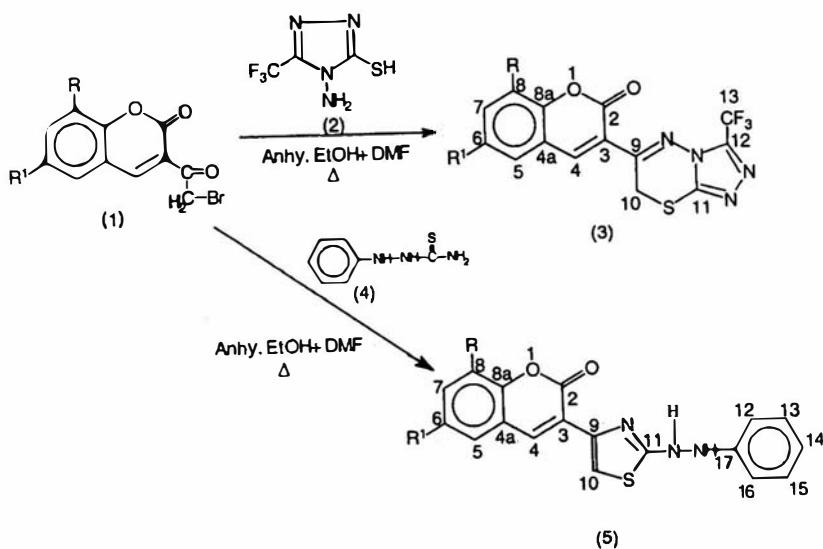


Note

A facile one step synthesis of some 3-trifluoromethyl-7*H*-6(6/8, 6,8-disubstituted-3-coumarino)-*s*-triazolo[3,4-*b*][1,3,4]-thiadiazines and 3-(2-phenyl hydrazinothiazolyl) coumarins

V Ravi Kumar & V Rajeswar Rao*


Department of Chemistry, Regional Engineering College,
Warangal 506 004 (A.P.), India

Received 16 November 1999; accepted (revised) 8 December 2000

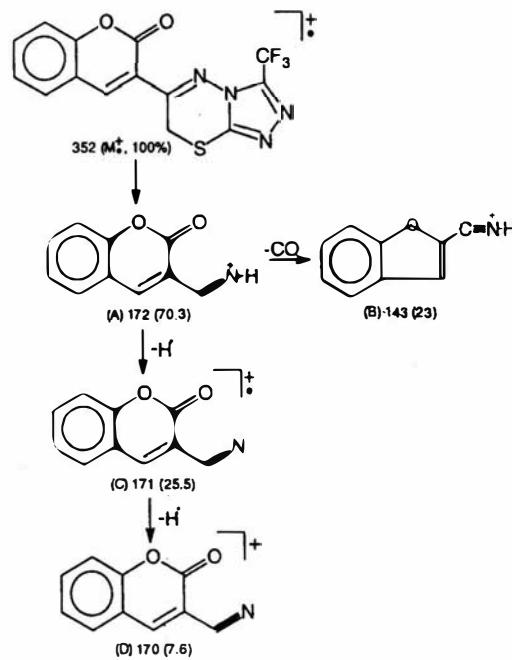
3-Trifluoromethyl-7*H*-6(6 or 8, or 6,8-disubstituted-3-coumarino)-*s*-triazolo [3,4-*b*][1,3,4] thiadiazines 3 have been prepared from simple condensation of appropriate 3-trifluoromethyl-4-amino-5-mercaptop-1,2,4-triazole 2 with various 3(2-bromoacetyl)coumarins in anhyd. ethanol and dimethyl formamide. Some 3-(2-phenyl hydrazino-4-thiazolyl) coumarins 5 have also been prepared by the condensation of 3-(2-bromoacetyl) coumarins 1 and *N*¹-phenyl thiosemicarbazide 4 in anhyd. ethanol and dimethyl formamide.

Coumarin nucleus is found in a variety of natural products exhibiting various pharmacological effects. Derivatives of coumarin also form component of important drugs having varied properties. There are excellent monographs and review articles¹⁻⁵ describing the structure, synthetic reactions and properties of coumarins. Numerous reports have appeared in the literature describing antimicrobial^{6,7},

antiradiation^{8,9} and antiparasitic¹⁰ properties of thiazole ring. Various 1,2,4-triazoles and *N*-bridged heterocycles derived from them are found to be associated with diverse pharmacological activity¹¹⁻¹⁶. The 1,2,4-triazole nucleus has been recently incorporated into wide variety of therapeutically interesting drugs including H₁/H₂ histamine receptor blockers, cholinesterase active agents, CNS stimulants, antianxiety agents and sedatives¹⁷. Prompted by the above observations and in continuation of our search for biologically active¹⁸⁻²⁰ nitrogen and sulphur heterocycles it was contemplated to synthesize these heterocyclic coumarins. The 3-trifluoro methyl 7*H*-6(6 or 8 or 6,8 disubstituted 3-coumarino-*s*-triazolo [3,4-*b*][1,3,4] thiadiazines 3a-i were synthesized by condensing 3-trifluoromethyl-4-amino-5-mercaptop-1,2,4-triazole 2 with 3-(2-bromoacetyl)coumarins 1 in equal volumes of anhyd. ethanol and dimethyl formamide (Scheme I). All the compounds displayed strong absorption bands due to -C=N- and lactone carbonyl of coumarin absorptions at 1606 and 1716 cm⁻¹ respectively. The ¹H-NMR (CDCl₃, δ ppm) spectrum of 3a showed the singlet for two protons at 4.21, corresponds to those of -S-CH₂- of the thiadiazine ring. Apart from this peak, other characteristic signals at 7.39 to 7.44 (m, 2H, H₆ and H₈), 7.69 to 7.74 (m, 2H, H₅ and H₇) and 8.44 (s, 1H, coumarin C₄) is also in accordance with the proposed

Scheme I

Table I— ^{13}C -NMR spectral data of **3a**


Carbon No.	Chemical shift value (δ ppm)	Carbon No.	Chemical shift value 5a (δ ppm)
2	159.07	2	165.05
3	118.78	3	115.66
4	122.70	4	142.35
4a	126.01	4a	118.84
5	121.00	5	127.91
6	125.86	6	127.61
7	130.78	7	131.03
8	116.96	8	127.80
8a	154.68	8a	153.02
9	134.88	9	147.05
10	24.92	10	115.66
11	156.46	11	173.00
12	145.84	12	114.03
13	110.00	13	128.66
		14	124.04
		15	128.60
		16	114.03
		17	158.48

structure. The ^{13}C -NMR (DMSO- d_6) of **3a**, recorded on a Varian dpx 200 NMR spectrometer, displayed 14 signals. The signal assignments are based on the values for model compounds. The signals at downfield 159.07, 156.46, 154.68 and 145.84 corresponds to C₂, C₁₁, 8a and C₁₂ respectively. The signals at different values of coumarin nucleus are in good agreement with literature values²³. **Table I** indicates the detailed assignment of ^{13}C signals.

In the mass spectrum the molecular ion has been recorded at m/z 352 and is accompanied by the characteristic M+2 peak. This indicates the presence of one sulphur atom. In the fragmentation, the molecular ion gives the characteristic fragment of protonated 3-cyano coumarin (A) at m/z 172. Fragment 'A' loses carbon monoxide to give B at m/z 143. Fragment 'A' loses hydrogen to give ion radical 'C' at m/z 171. The fragment 'C' by loss of hydrogen radical gives a fragment 'D' at m/z 170. The detailed fragmentation pattern of the spectrum is given in the mass spectrum **Chart 1**.

The 3-(2-phenyl hydrazino-4-thiazolyl) coumarins **5a-g** were synthesized by condensing 3-(2-bromoacetyl)coumarins **1** with *N*⁴-phenyl thiosemicarbazide **4** in anhyd. ethanol and dimethyl formamide.

Compound **5a** exhibited in its IR (KBr) spectrum bands at 1404 to 1608 (thiazole)²⁴, 1718 (lactone carbonyl) and 3310 cm^{-1} (-NH-streching vibration). ^1H NMR (CDCl_3) : δ 7.00 – 8.00 (m, 9H, Ar-H), 8.35 (s, 1H, C₄ of coumarin) and 10.2 (s, 2H, -NH-NH-, D_2O exchangeable). The ^{13}C NMR spectrum of **5a**

Chart 1

recorded on a Brucker 200 MHz instrument, displayed 18 signals. The most downfield signal of spectrum was observed at 173 of C₂ of thiazole. The peak at 165.05 in the spectrum may be assignable to the lactone carbonyl. The signals at 147.05, 115.66 and 173.00 are in good agreement with the values recorded for C₉, C₁₀ and C₁₁ of thiazole nucleus. The signals at different values for the coumarin nucleus are in good agreement with literature values. **Table I** indicates the detailed assignment of ^{13}C signals.

In the mass spectrum, the molecular ion of 3-(2-phenyl hydrazino-4-thiazolyl) coumarin was recorded at m/z 335. The molecular ion splits up to give a fragment (A) at m/z 224. Molecular ion gives ion radical (B) at m/z 146. This loses hydrogen radical to give an ion (C) at m/z 145. Molecular ion decomposes to give ion (E) at m/z 43. This ion forms the base peak of the spectrum (**Chart 2**).

Experimental Section

All melting points were determined in open capillary tubes using sulphuric acid bath and are uncorrected. IR spectra (ν_{max} , cm^{-1}) were recorded on Perkin Elmer-282 instrument and ^1H NMR spectra on a Varian 200 MHz spectrometer using tetramethyl silane as internal standard (chemical shift values are expressed in δ , ppm). Mass spectra were scanned on a Jeol-JMS-300 spectrometer at 70 eV. The purity of compounds was monitored by TLC performed on

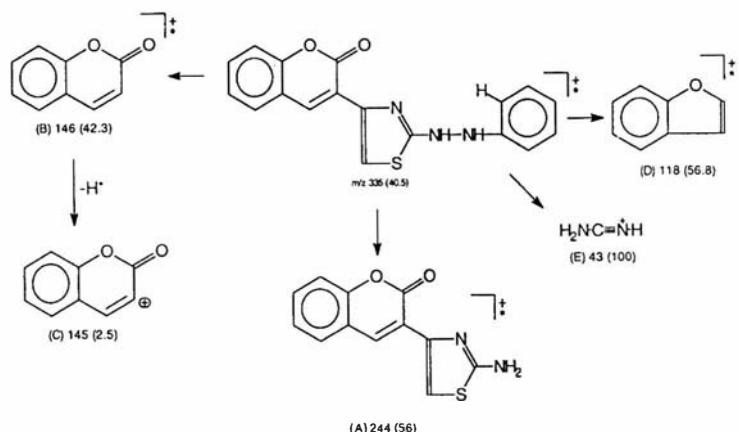


Chart 2

Table II—Analytical and physical data of compounds 3 and 5

Compd	m.p. (°C)	Yield (%)	Recrystallized from	Mol. formula (M. wt.)	Found (Calcd)%	
					N	S
3a	R=R ¹ =H	220-22	80	aq. DMF	C ₁₄ H ₇ N ₄ F ₃ O ₂ S (352)	15.88 (15.90)
3b	R=OCH ₃ , R ¹ =H	230-32	78	aq. DMF	C ₁₅ H ₉ N ₄ F ₃ O ₃ S (382)	14.63 (14.65)
3c	R=H, R ¹ =Br	241-42	80	aq. DMF	C ₁₄ H ₆ N ₄ Br ₂ F ₃ O ₂ S (431)	12.95 (12.99)
3d	R=R ¹ =Br	228-30	82	aq. DMF	C ₁₄ H ₅ N ₄ Br ₂ F ₃ O ₂ S (510)	10.95 (10.98)
3e	5,6-Benzo	222-24	82	aq. DMF	C ₁₈ H ₉ N ₄ F ₃ O ₂ S (402)	13.90 (13.93)
3f	R=H, R ¹ =Cl	220-22	75	aq. DMF	C ₁₄ H ₆ N ₄ ClF ₃ O ₂ S (368.5)	14.45 (14.48)
3g	R=R ¹ =Cl	180-82	70	aq. DMF	C ₁₄ H ₅ N ₄ Cl ₂ F ₃ O ₂ S (421)	13.27 (13.30)
3h	R=OCH ₃ , R ¹ =Br	218-20	75	aq. DMF	C ₁₅ H ₈ N ₄ BrF ₃ O ₂ S (461)	12.11 (12.14)
3i	R=OCH ₃ , R ¹ =NO ₂	218-20	75	aq. DMF	C ₁₅ H ₈ N ₅ F ₃ O ₅ S (427)	16.37 (16.39)
5a	R=R ¹ =H	258-60	70	CH ₃ OH	C ₁₈ H ₁₃ N ₃ O ₂ S (335)	12.51 (12.53)
5b	R=OCH ₃ , R ¹ =H	128-30	75	CH ₃ OH	C ₁₉ H ₁₅ N ₃ O ₃ S (365)	11.47 (11.50)
5c	R=H, R ¹ =Br	140-42	72	C ₆ H ₆	C ₁₈ H ₁₂ N ₃ BrO ₂ S (414)	10.12 (10.14)
5d	R=R ¹ =Br	147-49	73	C ₆ H ₆	C ₁₈ H ₁₁ N ₃ Br ₂ O ₂ S (493)	8.48 (8.51)
5e	R=H, R ¹ =Cl	134-36	71	CH ₃ OH	C ₁₈ H ₁₂ N ₃ ClO ₂ S (369.5)	11.34 (11.36)
5f	R=R ¹ =Cl	110-12	76	C ₆ H ₆	C ₁₈ H ₁₁ N ₃ Cl ₂ O ₂ S (404)	10.36 (10.39)
5g	5,6-Benzo	132-34	72	C ₆ H ₆	C ₂₂ H ₁₅ N ₃ O ₂ S (385)	10.89 (10.90)

silica gel plates (Merck) using benzene and acetone (3:1) solvent. 3-Trifluoro-4-amino-5-mercaptop-1,2,4-triazole²¹ 2 and 3-(2-bromoacetyl) coumarins²² were prepared according to the literature procedure.

Synthesis of 3-trifluoro-7H-6-(6 or 8 or 6,8-disubstituted-3-coumarino)-s-triazolo[3,4-b][1,3,4]-

thiadiazines 3. An equimolar mixture of 3-trifluoro-4-amino-5-mercaptop-1,2,4-triazole (0.01 mole) and 3-(2-bromoacetyl) coumarin (0.01 mole) in anhyd. ethanol and dimethyl formamide (10 mL each) was heated under reflux for 2 hr. The reaction mixture was then cooled to room temperature. The precipitated

solids were collected by filtration, washed with ethanol, dried and recrystallized viz. **Table II**.

Synthesis of 3-(2-phenyl hydrazino-4-thiazolyl)-coumarin 5. A mixture of *N*⁴-phenyl thiosemicarbazide (0.01 mole) and 3-(2-bromoacetyl) coumarin (0.01 mole) was refluxed in either equal volumes of anhyd. ethanol and dimethyl formamide or in anhyd. ethanol and catalytical amounts of piperidine for 2 hr. The reaction mixture was cooled, the solid separated was filtered and crystallized viz. **Table II**.

Acknowledgement

The authors express their sincere thanks to the Principal, Regional Engineering College, Warangal for providing research facilities.

References

- 1 Wawzonek S, *Heterocyclic compounds*, (John Wiley, New York), **1975**, 2, 173.
- 2 Dean F M, *Naturally occurring oxygen ring compounds*, (Butter Worths, London), **1963**, 176.
- 3 Livingstone R, *Rod's Chemistry of carbon compounds*, Vol. 4, 2nd Edn (Elsevier, Amsterdam), **1996**.
- 4 Karritzky A R & Rees. C W, *Comprehensive heterocyclic chemistry*, Vol. 3 (Pergaman Press, Oxford), **1984**.
- 5 Starnoton J, *Comprehensive organic chemistry*, Vol. 4, edited by D H R Barton & W D Ollis (Pergaman Press, Oxford), **1979**, 629.
- 6 Friendmann M D, Stoller P L, Porter T H & Folkevs K J, *J Med Chem*, **16**, 1973 1314.
- 7 Hamamam A S & El-Kasher H S, Egyptian Pharmaceutical Congress Cario, 7-10 Dec, **1975**.
- 8 Westl R D, Lin M H, Cooley (Jr) R A, Zuviester M L & Grenan M M, *J Med Chem*, **16**, 1973, 328.
- 9 Furmer P S, Heung C C & Luie M K, *J Med Chem*, **16**, 1973, 411.
- 10 Ross W J, Jamieron W R & Mc Lower M C, *J Med Chem*, **16**, 1973, 347.
- 11 Walser A, Flynn T & Musan C, *J Heterocycl Chem*, **28**, 1991, 1121.
- 12 Hirota T, Sajaki K, Yumamoto H & Nakayama T, *J Heterocycl Chem*, **28**, 1991, 257.
- 13 Kane J M, Barton B M, Dudley M W, Soreson S M & Stueger M A, *J Med Chem*, **33**, 1990, 2772.
- 14 Bradbury R H & Rivett J E, *J Med Chem*, **34**, 1991 151.
- 15 Kumamoto T, Toyooka K, Nishida M, Kuwahara H, Yoshiyuki Y, Kaward J & Kubota S, *Chem Pharm Bull*, **38**, 1990 2595.
- 16 Ashour P F A & Almazroa S A H, *Farmaco*, **45**, 1990, 1207.
- 17 Heindel N D & Reid J R, *J Heterocycl Chem*, **17**, 1980, 1087 and references cited therein.
- 18 Rajeswar Rao V, Mohan Rao G, Ravikumar V & Aditya Vardhan V, *Phos Sulf and Silicon*, **113**, 1996, 47.
- 19 Ravinder P, Rajeswar Rao V & Padmanabha Rao T V, *Collect Czch Chem Commun*, **53**, 1988, 326.
- 20 Aditya Vardhan V & Rajeswar Rao V, *Indian J Chem*, **36B**, 1997, 1087.
- 21 Chandra Sahakurshida Khayer G & Rabitll Isdam Md. & Shabudin Kabir Chowdhury Md, *Indian J Chem*, **31B**, 1992 547.
- 22 Koelsch C F, *J Am Chem Soc*, **72**, 1950, 2993.
- 23 Robert D H & Murray Jesus, *The text book of natural coumarins occurrence, chemistry and biochemistry* (John Wiley, New York) Chapter-III P-44.
- 24 Randal H M, Fusan N, Fowler R G & Dangal, *IR determination of organic molecules* (D Van Nost rand, New York), **1949**.