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Abstract

The flow of an incompressible micropolar fluid over a suddenly moved plate is considered under isothermal conditions.
State-space technique is used to find the solution of the problem. Inversion of Laplace transform is carried out using a
numerical approach. The variation of velocity and microrotation fields is studied with respect to various flow parameters
and the results are presented through graphs.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Four decades have passed ever since the theory of micropolar fluid was initiated by Eringen [1] in 1966. It is
well known that in many of the real fluids the shear behavior cannot be characterized by Newtonian relation-
ships and hence researchers have proposed diverse non-Newtonian fluid theories to explain the deviation in
the behavior of real fluids with that of Newtonian fluids. One such theory is that of micropolar fluids. This
theory accounts for the internal characteristics of the substructure particles with the assumption that they
are allowed to undergo rotation independent of their linear velocity. Micropolar fluids represent fluids consist-
ing of rigid randomly oriented particles suspended in a viscous medium when the deformation of the particles
is ignored. This constitutes a substantial generalization of the Navier–Stokes model. Micropolar fluids belong
to the class of fluids with non-symmetric stress tensor which are referred to as polar fluids. This is a class which
is more general than the one which we face in classical fluid dynamics. The theory of micropolar fluids may
form a suitable non-Newtonian fluid model that can be used to analyze the behavior of lubricants, colloidal
suspensions, polymeric fluids, liquid crystals and animal blood. The equations of motion characterizing a
micropolar fluid flow are non-linear in nature (as in the case of Newtonian viscous fluids) and are constituted
by a coupled system of vector differential equations. In any micropolar fluid flow problem, in addition to the
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Nomenclature

(x, y) space coordinates
u velocity of the fluid along the x-direction
U velocity of the plate
c microrotation component
q density
t time
p pressure
j gyration parameters
�q velocity vector
�t microrotation vector
�f body forces per unit mass
�l body couple per unit mass
k1, l, k viscosity coefficients
a, b, c gyro viscosity coefficients
ti components of the microrotation vector
xi components of the vorticity vector
dij components of the rate of strain
dij kronecker symbol
ti j force stress tensor
mi j couple stress tensor
ei j k Levi-Civita symbol or permutation symbol
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usual field variables pressure p and velocity vector �q, we come across another field variable called microrota-
tion vector �t which is independent of �q. To understand the departure from the viscous fluid flow model, several
problems that were studied in viscous fluid flow theory have also been studied in the realm of micropolar flu-
ids. An account of the earlier developments in polar fluid theory can be seen in [2] of V.K. Stokes and the
existing state of art can be seen in the excellent treatise of Lukaszewicz [3].

In this paper, we propose to study the Stokes’ first problem for a micropolar fluid using state-space
approach, which has been used till recently in modern control systems theory. Consider an infinitely long flat
plate above which a fluid exists. Initially both the plate and fluid are assumed to be at rest. Let us suddenly
impart a constant velocity to the plate in its own plane. Stokes in 1851 and again Raylegh in 1911 have dis-
cussed the fluid motion above the plate independently taking the fluid to be Newtonian [4]. In the literature
this problem is referred to as Stokes’ first problem. Subsequently in 1962 Tanner [5] considered the above
problem with Maxwell fluid in place of the Newtonian fluid. Prezoisi and Joseph [6] and Phan-Thien and
Chew [7] studied Stokes’ first problem for viscoelastic fluids. In recent years many investigators have studied
Stokes’ first problem for non-Newtonian fluids with different constitutive equations (see Ref. [8–16]). In this
paper we study the problem for an incompressible micropolar fluid whose constitutive equations were pro-
posed by Eringen [1]. We solve the problem through the method of state-space formulation which is more gen-
eral than the classical Laplace transform and Fourier transform techniques. The state-space theory is
applicable to all systems that can be analyzed by integral transforms in time and is successfully employed
to study, in particular, problems in modern control theory. As Helmy et al. [17] observe, the state-space
approach is useful to study linear systems with time varying parameters in essentially the same manner as
the time invariant linear systems.
2. Basic equations for incompressible micropolar fluid flow

The field equations of micropolar fluid dynamics are [1],
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oq
ot
þ divðq�qÞ ¼ 0; ð2:1Þ

q
d�q
dt
¼ q�f � gradðpÞ þ kcurlð�tÞ � ðlþ kÞcurl curlð�qÞ þ ðk1 þ 2lþ kÞgradðdivð�qÞÞ; ð2:2Þ

qj
d�t
dt
¼ q�l� 2k�tþ kcurlð�qÞ � ccurl curlð�tÞ þ ðaþ bþ cÞgradðdivð�tÞÞ: ð2:3Þ
In the above, the scalar quantities q and j are, respectively, the density and gyration parameters and are
assumed constants. The vectors �q;�t; �f and �l are the velocity, microrotation, body force per unit mass and
body couple per unit mass, respectively. p is the fluid pressure at any point. The material constants k1, l, k

are the viscosity coefficients and a, b, c are the gyroviscosity coefficients. These constants confirm to the
inequalities,
k P 0; 2lþ k P 0; 3k1 þ 2lþ k P 0;

c P 0; jbj 6 c; 3aþ bþ c P 0:
The stress tensor tij and the couple stress tensor mij are given by
tij ¼ ð�p þ kdivð�qÞÞdij þ ð2lþ kÞdij þ keijm½xm � tm�; ð2:4Þ
mij ¼ aðdivð�tÞÞdij þ bti;j þ ctj;i: ð2:5Þ
In Eqs. (2.4) and (2.5), ti and xi are the components of the micro rotation vector and the vorticity vector
respectively, dij are the components of the rate of strain, dij denotes Kronecker symbol, eijk is the Levi-Civita
symbol and comma denotes covariant differentiation.

The boundary conditions usually employed in the solution of these equations are that the velocity �q at the
boundary equals to that of the velocity �qB of the boundary and that the microrotation �t at the boundary
equals to the rotational velocity �tB of the boundary [18,19]. This choice of the boundary condition can be
expressed by the statement that there is no slip at the boundary and that a fluid particle is inflexibly attached
to it so that the micro rotational velocity of the particle on the boundary equals to the angular velocity of the
boundary. This is based on an analogy with the no slip condition of the classical Fluid Dynamics and it may be
referred to as superadherence condition or hyperstick condition.

3. Formulation of the problem

Consider the laminar flow of an incompressible, micropolar fluid above the half-space y > 0. Taking the
positive y-axis of a Cartesian coordinate system in the upward direction, the fluid flows through the half-space
y > 0 above and in contact with a flat plate occupying xz-plane. Initially both the fluid and plate are at rest. At
time t = 0+, the plate suddenly starts to slide slowly in its plane with a constant speed U. Under these con-
ditions, no flow occurs in the y and z directions and the flow velocity at a given point in the half-space depends
only on its y-coordinate and time. i.e., the velocity field is of the form �q ¼ uðy; tÞi, where i is the unit vector in
the x-coordinate direction. The microrotation field will be in the form �t ¼ ð0; 0; cðy; tÞÞ. The flow is assumed to
be generated by the motion of the flat plate and not by any pressure change. The pressure in the whole space is
constant.
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This velocity field automatically satisfies the continuity equation (2.1). Now, the equations governing the
flow are given by
q
ou
ot
¼ k

oc
oy
þ ðlþ kÞ o

2u
oy2

; ð3:1Þ

qj
oc
ot
¼ �2kc� k

ou
oy
þ c

o2c
oy2

; ð3:2Þ
with the conditions
for t 6 0; uðy; tÞ ¼ 0 and cðy; tÞ ¼ 0 for all y;

for t > 0; uð0; tÞ ¼ U ; cð0; tÞ ¼ 0;
ð3:3Þ
and
uðy; tÞ ! 0 as y !1
cðy; tÞ ! 0 as y !1:

ð3:4Þ
Using the non-dimensional scheme
u ¼ Uu�; y ¼ lþ k
qU

y�; c ¼ qU 2

lþ k
c� and t ¼ lþ k

qU 2
t�: ð3:5Þ
Eqs. (3.1) and (3.2) reduce to
ou�

ot�
¼ m

oc�

oy�
þ o

2u�

oy�2 ; ð3:6Þ

oc�

ot�
¼ �2nn2c� � nn2

ou�

oy�
þ n2

o
2c�

oy�2 ; ð3:7Þ
where
m ¼ k
lþ k

; n ¼ k
c

lþ k
qU

� �2

and n2 ¼
c

jðlþ kÞ :
Dropping *s, we get,
ou
ot
¼ m

oc
oy
þ o

2u
oy2

; ð3:8Þ

oc
ot
¼ �2nn2c� nn2

ou
oy
þ n2

o
2c

oy2
; ð3:9Þ
with conditions,
uðy; tÞ ¼ 0 and cðy; tÞ ¼ 0 for all y and for t 6 0; ð3:10Þ
and
uð0; tÞ ¼ 1; cð0; tÞ ¼ 0;

uðy; tÞ ! 0 and cðy; tÞ ! 0 as y !1 for t > 0:
ð3:11Þ
4. Solution of the problem

We shall now recast Eqs. (3.8)–(3.11) in an alternative form using state-space technique. Taking Laplace
transform to Eqs. (3.8), (3.9), and (3.11) with respect to t and using initial conditions (3.10), we obtain,
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d2�u
dy2
þ m

d�c
dy
� s�u ¼ 0; ð4:1Þ

d2�c
dy2
� n

d�u
dy
� 2nþ s

n2

� �
�c ¼ 0; ð4:2Þ
with the conditions,
�uð0; sÞ ¼ 1

s
; �cð0; sÞ ¼ 0; �uðy; sÞ ! 0 as y !1 and �cðy; sÞ ! 0 as y !1: ð4:3Þ
Introducing the variables,
�u0 ¼ d�u
dy
; ð4:4Þ
and
�c0 ¼ d�c
dy
: ð4:5Þ
Eqs. (4.1) and (4.2) reduce to
d�u0

dy
¼ s�u� m�c0; ð4:6Þ

d�c0

dy
¼ 2nþ s

n2

� �
�cþ n�u0: ð4:7Þ
Writing Eqs. (4.4)–(4.7) in matrix form, we get,
d

dy

�u
�c
�u0

�c0

0
BBB@

1
CCCA ¼

0 0 1 0

0 0 0 1

s 0 0 �m
0 2nþ s

n2

� �
n 0

0
BBB@

1
CCCA

�u
�c
�u0

�c0

0
BBB@

1
CCCA; ð4:8Þ
or
d

dy
�V ðy; sÞ ¼ AðsÞ�V ðy; sÞ ð4:9Þ
where
AðsÞ ¼

0 0 1 0

0 0 0 1

s 0 0 �m
0 p n 0

0
BBB@

1
CCCA; �V ðy; sÞ ¼

�uðy; sÞ
�cðy; sÞ
�u0ðy; sÞ
�c0ðy; sÞ

0
BBB@

1
CCCA and p ¼ 2nþ s

n2

: ð4:10Þ
Following the state-space technique as is used in problems dealing with modern control theory [20], we obtain
the formal solution of Eq. (4.9) as
�V ðy; sÞ ¼ exp½AðsÞy��V ð0; sÞ: ð4:11Þ

To enable us to determine the matrix exp[A(s)y], we note that the characteristic equation of the matrix A(s) is
k4 � ðsþ p � mnÞk2 þ sp ¼ 0: ð4:12Þ

The characteristic roots ±k1, ±k2 of the Eq. (4.12) satisfy the relations
k2
1 þ k2

2 ¼ sþ p � mn;

k2
1k2

2 ¼ sp;
where k1, k2 are taken as the roots with positive real parts.
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The Maclaurin’s series expansion of exp[A(s)y] is given by
exp½AðsÞy� ¼
X1
r¼0

½AðsÞy�r

r!
: ð4:13Þ
Therefore, the infinite series (4.13) can be written in the form
exp½AðsÞy� ¼ Lðy; sÞ ¼ a0I þ a1Aþ a2A2 þ a3A3; ð4:14Þ
using the Cayley–Hamilton theorem where I is the unit matrix of order 4 and a0, a1, a2anda3 are some param-
eters depending on y and s. The characteristic roots ±k1, ±k2 satisfy the Eq. (4.14) and hence by replacing the
matrix A with its characteristic roots ±k1, ±k2 therein, we get the following system of linear equations:
exp½k1y� ¼ a0 þ a1k1 þ a2k2
1 þ a3k3

1;

exp½�k1y� ¼ a0 � a1k1 þ a2k2
1 � a3k3

1;

exp½k2y� ¼ a0 þ a1k2 þ a2k2
2 þ a3k3

2;

exp½�k2y� ¼ a0 � a1k2 þ a2k2
2 � a3k3

2;

9>>>=
>>>;

ð4:15Þ
for the determination of a0, a1, a2 and a3. The above system can easily be solved and we get
a0 ¼ 1
F k2

1 coshðk2yÞ � k2
2 coshðk1yÞ

� �
;

a1 ¼ 1
F

k2
1

k2
sinhðk2yÞ � k2

2

k1
sinhðk1yÞ

h i
;

a2 ¼ 1
F coshðk1yÞ � coshðk2yÞ½ �;

a3 ¼ 1
F

1
k1

sinhðk1yÞ � 1
k2

sinhðk2yÞ
h i

;

9>>>>>>=
>>>>>>;

ð4:16Þ
where
F ¼ k2
1 � k2

2:
Substituting these into Eq. (4.11), computing A2, A3 and substituting these in Eq. (4.14), we obtain the matrix
elements (Lij; i, j = 1,2,3,4) of the matrix L(y, s) as
L11 ¼
1

F
ðk2

1 � sÞ coshðk2yÞ � ðk2
2 � sÞ coshðk1yÞ

� 	
;

L12 ¼
�mp

F
1

k1

sinhðk1yÞ � 1

k2

sinhðk2yÞ

 �

;

L13 ¼
1

F
k2

1 � ðs� mnÞ
k2

� �
sinhðk2yÞ � k2

2 � ðs� mnÞ
k1

� �
sinhðk1yÞ


 �
;

L14 ¼
�m
F
fcoshðk1yÞ � coshðk2yÞg;

L21 ¼
ns
F

1

k1

sinhðk1yÞ � 1

k2

sinhðk2yÞ

 �

;

L22 ¼
1

F
k2

1 � p
� 


coshðk2yÞ � k2
2 � p

� 

coshðk1yÞ

� 	
; L23 ¼ �

n
m

L14;

L24 ¼
1

F
k2

1 � ðp � mnÞ
k2

� �
sinhðk2yÞ � k2

2 � ðp � mnÞ
k1

� �
sinhðk1yÞ


 �
;

L31 ¼ sL13; L32 ¼ pL14; L33 ¼ L11 þ nL14

L34 ¼
m
F

k2 sinhðk2yÞ � k1 sinhðk1yÞf g; L41 ¼ �
ns
m

L14;

L42 ¼ pL24; L43 ¼ �
n
m

L34; L44 ¼ L22 þ nL14;
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with this, we get the solution of (4.9) in the form
�V ðy; sÞ ¼ Lðy; sÞ�V ð0; sÞ; ð4:17Þ
where Lijs are explicitly written as above. We note that the solution on the right hand side above contains
terms ek1y ; ek2y ; e�k1y and e�k2yonly. The terms involving ek1y ; ek2y ; e�k1y and e�k2y can all be individually grouped
and the solution �V ðy; sÞ can be written from Eq. (4.17). It can be noticed that the solution involves
�uð0; sÞ;�cð0; sÞ, �u0ð0; sÞ and �c0ð0; sÞ out of which �u(0, s), �cð0; sÞ are known and the other two are unknown. How-
ever, the regularity of �u(y, s), �cðy; sÞ far away from the plate at y =1, enables us to determine
�u0ð0; sÞ and �c0ð0; sÞ as detailed below.

Using Eq. (4.17) and expressions of Lij, we note that
�uðy; sÞ ¼ � ek1y

2F
k2

2 � s
s
þ p � k2

1

k1

�u0ð0; sÞ þ m�c0ð0; sÞ

 �

þ ek2y

2F
k2

1 � s
s
þ p � k2

2

k2

�u0ð0; sÞ þ m�c0ð0; sÞ

 �

� e�k1y

2F
k2

2 � s
s
� p � k2

1

k1

�u0ð0; sÞ þ m�c0ð0; sÞ

 �

þ e�k2y

2F
k2

1 � s
s
� p � k2

2

k2

�u0ð0; sÞ þ m�c0ð0; sÞ

 �

; ð4:18Þ
and
�cðy; sÞ ¼ ek1y

2F
n
k1

þ n�u0ð0; sÞ � s� k2
1

k1

�c0ð0; sÞ

 �

� ek2y

2F
n
k2

þ n�u0ð0; sÞ � s� k2
2

k2

�c0ð0; sÞ

 �

þ e�k1y

2F
� n

k1

þ n�u0ð0; sÞ þ s� k2
1

k1

�c0ð0; sÞ

 �

þ e�k2y

2F
n
k2

� n�u0ð0; sÞ � s� k2
2

k2

�c0ð0; sÞ

 �

: ð4:19Þ
Similarly the expressions for �u0ðy; sÞ and �c0ðy; sÞ can be written.
Since �uðy; sÞ and �cðy; sÞ must satisfy the regularity condition at y =1, the coefficients of ek1y and ek2y must

be zeros in view of the positive nature of the real parts of k1 and k2. This leads to the determination of
�u0ð0; sÞ and �c0ð0; sÞ as
�u0ð0; sÞ ¼ � ðk1 þ k2Þ
ðk1k2 þ sÞ ;

�c0ð0; sÞ ¼ n
ðk1k2 þ sÞ :

9>=
>; ð4:20Þ
It can be verified that these expressions will also make the coefficients of ek1y and ek2y in �u0ðy; sÞand�c0ðy; sÞ equal
to zero.

The above expressions (4.20) for �u0ð0; sÞ and �c0ð0; sÞ can also be obtained by an alternate procedure.
In view of the finiteness of the solution as y ?1, we have to drop the positive exponentials that are

unbounded at infinity. This is equivalent to the replacement of sinh(ky) and cosh(ky), respectively,
by (�1/2)exp(�ky) and (1/2)exp (�ky). This leads us to the relevant expression in place of L(y, s) =
exp[A(s)y]. Let this be denoted by L*(y, s). Using this in Eq. (4.17), we get
�V ðy; sÞ ¼ L�ðy; sÞ�V ð0; sÞ; ð4:21Þ
which is a solution of Eq. (4.9) satisfying the regularity condition at y =1.
The two components �uð0; sÞ and �cð0; sÞ of the vector �V ð0; sÞ are given in (4.3). To obtain the remaining

components �u0ð0; sÞ and �c0ð0; sÞ of the vector �V ð0; sÞ, we substitute y = 0 into Eq. (4.21) to get a system of
two equations in the two unknowns �u0ð0; sÞ and �c0ð0; sÞ. Solving this system, we get the same expressions
for �u0ð0; sÞ and �c0ð0; sÞ as in (4.20).

The velocity and the microrotation in the Laplace transform domain can now be obtained by using (4.18)
and (4.19), taking into account (4.20). These, after considerable algebra are seen to be
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�uðy; sÞ ¼ 1

sðC1 � C2Þ
½C1e�k2y � C2e�k1y �; ð4:22Þ

�cðy; sÞ ¼ k1k2n
sðC1 � C2Þ

½e�k2y � e�k1y �; ð4:23Þ
where
C1 ¼ k1ðp � k2
2Þ and C2 ¼ k2ðp � k2

1Þ:
The expressions for �uðy; sÞ and �cðy; sÞ are in terms of k1, k2, p, C1 and C2 each one of which depends upon s and
hence the analytical inversion of these expressions is not possible. We have to adopt a suitable numerical pro-
cedure to get u(y, t) and c(y, t) for different values of y and t. We have chosen the procedure suggested by Hon-
ig and Hirdes [21] to determine numerically u(y, t) and c(y, t).
4.1. Numerical inversion of the Laplace transforms

In order to invert �uðy; sÞ and �cðy; sÞ, we adopt the numerical inversion technique proposed by Honig and
Hirdes [21]. Using this method, the inverse f(t) of the Laplace transform �f ðsÞ is approximated by
f ðtÞ ¼ ec�t

t1

1

2
�f ðc�Þ þRe

XN

k¼1

�f c� þ ikp
t1

� �
exp

ikpt
t1

� � !" #
; 0 < t1 < 2t;
where c* is an arbitrary constant greater than all the real parts of the singularities of f(t) and N is sufficiently
large integer chosen such that,
ec�tRe �f c� þ iNp
t1

� �
exp

iNpt
t1

� �� �
< e;
where e is a prescribed small positive number that corresponds to the degree of accuracy required.

5. Results and discussion

Using the numerical procedure cited, to invert the expressions of velocity and microrotaion components in
Laplace transform domain, the variation of the velocity component u and the microrotation component c is
plotted for different values of y and t for various values of microrotation parameters. As the distance y is
increasing, the velocity component is decreasing and tending to zero. This is exactly the observation that
was made in the case of Newtonian viscous fluid [4]. Fig. 1 shows the variation of the velocity for different
times with the micropolarity parameters m, n and n2 fixed. The velocity for any y is increasing with respect
to time.

The case m = 0 with the suppression of the other micropolarity parameters as well results in the classical
case of Newtonian fluid discussed by Schlichting [4]. Fig. 2 indicates the variation in velocity u for a fixed time
t and fixed n, n2 as m varies. Here as m increases the velocity decreases. This implies that, as microrotation
viscosity k increases, it reduces the velocity at any point of the fluid. Thus, an increase in microrotational vis-
cosity has a decreasing effect on the velocity component in comparison with that of the Newtonian fluid case.
This decrease is due to the presence of microrotation, since some portion of the energy is dissipated due to the
friction between the rotating particles (see page 218 of Grzegorz Lukaszewicz [3]).

Fig. 3 shows the variation in velocity for different values of n at a fixed time and for fixed values of m and n2.
Here also the velocity decreases as n increases and tends to zero as y increases. Fig. 4 shows the variation of
velocity with distance for different values of n2 at fixed t, m and n. In Fig. 4, the velocity profiles for different
values of n2 seem to be almost overlapping.

Figs. 5–8 depict the variation of microrotation with distance. The microrotation in all these figures is ini-
tially decreasing; subsequently reaching a maximum and latter as distance increases is dying down. This trend
is seen to be true whether we vary time fixing all other parameters, vary the micropolarity parameter m fixing
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time and other parameters, varying n fixing time and other parameters or varying n2 and fixing time and other
parameters. Far away from the moving plate, the fluid velocity and microrotaional velocity are both
vanishing.
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Fig. 2. Variation of velocity with distance for different values of m at t = 1.0; n = 1.0; n2 = 0.5.
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Fig. 1. Variation of velocity with distance for different times at m = 0.5; n = 1.0; n2 = 0.5.
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Fig. 4. Variation of velocity with distance for different values of n2 at t = 1; m = 0.5; n = 1.
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Fig. 5. Variation of microrotation with distance for different times when m = 0.5; n = 1; n2 = 0.5.
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6. Conclusions

The Stokes’ first problem for an incompressible micropolar fluid is solved making use of the state-space
approach. The micropolar fluid flow equations, in view of their coupled nature, are to be solved, in general,
by decoupling. The state-space formulation has enabled us to solve the problem directly. The velocity and
microrotation components are obtained in the Laplace transform domain and their expressions are inverted
numerically using the numerical inversion technique due to Honig and Hirdes [21]. It is noticed that the veloc-
ity in the case of micropolar fluid flow decreases in comparison with the Newtonian fluid flow case as the
microrotation of the particles in the medium causes a dissipation of energy leading to the observed decrease
in the velocity.

Acknowledgements

The authors thank the reviewers for their critical comments which have resulted in the present form of the
paper. M. Devakar is thankful to the University Grants Commission, New Delhi for providing Junior Re-
search Fellowship No. 2-9/2005 (SA-I).

References

[1] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.
[2] V.K. Stokes, Theories of Fluids with Microstructure, Springer, New York, 1984.
[3] Grzegorz Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser, 1999.
[4] H. Schlichting, K. Gersten, Boundary Layer Theory, eight ed., Springer, Berlin, 2000.
[5] R. Tanner, Notes on the Rayleigh parallel problem for a viscoelastic fluid, ZAMP 13 (1962) 573–580.
[6] L. Preziosi, D.D. Joseph, Stokes first problem for viscoelastic fluids, J. Non-Newton. Fluid Mech. 25 (1987) 239–259.
[7] N. Phan-Thien, Y.T. Chew, On the Rayleigh problem for a viscoelastic fluid, J. Non-Newton. Fluid Mech. 28 (1988) 117–127.
[8] C. Fetecau, C. Fetecau, The Rayleigh–Stokes problem for heated second grade fluids, Int. J. Non- Linear Mech. 37 (2002) 1011–1015.
[9] P.M. Jordan, P. Puri, Stokes’ first problem for a Rivlin–Ericksen fluid of second grade in a porous half-space, Int. J. Non-Linear

Mech. 38 (2003) 1019–1025.
[10] C. Fetecau, C. Fetecau, A new exact solution for the flow of a Maxwell fluid past an infinite plate, Int. J. Non-Linear Mech. 38 (2003)

423–427.
[11] C. Fetecau, J. Zierep, The Rayleigh–Stokes-problem for a Maxwell fluid, ZAMP 54 (2003) 1086–1093.
[12] Constantin Fetecau, Corina Fetecau, The first problem of Stokes for an Oldroyd-B fluid, Int. J. Non-Linear Mech. 38 (2003) 1539–

1544.
[13] P.M. Jordan, Ashok Puri, G. Boros, On a new exact solution to Stokes’ first problem for Maxwell fluids, Int. J. Non-Linear Mech. 39

(2004) 1371–1377.
[14] Wenchang Tan, Takashi Masuoka, Stokes’ first problem for an Oldroyd-B fluid in a porous half space, Phy. Fluids 17 (2005) 023101–

023107.
[15] Wenchang Tan, Takashi Masuoka, Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary, Int. J.

Non-Linear Mech. 40 (2005) 515–522.
[16] C. Fetecau, C. Sharat, K.R. Rajagopal, A note on the flow induced by a constantly accelerated plate in an Oldroyd-B fluid, App.

Math. Mode. 31 (2007) 647–654.
[17] K.A. Helmy, H.F. Idriss, S.E. Kassem, MHD free convection flow of a micropolar fluid past a vertical porous plate, Can. J. Phys. 80

(2002) 1661–1673.
[18] S.C. Cowin, C.J. Pennigton, On the steady rotational motion of polar fluids, Rheol. Acta 9 (1970) 307–312.
[19] S.C. Cowin, The theory of polar fluids, Adv. Appl. Mech. 14 (1974) 310–312, and 329.
[20] Katsuhiko Ogatta, State Space Analysis of Control Systems, Prenice-Hall, Inc., Englewood Cliffs, NJ, 1967.
[21] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comp. Appl. Math. 10 (1984) 113–132.


	Stokes "  first problem for a micropolar fluid through state-space approach
	Introduction
	Basic equations for incompressible micropolar fluid flow
	Formulation of the problem
	Solution of the problem
	Numerical inversion of the Laplace transforms

	Results and discussion
	Conclusions
	Acknowledgements
	References


