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a b s t r a c t

The biodegradation process of phenol in a fluidized bed bioreactor (FBR) has been simulated using genetic
algorithm trained feedforward neural network. Experiments were carried out using the microorganism
Pseudomonas sp. on synthetic wastewater. The steady state model equations describing the biodegrada-
tion process have been solved using feedforward artificial neural network (FFANN) and genetic algorithm
(GA). The mathematical model has been directly mapped onto the network architecture and the network
eywords:
iofilm

mmobilized
aste treatment

iodegradation

has been used to find an error function (mean squared error criterion). The minimization of the error
function with respect to network parameters (weights and biases) has been considered as training of the
network. Real-coded genetic algorithm has been used for training the network in an unsupervised man-
ner. The diffusivities of phenol and oxygen in biofilm obtained from the simulation have been compared
with the literature values.
eural network
enetic algorithm

. Introduction

Fluidized bed bioreactors have been receiving considerable
nterest in wastewater treatment. The fluidized bed bioreactor has
een shown [1–5] to outperform other types of reactors. The supe-
ior performance of the fluidized bed bioreactor is due to very
igh biomass concentration due to immobilization of cells onto
he solid particles; intimate contact between gas, liquid and solid
hases; decoupling of residence times of liquid and microbial cells
ue to immobilization. Extensive information is available in litera-
ure on the biodegradation of phenol and fluidized bed bioreactors
6–14]. Phenolic wastewater treatment is done by using meth-
ds like freely suspended cell systems, trickling filters, rotating
isc, activated sludge, biological fixed film methods and fluidized
ed bioreactors. Tricking filters are more advantageous over freely
uspended cell systems [1]. However fluidized bed bioreactors
ave been found to be superior to other type of reactors [4,5]

n relation to volumetric biodegradation capacity. A number of
ttempts have been made to develop mathematical model for
iodegradation of phenolic compounds in wastewater [2,3,12]. The

resent work reports studies with high phenol concentration in

eed at 1254 ppm. Mathematical model describing the biodegrada-
ion process consists of coupled second order nonlinear ordinary
ifferential equations. These equations are not amenable to analyt-
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ical solution, and numerical solution (using, e.g., finite difference,
orthogonal collocation, Galerkin finite element) is required.

In early-1990s it was proved that the approximation capabilities
of networks make ANN as numerically accurate and predictable as
conventional computational methods [15–17]. Neural networks can
be more advantageous than the conventional techniques. Finding
a neural network that approximates the solution of a given set of
differential equations has many benefits compared with traditional
numerical methods viz., obtaining an analytic continuous solution
(compared to numerical methods), good generalization capabili-
ties, tackling real time problems reaching the global minimum of
the error surface, etc. [15,17,18].

The model equations for biodegradation of phenol have
been previously simulated using conventional numerical methods
[2,3,12]. These studies involved lower concentrations of phenol:
38–72 mg/l [2,3] and 82–131 mg/l [12]. In view of the advantages
cited above, in this work an attempt has been made to solve the
steady state model equations describing the biodegradation pro-
cess of phenol using a combination of neural network–GA. Previous
studies [3,12] involved prediction of the values of diffusivities of
phenol and oxygen in biofilm at low concentrations of phenol men-
tioned above. In this study the diffusivities have been obtained at
high concentration of phenol (1254 mg/l).
2. Mathematical modeling

A model describing the biodegradation of phenol by bacteria
immobilized onto the plastic beads was used which is similar to

http://www.sciencedirect.com/science/journal/1369703X
http://www.elsevier.com/locate/bej
mailto:avv122@yahoo.com
dx.doi.org/10.1016/j.bej.2009.04.006
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Nomenclature

B differential operator
Bii dimensionless group (koı/Dof)
Bis dimensionless group (ksı/Dsf)
C dissolved oxygen concentration in biofilm (kg/m3)
Cb dissolved oxygen concentration in the bulk liquid

phase (kg/m3)
Ci dissolved oxygen concentration at the interface

between a bioparticle and the bulk liquid (kg/m3)
C* dimensionless dissolved oxygen concentration

(c/cb)
D differential operator
Dof diffusion coefficient of oxygen in biofilm (m2/s)
Dow diffusion coefficient of oxygen in water (m2/s)
Dsf diffusion coefficient of phenol in biofilm (m2/s)
Dsw diffusion coefficient of phenol in water (m2/s)
E error measure
f*(y) approximated output from the network
ko liquid–solid mass transfer coefficient for oxygen

(m/s)
ks liquid–solid mass transfer coefficient for phenol

(m/s)
Ki inhibition constant for phenol (kg/m3)
Ko Monod constant for oxygen (kg/m3)
Ks Monod constant for phenol (kg/m3)
K∗

i
dimensionless inhibition constant for phenol

K∗
o dimensionless Monod constant for oxygen

K∗
s dimensionless Monod constant for phenol

Np number of bioparticles in FBR
N output of the network
n number of inputs to the FFANN
nPOP population size
pc crossover probability
P number of points in the integration domain
PB total number of boundary points
Q flow rate of synthetic wastewater (m3/s)
r radial coordinate in biofilm (m)
rp radius of biomass-free bioparticle (m)
Robs observed rate of phenol removal in the reactor (kg/s)
Rscalc calculated rate of phenol removal in the reactor

(kg/s)
S phenol concentration in biofilm (kg/m3)
Sb phenol concentration in the bulk liquid (kg/m3)
SI phenol concentration in inlet synthetic wastewater

(kg/m3)
Si phenol concentration at the interface between a

bioparticle and the bulk liquid (kg/m3)
S* dimensionless phenol concentration (S/Sb)
t time (s)
ui, uout bias of hidden unit i and output unit, respectively
vi weight from the hidden unit i to the output unit
wij weight from the input unit j to the hidden unit i
x dimensionless distance (r − rp)/ı
�x input vector
Yx/s yield coefficient (kg biomass/kg phenol)
Yx/o yield coefficient (kg biomass/kg oxygen)

Greek letters
ı biofilm thickness (m)
�v biofilm density (kg/m3)
� specific growth rate of biomass (s−1, h−1)
�max maximum specific growth rate of biomass (s−1, h−1)
�o dimensionless modulus for oxygen

�s dimensionless modulus for phenol
ϕ sigmoid transfer function

(
(

2
3
4
5

6

ϕ′, ϕ′′ first and second derivatives of sigmoid transfer func-
tion, respectively

the one employed by Tang and Fan [3]. Phenol and oxygen were
assumed to be simultaneously diffusing into and reacting within
the film. There are three basic processes occurring in the biodegra-
dation of phenol in a fluidized bed bioreactor:

a) Transport of oxygen from the gas phase into the bulk liquid.
b) Transport of phenol, oxygen and other nutrients from the bulk

liquid phase to the surface of the film.
(c) Simultaneous diffusion and reaction of phenol, oxygen and

other nutrients within the biofilm.

Process (a) was not considered in this work, as dissolved oxygen
concentration was maintained constant.

Steady state is reached in the completely mixed draft-tube, three
phase fluidized bed bioreactor when the bulk concentrations of
phenol and oxygen are constant and the change in biofilm proper-
ties such as the film thickness and density are negligible. Therefore
the concentration profiles of phenol and oxygen in the biofilm are
independent of time. The following assumptions were made in the
development of the model:

1. The FBR is in backmix condition,
. Biomass loading is constant at steady state,
. Plastic bead particles are spherical and inert,
. Biomass coating on particles is uniform,
. The growth limiting nutrients are phenol and oxygen. All other

nutrients are in excess. The growth kinetics are assumed to follow
Monod kinetics with respect to oxygen and substrate inhibited
kinetics with respect to phenol.

� = �maxS
(S+KS+S2/Ki)

C
(Ko+C) (1)

. The biofilm has same kind of effect on phenol and oxygen diffu-
sivities, i.e., the ratio of Dof/Dow is the same as the ratio Dsf/Dso.
The diffusivities of the oxygen and phenol are reduced to the
same extent in the biofilm compared to that in water.

7. Immobilization of cells onto the biofilm does not change the
kinetic parameters describing the growth.

With these assumptions mass balances of phenol and oxygen
across the biofilm have been carried out to get the following two
differential equations:

For phenol:

Dsf

r2

[
d
dr

(
r2 dS

dr

)]
− �v

Yx/s

�maxS
(S+Ks+S2/Ki)

C
(Ko+C) = 0 (2)

For oxygen:

Dof

r2

[
d
dr

(
r2 dC

dr

)]
− �v

Yx/o

�maxS
(S+Ks+S2/Ki)

C
(Ko+C) = 0 (3)

The boundary conditions for these equations are(
dS
dr

)
=

(
dC
dr

)
= 0 at r = rp (4)
Dsf

(
dS
dr

)
= ks(Sb − Si) at r = rp + ı (5)

Dof

(
dC
dr

)
= ko(Cb − Ci) at r = rp + ı (6)
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After solving Eqs. (2)–(6) the rate of phenol degradation from
he model can be calculated using the formula:

scal = Np�v

Yx/s

r=rp+ı∫
r=rp

�maxS(
S + KS + S2/Ki

) C

(C + K0)
4˘r2dr (7)

he above rate of biodegradation can be compared with the exper-
mental rate of biodegradation calculated using the formula:

Sobs = Q (SI − Sb) (8)

qs. (2)–(6) can be rewritten in terms of dimensionless variables as
ollows:

d2S∗

dx2
+ 2

(x + rp/ı)
dS∗

dx
= �s

S∗

(S∗ + K∗
s + S∗2/K∗

i
)

C∗

(C∗ + K∗
o )

(9)

d2C∗

dx2
+ 2

(x + rp/ı)
dC∗

dx
= �o

S∗

(S∗ + K∗
s + S∗2/K∗

i
)

C∗

(C + K∗
o )

(10)

dS∗

dx

)
=

(
dC∗

dx

)
= 0 at x = 0.0 (11)

dS∗

dx
= Bis(1 − S∗) at x = 1.0 (12)

dC∗
dx
= Bio(1 − C∗) at x = 1.0 (13)

here

∗ = S

Sb
, C∗ = C

Cb
, x = r − rp

ı
, K∗

s = Ks

Sb
, K∗

i = Sb

Ki
, K∗

0=Ko

Cb
,

Fig. 1. The experimental set-up for the biodegrada
eering Journal 46 (2009) 12–20

�o = �v�maxı2

Yx/oDof Cb
, �s = �v�maxı2

Yx/sDsf Sb
, Bis = ksı

Dsf
, Bio = koı

Dof

3. Experimental

3.1. The reactor set-up

The schematic diagram of the draft-tube fluidized bed bioreactor
used in the present work is shown in Fig. 1.

3.2. Reactor and the draft-tube

The fluidized bed bioreactor and the draft-tube are made up of
glass. A sparger made up of same material has been provided at
the bottom of the reactor through which air can be sparged into
the reactor. The total volume of the reactor is about 2.67 × 10−3 m3

(2.67 l). The top of the glass reactor is closed with a plate through
which all the probes and sensors are inserted into the reactor.
An overflow line has been provided near the top so that, the
reaction medium flows out of the reactor in continuous opera-
tion.

Plastic beads with a density of 1005 kg/m3 have been used for
immobilization of the microorganism. The average diameter of
the beads is 4.31 mm. Two peristaltic pumps one each for media

and feed into the reactor have been provided. The flow rate of
these pumps can be set at the required value using a flow con-
troller. The capacity of the pumps is 0.11 × 10−7 to 9.7 × 10−7 m3/s
(40–3500 ml/h). The reactor is provided with a glass jacket to main-
tain the temperature of the reactor system. Separate tanks made of

tion of phenol in a fluidized bed bioreactor.
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Table 1
Composition of growth medium.

Compound Concentration, ppm

KH2PO4 420
K2HPO4 375
(NH ) SO 240

(one for phenol and one for oxygen) are needed with the same archi-
tecture to solve the given model equations, because given system
has two equations and they have to be solved simultaneously.

The input to both networks is the dimensionless biofilm
thickness, x. The outputs from the networks 1 and 2 are the dimen-
A. Venu Vinod et al. / Biochemica

tainless steel have been used for supplying the feed, medium, acid
nd base solutions for pH control.

.3. Reactor instrumentation

To maintain the pH of the system a pH meter and a controller
ave been provided. pH has been maintained by addition of acid or
ase from the tanks provided at the top. The oxygen content in the
eaction medium was measured using a DO meter. The flow rate of
ir can be measured using a rotameter, with a range of 0.167 × 10−4

o 1.67 × 10−4 m3/s (1–10 lpm).

.4. Microbial culture

A strain of microorganism Pseudomonas sp. (SP-1) reported to
e capable of utilizing phenol as the sole carbon and energy source
as obtained from Regional Research Laboratory, Jammu, India.

.5. Culture preparation

Inoculum was prepared by growing the bacteria on
.6 × 10−3 m3 (2.6 l) of 0.05 kg/m3 (50 ppm) of phenol solution
ontaining growth medium. Before inoculation of the organism
terilization of the phenol solution was done in autoclave at a gage
ressure of 1.034 × 105 N/m2 (15 psi) for 20 min.

.6. Growth medium

The growth medium was made up using tap water. Sterile con-
itions were not maintained during the continuous operation of
he reactor, to simulate treatment of actual plant wastewater as the
atter would contain different contaminants.

.7. Biomass

25 ml of the sample was withdrawn from the reactor and filtered
hrough 0.7 �m filter paper to separate the biomass produced. The
lter paper was dried at 105 ◦C and weighed again after drying to
btain the weight of the biomass produced.

.8. Start-up of the equipment

Initially the fluidized bed bioreactor was operated in batch mode
or 36 h for immobilization of microorganism onto the solid par-
icles. Subsequently, operation was changed to continuous mode
ith a feed flow rate of 510 ml h−1 (corresponding to the dilution

ate of 0.196 h−1) of inlet phenol concentration of about 64 ppm. The
issolved oxygen (DO) concentration in the reactor was maintained
t 2 ppm using air initially and subsequently using pure oxygen. The
H in all the runs was maintained at 7.0 using 0.1N HCl and 0.1N
aOH. The reaction temperature was maintained at 30 ◦C. The con-
entration of phenol in the overflow from the reactor was analyzed
or every 1 h iodometrically [19].

.9. Determination of kinetic parameters and yield coefficients

Experiments were conducted to measure the biokinetic parame-
ers, viz., maximum specific growth rate (�max), inhibition constant
KI) and Monod constant (Ks). Experiments were conducted in batch

ode in shake flask with different initial phenol concentrations
anging from 64 to 1254 ppm. Nutrients as shown in Table 1 were
dded to the flasks and the medium was inoculated. Phenol con-

entration was measured periodically. For each batch run specific
rowth rate was calculated from the phenol concentration vs. time
ata. The kinetic parameters mentioned above were determined

rom the data of specific growth rate vs. phenol initial concentration
btained above by regression analysis (Fig. 2).
4 2 4

NaCl 15
CaCl2 15
MgSO4·H2O 30

For determination of yield coefficient (Yx/s, mass of biomass pro-
duced per mass of phenol consumed), 25 ml of the reactor medium
was taken in every run and filtered through 0.7 �m filter paper
to separate the biomass produced. The filter paper was dried and
weighed. Phenol concentration was determined and the ratio of the
biomass produced to the phenol consumed was determined as the
yield coefficient.

3.10. Determination of biofilm density (�v) and biofilm thickness

The biofilm density in terms of mass of dry biomass per volume
of biofilm was measured as follows: A sample of biomass-laden
particles was withdrawn from the reactor and the volume (V1) of
bioparticles was found using a measuring cylinder. The particles
were then transferred to a weighed sample vial and placed in
oven at 105 ◦C to remove all the moisture. The amount of moisture
was found from the difference in weights before and after drying.
Now the beads were washed to remove all the attached biomass
and the weight of the biomass was found from the difference in
weights before and after washing. Now the volume (V2) of the clean
particles was found. The volume of the biofilm is the difference
between V1 and V2. The biofilm density was then calculated from
the mass of the biomass and the volume of biofilm. From the
volume of the biofilm and the radius of the bare particle, the
biofilm thickness has been obtained.

4. Simulation of FBR by FFANN

4.1. Construction of FFANN and evaluation of error function

A simple, multilayer FFANN consisting of one input layer with a
single neuron, one hidden layer with five hidden neurons and an
output layer with a single neuron has been chosen for the solution of
differential equations. Each neuron in the hidden layer uses sigmoid
function as its activation function, and each neuron in the output
layers uses purelin function as its activation function. Two networks
Fig. 2. Specific growth rate as function of substrate concentration.
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been shown in Fig. 3. The model parameters used for this work are
given in Table 2. A MATLAB script was developed to solve a sys-
tem of ordinary differential equations using FFANN trained with
real-coded GA.

Table 2
Model parameters for the estimation of diffusivities in the biofilm.

Parameter Value Units

�max 1.427 × 10−4 s−1

Ks 21.92 × 10−3 kg/m3

Ki 522 × 10−3 kg/m3

Ko 0.26 × 10−3 kg/m3

Yx/s 0.62 kg/kg
Yx/o 0.465 kg/kg
k 0.4 × 10−4 m/s
6 A. Venu Vinod et al. / Biochemica

ionless phenol and oxygen concentrations within the biofilm S*
nd C*, respectively. S* and C* can be written as (detailed procedure
n Appendix A)

∗ =
5∑

i=1

v1i
ϕ(w1i

x + u1i
) + u1out (14)

∗ =
5∑

i=1

v2i
ϕ(w2i

x + u2i
) + u2out (15)

The dimensionless concentration derivatives can be written as

dS∗

dx
=

5∑
i=1

v1i
w1i

ϕ′(w1i
x + u1i

) (16)

dC∗

dx
=

5∑
i=1

v2i
w2i

ϕ′(w2i
x + u2i

) (17)

d2S∗

dx2
=

5∑
i=1

v1i
w2

1i
ϕ′′(w1i

x + u1i
) (18)

d2C∗

dx2
=

5∑
i=1

v2i
w2

2i
ϕ′′(w2i

x + u2i
) (19)

here the subscripts 1 and 2 refer to networks 1 and 2, respectively.

w1i
, w2i

denote the weight from the input unit to the hidden
unit i

v1i
, v2i

denote the weight from the hidden unit i to the output
unit

u1i
, u2i

denote the bias of hidden unit i
1out , u2out denote the bias of output unit

ϕ′, ϕ′′ denote first and second derivatives of sigmoid transfer
function, respectively.

Once the values of S* and C* and their derivatives with respect to
is evaluated, the error function can be calculated as shown below.

1(x) =
[{

d2S∗

dx2
+ 2

(x + rp/ı)
dS∗

dx
−�s

S∗

(S∗ + Ks + S∗2/Ki)
C∗

(C∗ + Ko)

}2

+
{

d2C∗

dx2
+ 2

(x+rp/ı)
dC∗

dx
−�o

S∗

(S∗+Ks+S∗2/Ki)
C∗

(C∗ + Ko)

}2
]

(20

2(x) =
[{

dS∗

dx

}2

+
{

dC∗

dx

}2
]

if x is 0 (21)

2(x)=
[{

dS∗

dx
− Bis(1−S∗)

}2

+
{

S∗ − S∗
i

}2 +
{

dC∗

dx
− Bio(1−C∗)

}2
]

f x is 1 (22)

The integration domain x ∈ [0,1] can be discretized in to finite
umber of points. x = [0,0.1,0.2, . . ., 1.0]. Then the mean squared

rror will be calculated as follows:

SE =
(

1
11

) 11∑
i

E1(xi) +
(

1
2

) 2∑
j

E2(xj) (23)
Fig. 3. Flow chart for implementing real-coded GA for FFANN training.

5. Results and discussion

The model equations describing the biodegradation process
within the biofilm in an FBR were solved using an FFANN trained
with a real-coded GA to find out the diffusivities of substrates in
the biofilm. The flow chart of the combinational FFANN and GA has
s

ko 0.65 × 10−4 m/s
Np 6369 –
rp 2.155 × 10−3 m
ı 19.1 × 10−6 m
�v 170.6–226.9 kg/m3
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5.1. FFANNs for solving ODEs

Network specifications:

Type: Feedforward artificial neural network
Transfer functions: Sigmoid (hidden layer) and pure linear (output

layer)
Error criterion: Mean squared error

Architecture: One input layer with one neuron, one hidden
layer with 5 neurons, and one output layer with
one neuron.

Training method: Unsupervised training using real-coded GA
Mode of training: Batch mode

The architecture of the network was selected by a trail and error
procedure starting with a simple structure of one hidden layer with
3 neurons (the input and output layer has each one neuron which
is fixed by the problem). The number of neurons in the hidden
layer was increased progressively up to 15. Decrease in error with
respect to increase in hidden neurons was observed. The network
with five neurons in the hidden layer was found to be sufficient for
the present problem. No attempt was made to find out the opti-
mum number of hidden layers, since it would be better to select a
network with minimum number of hidden layers so that the num-
ber of parameters to be optimized will be less in the training phase.
A batch mode of training was adapted, in which the weights are
updated after the presentation of all the training examples that
constitute an epoch.

5.2. Training FFANN by real-coded genetic algorithms

It has been observed in literature [20,21] that real-coded GAs
are the best suited for the minimization of error of a multilayer
FFANN, especially when the gradient of the error surface to be
minimized is not available at hand, as such the present problem.
In the present study the MSE decreased from starting values of
more than ten to the order of 10−2 in around 2000 generations
for all the runs. Further, it took more generations for fine-tuning
of error. This is comparatively far less than conventional backprop-
agation algorithms, which has been reported to take a minimum
of 20,000–1,00,000 epochs to converge to a global solution [22].
Though no trials were made to find out optimum parameters for
GA, it worked well with a selection pressure of 40% and crossover
probability of 0.6 [20].

Real-coding offers the advantage of avoiding encoding and
decoding problems associated with binary coding, hence easier
implementation. Though the SBX operator has an advantage of not
using the upper and lower bound for the weights [23], it was found
that the number of generations required for that case was more
in comparison with the one with upper and lower bound. Hence,
the algorithm with upper and lower bound was used for the present
work. The upper and lower bound for the weights were found using
a trail and error method and are in the range of −10 to +10.

The use of parameter based mutation enhances the fine search
because, as the generations increases, the mutation probability also

increases linearly with generation number starting from 1/20 to1
(starting from one variable in the first generation to all variables
in the last generation), the search field is getting shrunk and more
number of variables are mutated. This follows the suggestion in lit-
erature [20,24,25] of more dependency towards mutation for GA
training of ANNs. As expected the implementation was compara-
tively easier since the gradient of the error surface is not calculated
in GA training.
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5.6. Effect of flow rate on phenol degradation rate
ig. 4. Diffusivities of phenol and oxygen in biofilm vs. steady state bulk concentra-
ion of phenol.

.3. Estimation of diffusivities in the biofilm of an FBR

By knowing the experimental values of Sb and Cb, the model
qs. (9)–(13) were solved to find diffusivities of oxygen and phe-
ol in the biofilm relative to their values in water. This has been
one by adjusting the relative diffusivities in such a way that
oth degradation rates (Rscalc and Rsobs) will become equal. In the
resent work, diffusivities of oxygen and phenol are adjusted until
he difference between degradation rates become less than 1%.
he simulated diffusivities and their relative values with water
re presented in Table 3. The relative diffusivities are varying in
he range of 0.041–0.065. The reason for the low values of dif-
usivities is the high biofilm density. Since in a biofilm with a
igher density the number of cells and amount of exopolymer
er unit biofilm volume would be higher [3], the resistance to
iffusion of phenol and oxygen through the biofilm would be
reater. The result of lesser diffusivities therefore appears to be
easonable. Sensitivity analysis shows that a change of 10–15% in
he diffusivities has been found to increase the relative error to
–5%.

It is found from the results that these values are in reasonable
greement with the values reported in the literature. Tang and
an [3] reported that the relative diffusivities were in the range
f 0.086–0.245 for biofilm densities in the range of 151–72 kg/m3.
ivingston and Chase [12] reported a relative diffusivity of 0.05
or a biofilm with a density of 217 kg/m3 and with a biofilm

hickness of 24.4 �m (these conditions are closer to the present
roblem).

Another observation from the results shows that the diffusivities
re slightly increasing with flow rate of feed water. This would be

ig. 5. Dimensionless biofilm thickness vs. dimensionless phenol concentration.
Fig. 6. Dimensionless biofilm thickness vs. dimensionless oxygen concentration.

the result of increase in steady state concentration of phenol (Sb)
with flow rate and this is clear from Fig. 4. The Biot number for
phenol, Bis, is listed in Table 3. It ranges from 13.86 to 21.76. The Biot
number for a species gives an indication of the relative importance
of diffusion vs. reaction. The lower values of Biot number indicate
that the mass transfer resistance is important in limiting the overall
rate of reaction.

5.4. Concentration profile for phenol

The concentration profile for phenol and oxygen for various flow
rates are obtained and presented in Figs. 5 and 6. It can be seen from
these figures that, the concentration profile of phenol is steeper,
near the liquid biofilm interface, becoming flatter towards the sur-
face of the particle, leading to a conclusion that, the interface mass
transfer resistance from liquid to solid (biofilm) is higher than that
of the diffusion resistance offered within the biofilm.

5.5. Concentration profile for oxygen

The concentration profile for oxygen is essentially flat within the
biofilm, indicating very little mass transfer resistance to diffusion
within the biofilm. There is some slope close to the biofilm surface
for the feed flow rate of 390 ml/h. Further, the absolute values of
oxygen concentration within the biofilm are greater than the value
of Ko. This would explain the independency of the biodegradation
rate with respect to DO concentration of 2 ppm in the reactor.
The rate of phenol degradation for various flow rates can
be obtained and are presented in Table 3 and Fig. 7. It can be

Fig. 7. Degradation rate—observed, Calculated vs. flow rate.
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een from the concentration profiles that, the increase in flow
ate decreases the external mass transfer resistance, and hence
ncreases the rate of reaction. From these results it can be concluded
hat with increase in flow rate the observed as well as calculated
ate of phenol degradation are increasing (within the experimental
imit).

. Conclusions

The model equations describing the biodegradation of phenol
n a fluidized bed bioreactor have been solved using feedforward
rtificial neural network and the diffusivities of phenol and oxy-
en within the biofilm are found. The program script has been
eveloped by using MATLAB. Real-coded genetic algorithm has
een used to train the neural network in an unsupervised man-
er. The networks were trained to a mean squared error level in
he range of 10−4. The predicted diffusivities are in reasonable
greement with the literature values. The results show that the
iffusivities of phenol and oxygen slightly increase with increase

n steady state bulk concentration of phenol, within the experi-
ental range. This result also suggests that the feedforward neural

etworks trained by real-coded genetic algorithm is a good tech-
ique for the simulation of biodegradation process in a fluidized
ed bioreactor.

ppendix A. The method

Let us consider a general differential equation in the form:

(f (y)) = 0 (A1)

ith respect to boundary conditions

(f (y)) = 0 (A2)

here D and B are any nonlinear, inhomogeneous differential oper-
tors and f(y) is the solution that satisfies Eq. (1) and the boundary
onditions (2). Considering that an FFANN is a universal function
pproximator, the goal of the method is to find a neural network
*(y) which approximates f(y) in the finite domain y ∈ [a,b]n.

Consider a multilayer FFANN with n input units, one hidden layer
ith H sigmoid units and a linear output unit. For a given input

ector �x = (x1, . . . , xn) the output of the network N, is given by

=
H∑

i=1

viϕ(zi) + uout (A3)

here

i =
n∑

j=1

wijxj + ui (A4)

here wij denotes the weight from the input unit j to the hidden unit
. vi denotes the weight from the hidden unit i to the output unit. ui,
out denote the bias of hidden unit i and output unit, respectively.
(zi) is the sigmoid transfer function.

Since ϕ is a continuous and derivable function of x, it can be
hown that [6]:

∂kN

∂xk
j

=
H∑

i=1

viw
k
ijϕ

k(zi) (A5)
here ϕk denotes the kth derivative of the sigmoid function.
Hence it is possible to approximate the differential operators D

nd B using the network; in other words f(y) can be approximated
y a network (N) with a differentiable activation function. In order

[

[
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to find an approximation of f(y), Eq. (1) along with boundary condi-
tions (2) can be chosen as the performance function of the network.
The error measure E must be evaluated in a finite number of points
(P) into the integration domain yi ∈ [a,b]n.

E(w) = 1
P

P∑
i

[D(f ∗(yi))]
2 + 1

PB

PB∑
j

[B(f ∗(yj))]
2 (A6)

PB is the total number of boundary points and f*(y) is the approx-
imated output from the network corresponding to the input points
(yi, yj). As E tends to zero, f* tends to f and so the approximate
solution for the differential equation system is found. The effi-
cient minimization of Eq. (A6) can be considered as a procedure
of training the neural network. At this point, the original prob-
lem has been reduced to an unconstrained optimization problem
involving the minimization of the error E with respect to the net-
work parameters wij and u, i.e., weights and biases. Since the error
does not depend on target outputs (the function f is unknown a
priori) the network is said to be trained in an unsupervised man-
ner.
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