

Estimation of Equivalency Units of Vehicle Types for Road Geometry

Recent Advances in Traffic Engineering pp 43-54 | Cite as

- N. Sai Kumar (1) Email author (noudu.sai@gmail.com)
- V. M. Naidu (1)
- C. S. R. K. Prasad (2)

1. GVP College of Engineering (A), , Visakhapatnam, India
2. National Institute of Technology Warangal, , Warangal, India

Conference paper

First Online: 29 August 2020

- 9 Downloads

Part of the [Lecture Notes in Civil Engineering](#) book series (LNCE, volume 69)

Abstract

Capacity plays an important role while planning and designing of any roadway. The features of geometric of a roadway like the grade and curve radius will govern the capacity of a roadway. Passenger car unit (PCU) is used to estimate the capacity of the roadway. The passenger car unit values of a vehicle type alter concerning to speed. The speed of the vehicle is governed by geometric features of a roadway. This work objective is to learn the effect of geometric of the roadway such as grade, curve, and straight sections on PCU values of heterogeneous traffic conditions on a two-way four-lane national highway. Geometric and traffic data collected at 7 sections on NH-16. PCU value's estimation of the vehicle types of mixed traffic is difficult as compared with the homogeneous traffic conditions. PCU values are estimated by using speed-area ratio (dynamic PCU) method. Dynamic PCU (speed-area ratio) approach considers the vehicle average speed. The outputs had revealed that the capacity of the roadway declines as the percentage of downgrade increases. With an increase in the percentage of upgrade, the capacity of the road increases. The capacity of the roadway increased at the quick curve in contrast with mild curve and straight roads.

Keywords

Passenger car unit Geometry Capacity Grade Curved Dynamic PCU

This is a preview of subscription content, [log in](#) to check access.

References

Arkatkar SS (2011) Effect of intercity road geometry on capacity under heterogeneous traffic conditions using microscopic simulation technique. *Int J Earth Sci Eng SPL* 04(06):375–380 ISSN 0974-5904
[Google Scholar](https://scholar.google.com/scholar?q=Arkatkar%20SS%20%282011%29%20Effect%20of%20intercity%20road%20geometr y%20on%20capacity%20under%20heterogeneous%20traffic%20conditions%20using%20microscopic%20simulation%20technique.%20Int%20J%20Earth%20Sci%20Eng%20S PL%2004%2806%29%3A375%20E%280%93380%20ISSN%200974-5904) (<https://scholar.google.com/scholar?q=Arkatkar%20SS%20%282011%29%20Effect%20of%20intercity%20road%20geometr y%20on%20capacity%20under%20heterogeneous%20traffic%20conditions%20using%20microscopic%20simulation%20technique.%20Int%20J%20Earth%20Sci%20Eng%20S PL%2004%2806%29%3A375%20E%280%93380%20ISSN%200974-5904>)

Arkatkar S, Arasan VT (2010) Effect of gradient and its length on performance of vehicles under heterogeneous traffic conditions. *J Transp Eng* 136(12):1120–1136
[Google Scholar](https://scholar.google.com/scholar?q=Arkatkar%20S%20%282010%29%20Effect%20of%20gradient%20and%20its%20length%20on%20performance%20of%20vehicles%20under%20heterogeneous%20traffic%20conditions.%20J%20Transp%20Eng%20136%2812%29%3A1120%20E%280%931136) (<https://scholar.google.com/scholar?q=Arkatkar%20S%20%282010%29%20Effect%20of%20gradient%20and%20its%20length%20on%20performance%20of%20vehicles%20under%20heterogeneous%20traffic%20conditions.%20J%20Transp%20Eng%20136%2812%29%3A1120%20E%280%931136>)

Chandra S (2004) Capacity estimation procedure for two-lane roads under mixed traffic conditions. *Ind R Con J* 165:139–169
[Google Scholar](https://scholar.google.com/scholar?q=Chandra%20S%20%282004%29%20Capacity%20estimation%20procedure%20for%20two-lane%20roads%20under%20mixed%20traffic%20conditions.%20Ind%20R%20Con%20J%20165%3A139-169) (<https://scholar.google.com/scholar?q=Chandra%20S%20%282004%29%20Capacity%20estimation%20procedure%20for%20two-lane%20roads%20under%20mixed%20traffic%20conditions.%20Ind%20R%20Con%20J%20165%3A139-169>)

Chandra S, Goyal NK (2001) Effect of grade on capacity of two-lane road. HB No. 64, IRC, New Delhi, pp 77
[Google Scholar](https://scholar.google.com/scholar?q=Chandra%20S%20%282001%29%20Effect%20of%20grade%20on%20capacity%20of%20two-lane%20road.%20HB%20No.%2064%20IRC%20C%20New%20Delhi%20C%20pp%20077) (<https://scholar.google.com/scholar?q=Chandra%20S%20%282001%29%20Effect%20of%20grade%20on%20capacity%20of%20two-lane%20road.%20HB%20No.%2064%20IRC%20C%20New%20Delhi%20C%20pp%20077>)

Chandra S, Kumar U (2003) Effect of lane width on capacity under mixed traffic conditions in India. *J Transp Eng* 129(2):155–160
[CrossRef](https://doi.org/10.1061/(ASCE)0733-947X(2003)129%3A2(155).CrossRef) ([https://doi.org/10.1061/\(ASCE\)0733-947X\(2003\)129%3A2\(155\).CrossRef](https://doi.org/10.1061/(ASCE)0733-947X(2003)129%3A2(155).CrossRef))
[Google Scholar](https://scholar.google.com/scholar_lookup?title=Effect%20of%20lane%20width%20on%20capacity%20under%20mixed%20traffic%20conditions%20in%20India&author=S.%20Chandra&author=U.%20Kumar&journal=J%20Transp%20Eng&volume=129&issue=2&pages=155-160&publication_year=2003) ([http://scholar.google.com/scholar_lookup?title=Effect%20of%20lane%20width%20on%20capacity%20under%20mixed%20traffic%20conditions%20in%20India&author=S.%20Chandra&author=U.%20Kumar&journal=J%20Transp%20Eng&volume=129&issue=2&pages=155-160&publication_year=2003](https://scholar.google.com/scholar_lookup?title=Effect%20of%20lane%20width%20on%20capacity%20under%20mixed%20traffic%20conditions%20in%20India&author=S.%20Chandra&author=U.%20Kumar&journal=J%20Transp%20Eng&volume=129&issue=2&pages=155-160&publication_year=2003))

Chandra S, Sikdar PK (2000) Factors affecting PCU in mixed traffic on urban roads. *Road Trans Res* 9(3):40–50
[Google Scholar](https://scholar.google.com/scholar_lookup?title=Factors%20affecting%20PCU%20in%20mixed%20traffic%20on%20urban%20roads&author=S.%20Chandra&author=PK.%20Sikdar&journal=Road%20Trans%20Res&volume=9&issue=3&pages=40-50&publication_year=2000) ([http://scholar.google.com/scholar_lookup?title=Factors%20affecting%20PCU%20in%20mixed%20traffic%20on%20urban%20roads&author=S.%20Chandra&author=PK.%20Sikdar&journal=Road%20Trans%20Res&volume=9&issue=3&pages=40-50&publication_year=2000](https://scholar.google.com/scholar_lookup?title=Factors%20affecting%20PCU%20in%20mixed%20traffic%20on%20urban%20roads&author=S.%20Chandra&author=PK.%20Sikdar&journal=Road%20Trans%20Res&volume=9&issue=3&pages=40-50&publication_year=2000))

HCM (2010) Highway Capacity Manual. Transportation research board. National Research Council, Washington, D.C.

Google Scholar (<https://scholar.google.com/scholar?q=HCM%20%282010%29%20Highway%20Capacity%20Manual.%20Transportation%20research%20board.%20National%20Research%20Council%2C%20Washington%2C%20D.C.>)

Metkar M, Budhkar AK, Maurya AK (2012) A review of passenger car equivalence for Indian conditions. *Int J Comput Appl.*

<https://www.researchgate.net/publication/235801441>
(<https://www.researchgate.net/publication/235801441>)

Shalkamy A, Said D, Radwan L (2015) Influence of carriageway width and horizontal curve radius on passenger car unit values of two-lane two-way rural roads. *Civil Env Res* 7(3)

Google Scholar (<https://scholar.google.com/scholar?q=Shalkamy%20A%2C%20Said%20D%2C%20Radwan%20L%20%282015%29%20Influence%20of%20carriageway%20width%20and%20horizontal%20curve%20radius%20on%20passenger%20car%20unit%20values%20of%20two-lane%20two-way%20rural%20roads.%20Civil%20Env%20Res%207%283%29>)

Srikanth S, Mehar A (2017) Estimation of equivalency units for vehicle types under mixed traffic conditions: multiple non-linear regression approach. *Int J Technol* 820–829

Google Scholar (<https://scholar.google.com/scholar?q=Srikanth%20S%2C%20Mehar%20A%20%282017%29%20Estimation%20of%20equivalency%20units%20for%20vehicle%20types%20under%20mixed%20traffic%20conditions%3A%20multiple%20non-linear%20regression%20approach.%20Int%20J%20Technol%20820%20E2%80%93829>)

Yagar S, Aerde MV (1983) Geometric and environmental effects on speeds of two-lane highways. *Transp Res Part A* 315–325

Google Scholar (<https://scholar.google.com/scholar?q=Yagar%20S%2C%20Aerde%20MV%20%281983%29%20Geometric%20and%20environmental%20effects%20on%20speeds%20of%20two-lane%20highways.%20Transp%20Res%20Part%20A%20315%20E2%80%93325>)

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

About this paper

Cite this paper as:

Sai Kumar N., Naidu V.M., Prasad C.S.R.K. (2020) Estimation of Equivalency Units of Vehicle Types for Road Geometry. In: Arkatkar S., Velmurugan S., Verma A. (eds) Recent Advances in Traffic Engineering. Lecture Notes in Civil Engineering, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-15-3742-4_3

- First Online 29 August 2020
- DOI https://doi.org/10.1007/978-981-15-3742-4_3
- Publisher Name Springer, Singapore
- Print ISBN 978-981-15-3741-7
- Online ISBN 978-981-15-3742-4

- eBook Packages [Engineering Engineering \(Ro\)](#)
- [Buy this book on publisher's site](#)
- [Reprints and Permissions](#)

Personalised recommendations

SPRINGER NATURE

© 2020 Springer Nature Switzerland AG. Part of [Springer Nature](#).

Not logged in Not affiliated 103.96.19.252