulated ends), which possesses the discrete heat
source, is as shown in Figure 1b, along with various energy interactions it is involved
in. The energy balance on this element leads to

Qcond;x þ qv Dx t ¼ Qcond;ðxþDxÞ þQconv þQrad ð10Þ

Using Taylor’s series expansion for the first term on the right side of Eq. (10) and
substituting relevant expressions for the other terms, one gets
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Qcond;x þ qv Dx t ¼ Qcond;x þ
qQcond;x

qx
Dx

	 


þ �kf
qT
qy

	 

y¼0

Dx

" #
þ se T 4 � T 4

1
� �

Dx
� � ð11Þ

Simplification and appropriate nondimensionalization leads Eq. (11) to the gov-
erning equation for temperature distribution for the region along the board, without
the bottom and top insulated ends and possessing the discrete heat source, as

q2y
qX 2

þ g
qy
qY

	 

Y¼0

þAr1Ar2 � egNRF
T

T1

	 
4

�1

" #
¼ 0 ð12Þ

Figure 2. Computational domain used in the present study, along with boundary conditions.
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For the remainder of the board (other than the top and bottom ends), the energy
balance gives

q2y
qX 2

þ g
qy
qY

	 

Y¼0

�egNRF
T

T1

	 
4

�1

" #
¼ 0 ð13Þ

The governing equations for the temperatures of the bottom and top insulated ends
of the board, respectively, are obtained by making energy balance on the semi-
elements pertaining to these ends, and these turn out to be

qy
qX

	 

X¼0

þðDXÞX¼0

2
g

qy
qY

	 

Y¼0

þ Ar1Ar2

DX
2

� egNRF
DX
2

T

T1

	 
4

�1

" #
¼ 0 ð14Þ

qy
qX

	 

X¼1

�ðDXÞX¼1

2
g

qy
qY

	 

Y¼0

� Ar1Ar2

DX
2

þ egNRF
DX
2

T

T1

	 
4

�1

" #
¼ 0 ð15Þ

The third term in Eqs. (14) and (15), which corresponds to heat generation,
would be absent in all those cases, where the bottom and top ends do not form part
of the discrete heat source. It is to be remembered that the heat source in the present
problem is traversable and thus may or may not be at the ends of the board. With
regard to extended length, because of symmetry, the cross or horizontal velocity
ðVÞ ¼ 0. This means that ðqc=qXÞ ¼ 0, and this, in turn, implies that c is a constant
along the extended left boundary. Since c¼ 0 along the board, the same condition is
also used for the extended length of the left boundary. Based on the definition of o, it
follows that o¼ 0 on the extended left boundary, implying irrotationality condition.
With regard to temperature, ðqy=qYÞ ¼ 0 satisfies the symmetry condition. At the
top boundary, it is assumed that the stream function satisfies the fully developed
condition, viz., ðqc=qXÞ ¼ 0. For vorticity, since the computational domain is
extended well beyond the trailing edge of the board (by a height equal to the board
height) along the flow direction, irrotationality is satisfied along the top, which
implies o¼ 0. With regard to temperature (y), when the vertical velocity ðUÞ is
positive, the fully developed condition, viz., ðqy=qXÞ ¼ 0, is appropriate. Conversely,
when U is negative, indicating an incoming flow, the temperature is taken equal to
that of the free stream, implying y¼ 0. As far as the right free (open) boundary is
concerned, three different options are possible for specifying the stream function,
and all of them have been tried in the present study, to converge on the option that
best suites the entire mixed-convection regime. The first option is to assume the cross
velocity ðVÞ ¼ 0, implying ðqc=qXÞ ¼ 0. The second possibility is to consider the
vertical velocity (U)¼ 0, which means ðqc=qYÞ ¼ 0. Both of the above appear jus-
tifiable from a physical standpoint—the former in the asymptotic forced-convection
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limit and the latter in the asymptotic free-convection limit. However, since the
present study encompasses the whole range of mixed convection (forced, mixed, and
free), neither of the above conditions is appropriate. Instead, the best possible option
is a less restrictive condition on the stream function that is given as ðqU=qXÞ ¼
ðqV=qYÞ ¼ q2c=qXqY

� �
¼ 0. With regard to vorticity, since the right boundary is

far away from the board (by a distance equal to the board height), the flow can be
assumed irrotational, i.e., o¼ 0. Using similar arguments, the temperature on the
right boundary is equal to the free-stream temperature (T1 ) (i.e., y¼ 0).

GRID SYSTEM

The temperature variation along the electronic board depends on the height
ðLhÞ and also the position L1 of the discrete heat source, in addition to its depen-
dence on various other parameters as well. It is therefore imperative to discretize the
computational domain such that it mirrors the physics of the problem accurately.
There should always be a certain minimum number of closely packed grids near the
leading edge of the board from where the flow begins. A certain minimum number of
finer grids is needed along the discrete heat source as well, owing to the fact that the
temperature gradients will be larger there. The grid pattern along the board, beyond
the heat source, depends on the location of the heat source itself. In the extended
region, beyond the board, it suffices to have grids, which become gradually coarse.
Perpendicular to the board, it is adequate to have grids that are closely spaced near
the board and become gradually coarse away from the board. In view of the above
prerequisites the grid pattern has to satisfy, a hybrid grid system has been evolved.
Based on the results of a grid sensitivity test to be presented later, a grid size of
1216121 has been used. A semicosine function is chosen for generating the grids
perpendicular to the board (in the Y direction). Along the board, cosine grids are
used from the leading edge up to the discrete heat source, while semicosine grids are
used along the discrete heat source. Beyond the heat source, up to the trailing edge of
the board, the grids are generated using geometric progression. In the extended
domain, in the X direction, always a fixed number of 21 grids, generated using
geometric progression, are used, while there is no change in the grid pattern in the Y
direction.

METHOD OF SOLUTION

The normalized governing equations [Eqs. (7)–(9)] are nonlinear partial dif-
ferential equations, the solution for which is evolved in two stages. The first stage
involves transforming the governing equations into finite-difference equations using
a finite-volume-based finite-difference method of Gosman et al. [14]. The advection
terms in Eqs. (7) and (9) are tackled using second upwinding. The resulting algebraic
equations, together with the boundary conditions, are solved in the subsequent stage
using the Gauss-Seidel iterative procedure. Underrelaxation (relaxation para-
meter¼ 0.5) is used on stream function (c) and vorticity (o), while full relaxation
(relaxation parameter¼ 1) is used on temperature (y). Very stringent convergence
criteria (dc) of 56107 6, 16107 6, and 16107 6 have been imposed on vorticity (o),
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stream function (c), and temperature (y), respectively. Three-point formulas, using a
second-degree Lagrangian polynomial, are used for evaluating all the derivatives
present in all the boundary conditions, and also those derivatives that are needed in
the rest of the calculations. The integrations required in all the calculations are
performed using the extended Simpson’s 1=3 rule for nonuniform step sizes. The
velocities and temperatures in the entire computational domain [including non-
dimensional local board temperatures, ypðXÞ] are obtained as part of the solution.
The nondimensional maximum board temperature (ymax) is determined from the
local values of nondimensional temperature along the board. The nondimensional
average board temperature is evaluated as yav ¼

R 1

0 yP dX. The net convection heat
transfer rate from the board is calculated as QC ¼ �kf DTref

R 1

0 ðqy=qYÞY¼0 dX. The
net radiation heat transfer rate from the board is obtained as QR ¼ eNRFkf

DTref

R 1

0 1þ yP DTref=T1ð Þ½ �4�1
n o

dX. The mean friction coefficient is determined as

Cf ¼ 2=ReLð Þ
R 1

0
qU
qY

� �
Y¼0

dX.

All the calculations are performed using air (Pr¼ 0.71) as the cooling agent.
The height of the electronic board ðLÞ is taken to be 233.4 mm, which is typical of a
printed circuit board in practice. The thickness of the board ðtÞ is taken equal to
1.5 mm while the height of the discrete heat source ðLhÞ is taken equal to 1=8th the
board height (i.e., 29.2 mm). The heat source position is varied from the leading
edge (A1¼ 0) to the trailing edge (A1¼ 0.875) of the board, where A1 is the non-
dimensional position of the heat source given as ðL1=LÞ. The thermal conductivity of
the board material is varied between 0.25 and 1 W=m K, keeping in mind that the
thermal conductivity of electronic boards is typically of the order of unity (e.g.,
epoxy glass, with ks � 0:26W=mK). The board surface emissivity is varied between
0.05 (a good reflector, e.g., polished aluminum foil) and 0.85 (a good emitter, e.g.,
black paint). Before deciding on the appropriate range for Ri�L, the problem has been
solved for different values of Ri�L ¼ 2; 500, 250, 25, 1, 0.25, and 0.1, for a typical case
with qv¼ 106 W=m3, ks¼ 0.25 W=m K, and e ¼ 0:85. The nature of variation of the
maximum board temperature (ymax) with the position of the heat source (A1) has
been studied for all the above values of Ri�L. No significant change has been observed
in ymax between Ri�L ¼ 2,500 and 25. For example, for A1¼ 0, ymax decreases by only
3.3% as Ri�L decreases from 2,500 to 25. However, the decrease in ymax has been
found to be fairly large toward lower values of Ri�L. For example, for A1¼ 0, ymax

decreases by as much as 14.5% as Ri�L decreases from 0.25 to 0.1. The trends have
been observed to be similar for other positions of the heat source and for other
surface emissivities as well. Therefore, from the point of view of ymax, which is of
prime interest in applications such as cooling of electronic equipment,
0:1 � Ri�L � 25 has been considered the most appropriate range for Ri�L in all
calculations.

RESULTS AND DISCUSSION

Grid-Independence Test

To study the effect of grid size ðM�NÞ on the solution, a typical case with
qv¼ 56105 W=m3, A1¼ 0.4375 (heat source located at the center of the board),
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ks¼ 0.25 W=m K, E¼ 0.45, ReL¼ 1,275, and Ri�L ¼ 1 has been considered. The grid
independence has been tested in two stages—first with M fixed (to decide on the
value of N) and later with N fixed (to decide on the value of M). The results of
the above test are summarized in Table 1. The first stage of the study shows that the
difference in ymax between grid sizes 1216121 and 1216141 is only 0.06%, while the
difference in Cf between the same grid sizes is 0.62%. The results of the second stage
of the grid-independence test performed keeping N fixed reveal that the differences
in the values of ymax and Cf between grid sizes 1216121 and 1416121 are 0.07%
and 0.54%, respectively. In view of the above, M and N have both been fixed as 121
for all the subsequent calculations pertaining to the present study.

Effect of Height and Width of the Computational Domain

To analyze the role the height (H) of the computational domain plays in the
present problem, results have been obtained for the same typical case as considered
in the foregoing grid-independence test, by solving the problem with computational
domains of different heights. It has been noticed that the difference in ymax between
H=L ¼ 2 and ¼ 2.5 is 0.71%, while the difference in Cf between the same two values
of H=L is only 0.04%. Because of these results, a computational domain of height
H ¼ 2L has been used for all the subsequent computations for this problem. With
regard to width ðWÞ of the computational domain, similar studies have been made
and a value of W ¼ L has been found to be adequate for making calculations.

Testing the Results for Mass and Energy Balance

The results of the present problem have been tested for mass and energy bal-
ance. This is done by comparing the mass inflow with the mass outflow and the total
rate of heat transfer by mixed convection and surface radiation with the total rate
at which heat is generated in the heat source, respectively. A typical case with
qv¼ 56105 W=m3, ks¼ 0.5 W=m K, E¼ 0.45, ReL¼ 2,250, and Ri�L ¼ 1 has been
considered. As many as 13 different locations for the heat source (0�A1� 0.875) are
chosen, starting from the leading edge to the trailing edge of the electronic board.
The mass balance and the energy balance are found to be satisfactory, with the

Table 1. Grid-independence test to decide the values of M and Na

Stage

Grid size,

M6N ymax

Percentage

change (abs.) Cf

Percentage

change (abs.)

(1) M fixed at 121, 1216101 1.0429 — 0.0642 —

N varied 1216121 1.0348 0.78 0.0648 0.86

1216141 1.0355 0.06 0.0644 0.62

(2) N fixed at 121, 1016121 1.0357 — 0.0652 —

M varied 1216121 1.0348 0.09 0.0648 0.57

1416121 1.0341 0.07 0.0644 0.54

aL¼ 233.4 mm, t¼ 1.5 mm, Lh¼ 29.2 mm, A1¼ 0.4375, qv¼ 56105W=m3, ks¼ 0.25 W=m K, e¼ 0.45,

kf¼ 0.03 W=m K, ReL¼ 1,275, and Ri�L ¼ 1.
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maximum deviations limited to � 0.008% and � 3.92%, respectively. Similar
observations hold with regard to other cases considered in the present study.

Validation

The fluid flow and heat transfer results of the present problem are validated
with available analytical results in the asymptotic limits. In order to be able to do
this, the present complex problem of an electronic board with longitudinally varying
surface temperature (owing to discrete internal heat generation followed by con-
duction with subsequent convection and surface radiation) is degenerated to the
limiting case of an isothermal electronic board. Later, the results for the asymptotic
forced-convection limit are verified against the well-known exact solutions of Blasius
[15] and Pohlhausen [16]. The calculations in the asymptotic free-convection limit are
validated with the exact solution of Ostrach [17]. The mean friction coefficient cal-
culation is validated with that of Blasius [15] in the asymptotic forced-convection
limit.

Validation for velocity and temperature. The nondimensional vertical
velocity ðUÞ and temperature (y) profiles at the trailing edge of the electronic board
are compared with those of Blasius [15] and Pohlhausen [16] in the asymptotic
forced-convection limit (RiL¼ 107 5 ), as shown in Figure 3a. In the asymptotic
free-convection limit (RiL¼ 105), on the other hand, the comparison is made with
reference to Ostrach [17], as shown in Figure 3b. The above two plots [Figure 3a
and 3b] are drawn for Pr¼ 1. The figures reveal that the present results, though
obtained for the asymptotic limiting cases, are in fairly good agreement with the
forced-convection and free-convection results of Blasius-Pohlhausen and Ostrach,
respectively.

Validation for mean friction coefficient. The validation for Cf has been
done for the asymptotic forced-convection limit (RiL¼ 107 5) with the exact solution
of Blasius [15]. Excellent agreement between the two has been found. Also, based on
a set of 21 data, obtained from the present study, encompassing a wide range of
Reynolds numbers (0.0166105�ReL� 1.66105), a single-variable correlation for
Cf has been developed as Cf ¼ 1:276Re�0:5

L . The Cf determined from this correlation
differs from that obtained using the Blasius solution [Cf ¼ 1:328Re�0:5

L ] by only
3.9% for all Reynolds numbers.

Validation for local Nusselt number. In order to further validate the heat
transfer results of the present problem for the limiting case of an isothermal electro-
nic board, a local Nusselt number Nux has been defined as Nux¼ (hxx=k). Figure 4
shows the variation of local Nusselt number (Nux) along the electronic board for the
case with Pr¼ 1 and GrL¼ 106 in the asymptotic forced- and free-convection limits,
with RiL¼ 107 5 and 105, respectively. The figure shows absolute agreement between
the present results and the exact analytical solution of Pohlhausen [16] and Ostrach
[17], respectively. It can also be observed that the local Nusselt number (Nux)
decreases monotonically along the board from the leading edge to the trailing edge

946 C. GURURAJA RAO



Figure 3. Comparison of nondimensional vertical velocity and temperature profiles from the present study

with available analytical results in the asymptotic (a) forced and (b) free-convection limits.
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in both cases. A small increase in Nusselt number near the trailing edge can be seen
in the results of the present study, which could be attributed to the sudden change in
the temperature boundary condition along the left free (or open) extended boundary,
beyond the trailing edge of the board.

Variation of Local Board Temperature with Other Parameters

Temperature distribution along the board is of prime interest in the present
problem. This depends on the rate of volumetric heat generation in the discrete heat
source ðqvÞ, the location of the heat source ðL1Þ, the thermal conductivity ðksÞ, the
surface emissivity (E), and the free-stream velocity (u1 ) (or, in other words, Ri�L).

Figure 5 shows the local board temperature ½yPðXÞ� profiles for the case where
the heat source is positioned at the center of the board (i.e., A1¼ 0.4375), with
qv¼ 56105 W=m3, ks¼ 0.5 W=m K and E¼ 0.85. The free-stream velocity is varied
to cover four values of Ri�L (viz., 25, 1, 0.25, and 0.1). From the figure, it can be seen
that the board temperature increases gently near the leading edge and then rises
sharply to a maximum at a location near the center of the board. Again, the tem-
perature drops sharply to some lower value, and from there on, it undergoes an
asymptotic decrease toward the trailing edge of the board. The temperature will be

Figure 4. Comparison of local Nusselt number along the board in the asymptotic forced- and free-

convection limits with the available analytical results.
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reasonably large even at the trailing edge of the board. Further, excluding some
initial distance from the leading edge, where the temperatures are very close to the
ambient, temperature at any location along the board decreases with increasing ReL
or (decreasing Ri�L). This is because of the increase in the rate of convection heat
transfer as one moves from the free-convection-dominant regime (Ri�L ¼ 25) to the
forced-convection-dominant regime (Ri�L ¼ 0:1). For example, the peak board tem-
perature comes down by about 29% as Ri�L decreases from 25 to 0.1, with all other
parameters held fixed, in the specific example considered in Figure 5.

Figure 6 shows a family of local board temperature profiles for the case with
the same values of A1, qv, and ks as in Figure 5, but with u1chosen such that, for all
the curves, ReL¼ 250 and Ri�L ¼ 25. The plots are drawn for three different values of
surface emissivity (viz., E¼ 0.05, 0.45, and 0.85). The figure shows that at any given
location along the board, the temperature decreases with E. This is because the rate
of heat transfer by radiation increases with E, thus bringing down the board tem-
perature. For example, the peak temperature in the board decreases by about 28% as
its surface emissivity (E) increases from 0.05 to 0.85.

It is to be noted that all the curves in Figures 5 and 6 correspond to a single
position of the discrete heat source, wherein the heat source is located at the board
centre (i.e., A1¼ 0.4375). In view of this, a family of curves has been drawn, as shown

Figure 5. Nondimensional local board temperature profiles for a given heat source position and for

different Richardson numbers.
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in Figure 7, depicting the nature of variation of local temperature [yP(X)] along the
board, for five different positions of the discrete heat source, viz., A1 [or (L1=L)]¼ 0,
0.05, 0.4375, 0.825, and 0.875. The curves pertaining to Figure 7 are plotted for the
case with qv¼ 105 W=m3, ks¼ 0.5 W=m K, E¼ 0.45, ReL¼ 1,800, and Ri�L ¼ 0:1. It
can be seen from the figure that the value of the maximum board temperature, as
well as the location at which the maximum occurs, will vary with the position (A1)
of the heat source. Further, the peak temperature increases as the heat source is
traversed from the leading edge to the trailing edge of the board.

Variation of Maximum Board Temperature with Other Parameters

A study of the variation of maximum board temperature (ymax) with the po-
sition of the discrete heat source along the board indicates the best possible location
for the heat source from the viewpoint of minimizing the maximum temperature
attained by the board under a given set of operating conditions.

In this context, Figure 8 shows a family of curves giving the variation of ymax

with A1 for four values of free-stream velocity (and hence four values of Ri�L, viz., 25,
1, 0.25, and 0.1). It may be noted that A1 represents the position of the beginning of
the discrete heat source, and the maximum possible value for A1 is 0.875. It may also
be noted that the plot does not indicate the location along the board at which ymax

Figure 6. Nondimensional local board temperature profiles for a given Richardson number and for

different surface emissivities.

950 C. GURURAJA RAO



occurs. Instead, it gives the values of ymax the board assumes for different positions
of the heat source. These curves correspond to qv¼ 106 W=m3, ks¼ 0.25 W=m K,
and E¼ 0.85. From the figure, it is clear that there is a sharp increase in ymax from
A1¼ 0 to A1¼ 0.05 and again from A1¼ 0.825 to A1¼ 0.875. There is a considerably
slower rate of increase in ymax for A1 between 0.05 and 0.825. As Ri�L decreases from
25 to 0.1, the amount by which ymax increases between the positions A1¼ 0.05 and
A1¼ 0.825 also increases. In the case considered here, the increase in ymax, between
A1¼ 0.05 and A1¼ 0.825, for Ri�L ¼ 25, is only 6.5%, while that for Ri�L ¼ 0.1 is about
24%. The figure also shows that ymax decreases with increasing u1 (and hence in-
creasing ReL) or decreasing Ri�L, for any given position A1, for reasons already given.
The figure clearly indicates that the best possible position for the heat source is
A1¼ 0 (the leading edge of the board), as would be expected. The least preferred
position is A1¼ 0.875 (the heat source ending on the trailing edge of the board) for
all values of Ri�L. In the present example, for Ri�L ¼ 0.1 (asymptotic forced convection
limit for this problem), ymax increases by as much as 51% as the heat source
moves from A1¼ 0 to A1¼ 0.875. Similar trends are observed for other values of Ri�L
as well.

Figure 7. Nondimensional local board temperature profiles for a given Richardson number and for

different positions of the heat source along the board.
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To study the effect of surface emissivity (E) of the electronic board on ymax in
the range of Richardson numbers (0:1 � Ri �L � 25) considered in the present study, a
set of curves has been drawn as shown in Figure 9. These curves pertain to the case
with qv¼ 106 W=m3, ks¼ 0.25 W=m K, and are plotted for three values of Ri�L (viz.,
25, 1, and 0.1) and two values of E (viz., 0.05 and 0.85). It can be seen from the figure
that ymax decreases as E increases for a given Ri�L (or u1 ). In the example taken here,
for Ri�L ¼ 1, ymax for A1¼ 0 decreases by 17%, while that for A1¼ 0.875 decreases by
25%, as E increases from 0.05 to 0.85. Another important feature is that the effect of
E on ymax is more pronounced in the free-convection-dominant regime (1 < Ri�L �
25) than in the forced-convection-dominant regime ð0:1 � Ri�L � 1Þ. In the present
example, for Ri�L ¼ 25 (asymptotic free convection limit), ymax for A1¼ 0.875 de-
creases by as much as 27.9% as E increases from 0.05 to 0.85. While for Ri�L ¼ 0.1
(asymptotic forced-convection limit), ymax for the same heat source position (viz.,
A1¼ 0.875) decreases by a smaller percentage of 17.8% as E increases between the
same limits (i.e., from 0.05 to 0.85).

Relative Contributions of Convection (Free and Forced) and Surface
Radiation to Heat Dissipation from the Electronic Board

The heat generated in the discrete heat source is dissipated from the right
surface of the board by convection (which includes free and forced convection) and

Figure 8. Variation of maximum nondimensional board temperature with Richardson number for various

positions of the heat source along the board.
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surface radiation. It is interesting to study the role that radiation plays in compar-
ison to convection in the present problem.

Figure 10 shows the relative contributions of convection and radiation,
drawn against A1, for Ri�L ¼ 25, 1, and 0.1, for the case qv¼ 106 W=m3, ks¼ 0.25
W=m K, and E¼ 0.85. The most striking feature that is noticeable from Figure 10
is the behavior of the two curves pertaining to Ri�L ¼ 25 (asymptotic
free-convection limit). It is seen that convection heat transfer decreases from 45%
for A1¼ 0 to about 41.5% for A1¼ 0.05, but from then increases monotonically
to a maximum of 65% for A1¼ 0.875. An exact mirror-image variation is noticed
for radiation, which increases from 55% for A1¼ 0 to about 58.5% for A1¼ 0.05,
and then decreases monotonically to a minimum of 35% for A1¼ 0.875. These
two curves cross each other at A1¼ 0.625, which denotes equal contributions to
heat transfer by convection and radiation. Similar trends are observed for Ri�L ¼ 1
and 0.1. Figure 10 also clearly shows the role that surface radiation plays in all
three (free-convection-dominant, mixed-convection-dominant, and forced-convec-
tion dominant) regimes. As expected, there is a continuous decrease in the con-
tribution from radiation as one moves from the asymptotic free-convection limit
to the asymptotic forced-convection limit. In the present example, in the
asymptotic free-convection limit (Ri�L ¼ 25), radiation is significant, with max-
imum and minimum contributions of 58.5% and 35%, respectively, depending on
the position (A1) of the heat source. Even in the asymptotic forced-convection

Figure 9. Variation of maximum nondimensional board temperature with surface emissivity for various

positions of the heat source along the board.
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limit (Ri�L ¼ 0:1), where convection is expected to override radiation, the latter
plays a fairly important role, with maximum and minimum contributions of
30.5% and 18.5%, respectively. In the mixed-convection regime (i.e., Ri�L ¼ 1), the
maximum and minimum contributions of radiation fall in between those for the
above two extremes. They have been found to vary between 44.5% and 28.3%,
respectively, in the present example, depending the position of the heat source
along the board.

To isolate the role of radiation further, the present problem has been solved for
three typical surface emissivities (E¼ 0.05, 0.45, and 0.85) for the case qv¼ 106 W=m3,
ks¼ 0.25 W=m K, ReL¼ 2,500, and Ri�L ¼ 1. The results are shown in
Figure 11. It can be seen that the dominant mode of heat transfer for E¼ 0.05 (a good
reflecting surface, such as polished aluminum) is convection, with very little
contribution from radiation. In the present example, for the case where the heat
source is located at the center of the board (A1¼ 0.4375), for E¼ 0.05, convection
takes away as much as 96% of the heat generated, while radiation contributes to a
mere 4%. The contribution by radiation increases with emissivity, with a propor-
tionate decrease in that by convection. In the present example, for the case where the
heat source is positioned at A1¼ 0.25, the radiation heat transfer is 4.5% only for
E¼ 0.05. It increases to 30% for E¼ 0.45, while, for E¼ 0.85, the radiation con-
tribution is as much as 45%, implying a 10-fold increase compared to the case of
E¼ 0.05.

Figure 10. Variation of relative contributions of convection and surface radiation to heat dissipation from

the board with heat source position in different regimes of mixed convection.
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CONCLUSIONS

An exhaustive numerical study of the problem of buoyancy-aided mixed
convection, with conduction and surface radiation, from a vertical electronic board,
possessing a flush-mounted, traversable discrete heat source, has been made. From
the viewpoint of minimizing the maximum board temperature, the best position for
the heat source is the leading edge of the board, and the maximum board
temperature increases as the heat source moves away from the leading edge. The
least advisable position for the heat source is the trailing edge of the board, as it is
found to increase ymax by 35–50%, when compared to that for the case where the
heat source starts from the leading edge of the board. The peak temperature, for any
Ri�L and for given values of qv and ks, decreases with increasing E. However, the
degree of decrease of ymax with E decreases as one moves from the free-convection
limit (Ri�L ¼ 25) to the forced-convection limit (Ri�L ¼ 0.1). Radiation is found to
assume a significant role in all regimes of mixed convection. For example, for
E¼ 0.85, for Ri�L ¼ 25, radiation contributes 35–60% to heat transfer, depending on
heat source position. For the same E¼ 0.85, for Ri�L ¼ 1 and 0.1, the radiation con-
tributions have been found to be 28–45% and 18–30%, respectively. For a given Ri�L,
convection is found to play a dominant role, taking away as much as 90–95% of the
heat in the case of a good reflecting surface (E¼ 0.05), with radiation having an
insignificant role. However, the radiation contribution increases with E for the same
Ri�L. It may be as much as 45–50%, depending on the heat source position, for a
good emitting surface (E¼ 0.85).

Figure 11. Variation of relative contributions of convection and surface radiation to heat dissipation from

the board with heat source position for different surface emissivities.

VERTICAL ELECTRONIC BOARD WITH A TRAVERSABLE DISCRETE HEAT SOURCE 955



REFERENCES

1. A. E. Zinnes, The Coupling of Conduction with Laminar Natural Convection from

a Vertical Flat Plate with Arbitrary Surface Heating, ASME J. Heat Transfer, vol. 92,
pp. 528–534, 1970.

2. S. S. Tewari and Y. Jaluria, Mixed Convection Heat Transfer from Thermal Sources

Mounted on Horizontal and Vertical Surfaces, ASME J. Heat Tansfer, vol. 112, pp. 975–
987, 1990.

3. M. A. Gorski and O. A. Plumb, Conjugate Heat Transfer from an Isolated Heat Source

in a Plane Wall, Proc. Winter Annual Meeting of the American Society of Mechanical
Engineers, ASME HTD–210, pp. 99–105, 1992.

4. K. Kishinami, H. Saito, and J. Suzuki, Combined Forced and Free Laminar Convective
Heat Transfer from a Vertical Plate with Coupling of Discontinuous Surface Heating,

Int. J. Numer. Meth. Heat Fluid Flow, vol. 5, pp. 839–851, 1995.
5. K. Kishinami, H. Saito, J. Sujuki, A. H. H. Ali, H. Umeki, and N. Kitano, Fundamental

Study of Combined Free and Forced Convective Heat Transfer from a Vertical Plate

Followed by a Backward Step, Int. J. Numer. Meth. Heat Fluid Flow, vol. 8, pp. 717–736,
1998.

6. M. A. Hossain and H. S. Takhar, Radiation Effect on Mixed Convection along a Vertical

Plate with Uniform Surface Temperature,Heat Mass Transfer=Waerme- und Stoffuebertr.,
vol. 31, pp. 243–248, 1996.

7. M. Vynnycky, and S. Kimura, Conjugate Free Convection due to a Heated Vertical Plate,

Int. J. Heat Mass Transfer, vol. 39, pp. 1067–1080, 1996.
8. J. H. Merkin and I. Pop, Conjugate Free Convection on a Vertical Surface, Int. J. Heat

Mass Transfer, vol. 39, pp. 1527–1534, 1996.
9. K. D. Cole, Conjugate Heat Transfer from a Small Heated Strip, Int. J. Heat Mass

Transfer, vol. 40, pp. 2709–2719, 1997.
10. H. Y. Wang, F. Penot, and J. B. Sauliner, Numerical Study of a Buoyancy-Induced Flow

along a Vertical Plate with Discretely Heated Integrated Circuit Packages, Int. J. Heat

Mass Transfer, vol. 40, pp. 1509–1520, 1997.
11. S. Kimura, A. Okajima, and T. Kiwata, Conjugate Natural Convection from a Vertical

Heated Slab, Int. J. Heat Mass Transfer, vol. 41, pp. 3203–3211, 1998.

12. F. Mendez and C. Trevino, The Conjugate Conduction-Natural Convection Heat
Transfer along a Thin Vertical Plate with Non-uniform Internal Heat Generation, Int. J.
Heat Mass Transfer, vol. 43, pp. 2739–2748, 2000.

13. C. Gururaja Rao, C. Balaji, and S. P. Venkateshan, Numerical Study of Laminar Mixed

Convection from a Vertical Plate, Int. J. Transport Phenomena, vol. 2, pp. 143–157, 2000.
14. A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfshtein, Heat and

Mass Transfer in Recirculating Flows, pp. 89–137, Academic Press, New York, 1969.

15. H. Blasius, Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Math. Phys., vol. 56,
p. 1, 1908.

16. E. Pohlhausen, Der Warmeaustausch Zwischen festen Korpern und Flussigkeiten mit

kleiner Warmeleitung, Z. Angew. Math. Mech., vol. 1, p. 115, 1921.
17. S. Ostrach, An Analysis of Laminar Free Convection Flow and Heat Transfer about a

Flat Plate Parallel to the Generating Body Force, Rep. NACA-1111, 1953.

956 C. GURURAJA RAO


