

Liquid phase benzylation of benzene and toluene with benzyl alcohol over modified zeolites

N. Narender ^a, K.V.V. Krishna Mohan ^a, S.J. Kulkarni ^{a,*}, I. Ajit Kumar Reddy ^b

^a *Catalysis Group, Indian Institute of Chemical Technology, Hyderabad 500007, India*

^b *Department of Chemistry, National Institute of Technology, Warangal 506004, India*

Received 26 May 2005; received in revised form 11 January 2006; accepted 11 January 2006

Available online 3 March 2006

Abstract

Benzylation of benzene and toluene with benzyl alcohol has been investigated over a series of zeolites and metal modified zeolites. 5 wt% Ce β , 5 wt% Fe β and 5 wt% W β were found to be good catalysts for the liquid phase benzylation of benzene and toluene. The catalysts were characterized using XRD, FTIR and NH₃-TPD.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Benzylation; Benzene; Toluene; Benzyl alcohol; Modified zeolites

1. Introduction

Diphenylmethane and substituted diphenylmethanes are industrially important compounds used as pharmaceutical intermediates [1] and fine chemicals [2,3]. Liquid phase benzylation of aromatic compounds, using homogeneous acid catalysts, is a commercially practiced Friedel-Craft type reaction in organic synthesis [4]. The commonly used homogeneous acid catalysts (e.g. AlCl₃, BF₃ and H₂SO₄) having several problems, such as difficulty in separation and recovery, disposal of spent catalyst, corrosion, high toxicity, etc. The replacement of liquid acid catalysts by solid acids for the Friedel-Craft reaction of aromatic alkylation is a challenging task. In particular, microporous solids (zeolites), besides their natural acidity, and shape selective character can promote a specific selectivity owing to their molecular sieving character and ecofriendly nature. Catalysts based on various zeolites possess major importance both in petroleum and fine chemical industries.

This is mainly due to the large variability of their acid–base and redox properties while retaining shape selectivity. Friedel-Craft alkylation using Lewis acid catalyst in solution generally gives complex reaction. The increased tendency of alkylated products towards further alkylation and isomerization, coupled with the long contact of the reactant with the catalyst, result in complex mixture of products. Polyalkylation, isomerization, transalkylation, dealkylation and polymerization all occur under the normal reaction conditions. Therefore, there is substantial interest to carry out alkylation reactions with solid acid catalysts, which decrease these side reactions. Reports appeared on the alkylation of benzene and toluene by alkyl and benzyl halides, alcohols and alkenes, on montmorillonite doped with transition metal cations [5,6], clays [7–9], sulfated zirconia [10], cation exchanged resins [11], niobium phosphate [12] and silica supported poly-tri-fluoro methane sulfosiloxane catalysed benzylation of benzene and substituted benzene [13]. Recently, benzylation of aromatic compounds appeared on Ga–Mg–hydrotalcite [14], AlCl_x-grafted Si-MCM-41 [15], Fe-TUD-1 [16] and Al-SBA-15 [17] using benzyl chloride. The use of benzyl alcohol rather than benzyl chloride is an ecofriendly process. To explore the potential of zeolites as well as metal ion modified zeolites for this

* IICT Communication No. 041233.

* Corresponding author. Tel.: +91 40 27193161; fax: +91 40 27160387.

E-mail address: skulkarni@iictnet.org (S.J. Kulkarni).

type of reaction we have carried out a study on the benzylation of benzene, toluene with benzyl alcohol over various zeolites and modified β -zeolites.

2. Experimental

2.1. Preparation of modified β -zeolite

All the catalysts were prepared by impregnation method, 4 g of the catalyst added to the 5 wt% aqueous solution of corresponding metal nitrates and stirred at 80 °C for 24 h. After impregnation, the catalyst was dried at 100 °C for overnight and calcined at 450 °C for 6 h. The catalysts were characterized by XRD, FTIR and NH₃-TPD.

2.2. Benzylation of benzene and toluene with benzyl alcohol

Benzyl alcohol (2 mmol) and 10 ml of benzene or toluene and 100 mg of catalyst were added to a 50 ml two neck round bottom flask having condenser and equipped with

magnetic stirrer. The reaction mixture was stirred at 80 °C for the time reported in Tables 1–4. After the reaction, the mixture was then filtered and solid was washed with dichloromethane. The combined filtrates were concentrated under reduced pressure and column chromatography to give the products. The products were characterized by NMR, mass spectra and the selectivity was determined by GC. The overall reaction has been shown in Scheme 1.

3. Results and discussion

3.1. Benzylation of benzene and toluene over unmodified zeolites

The zeolite catalysed benzylation of benzene with benzyl alcohol gave diphenylmethane and benzyl ether in different proportions depending on the type of zeolite (Table 1).

Preliminary screening reactions were carried in order to compare the catalytic activity of the different zeolites,

Table 1
Benzylation of benzene with benzyl alcohol over zeolites^a

S. No.	Catalyst	Conversion ^b (%)	Selectivity ^c (%)		Yield (%)	
			Diphenylmethane	Benzyl ether	Diphenylmethane	Benzyl ether
1	H β (Si/Al = 15)	100	92	8	92	8
2	H β ^d (Si/Al = 15)	43	62	38	27	16
3	H β ^e (Si/Al = 15)	18	66	34	12	6
4	HZSM-5 (Si/Al = 40)	14	68	32	10	4
5	H-Mordenite	89	96	4	85	4
6	HMCM-41 (Si/Al = 30)	33	32	68	11	22
7	SiO ₂	–	–	–	–	–
8	SiO ₂ –Al ₂ O ₃	–	–	–	–	–
9	No Catalyst	–	–	–	–	–

Reaction temperature = 80 °C, Time = 1 h.

^a Benzyl alcohol (2 mmol), benzene (10 ml) and catalyst (100 mg).

^b Conversion is based on benzyl alcohol.

^c The products were characterized by NMR, mass spectra and quantified by GC.

^d Catalyst (50 mg).

^e Catalyst (25 mg).

Table 2
Benzylation of toluene with benzyl alcohol over zeolites^a

S. No.	Catalyst	Conversion ^b (%)	Selectivity ^c (%)		Yield (%)	
			Monobenzylated toluene (<i>para</i> /ortho)	Benzyl ether	Monobenzylated toluene (<i>para</i> /ortho)	Benzyl ether
1	H β ^d (Si/Al = 15)	100	80(79/21)	20	80(79/21)	20
2	HZSM-5 (Si/Al = 40)	<5	–	–	–	–
3	H-Mordenite	72	89(58/42)	11	64(42/30)	8
4	HMCM-41 (Si/Al = 30)	31	77(59/41)	23	24(18/13)	7
5	SiO ₂	<5	–	–	–	–
6	SiO ₂ –Al ₂ O ₃	<5	–	–	–	–
7	No Catalyst	–	–	–	–	–

Reaction temperature = 80 °C, Time = 5 h.

^a Benzyl alcohol (2 mmol), toluene (10 ml) and catalyst (100 mg).

^b Conversion is based on benzyl alcohol.

^c The products were characterized by NMR, mass spectra and quantified by GC.

^d Reaction time = 2 h.

Table 3

Benzylation of benzene with benzyl alcohol over modified β -zeolite^a

S. No.	Catalyst	Conversion ^b (%)	Selectivity ^c (%)		Yield (%)	
			Diphenylmethane	Benzyl ether	Diphenylmethane	Benzyl Ether
1	5%Co β	32	79	21	25	7
2	5%Ni β	29	75	25	22	7
3	5%Pb β	94	84	16	79	15
4	5%La β	69	78	22	54	15
5	5%Ce β	99	97	3	96	3
6	5%Ce β ^d	64	77	23	49	15
7	5%Ce β ^e	21	67	33	14	7
8	5%Fe β	95	94	6	89	6
9	5%W β	99	97	3	96	3
10	5%Cr β	96	82	18	79	17
11	5%Cu β	41	74	26	30	11
12	5%Zn β	11	79	21	9	2

Reaction temperature = 80 °C, Time = 30 min.

^a Benzyl alcohol (2 mmol), Benzene (10 ml) and catalyst (100 mg).^b Conversion is based on benzyl alcohol.^c The products were characterized by NMR, mass spectra and quantified by GC.^d Catalyst (50 mg).^e Catalyst (25 mg).

Table 4

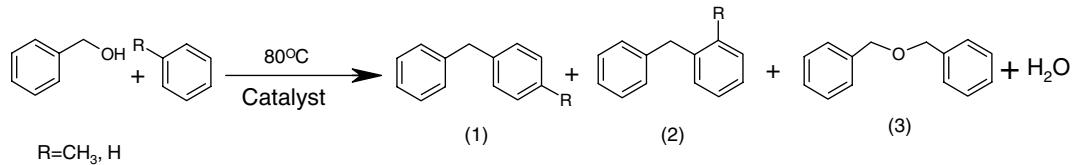
Benzylation of toluene with benzyl alcohol over modified β -zeolite^a

S. No.	Catalyst	Conversion ^b (%)	Selectivity ^c (%)		Yield (%)	
			Monobenzylated toluene (<i>para</i> / <i>ortho</i>)	Benzyl ether	Monobenzylated toluene (<i>para</i> / <i>ortho</i>)	Benzyl ether
1	5%Co β	11	56(67/33)	44	6(7/4)	5
2	5%Ni β	21	79(75/25)	21	17(16/5)	4
3	5%Pb β	36	63(78/22)	37	23(28/8)	13
4	5%La β	35	68(75/25)	32	24(26/9)	11
5	5%Ce β	75	70(77/23)	30	53(58/17)	22
6	5%Fe β	98	77(78/22)	23	75(76/22)	23
7	5%W β	98	78(78/22)	22	76(76/22)	22
8	5%W β ^d	75	71(77/23)	29	53(58/17)	22
9	5%W β ^e	36	60(80/20)	40	22(29/7)	14
10	5%Zn β	<5	—	—	—	—
11	5%Cr β	59	63(76/24)	37	37(44/14)	22
12	5%Cu β	15	66(80/20)	34	10(12/3)	5

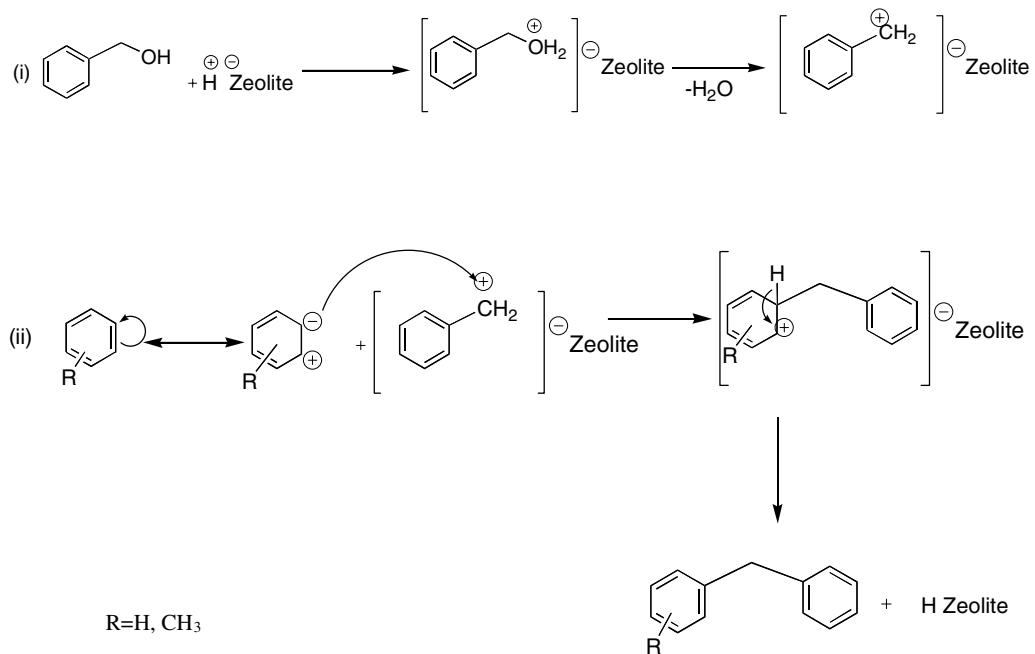
Reaction temperature = 80 °C, time = 1 h.

^a Benzyl alcohol (2 mmol), toluene (10 ml) and catalyst (100 mg).^b Conversion is based on benzyl alcohol.^c The products were characterized by NMR, mass spectra and quantified by GC.^d Catalyst (50 mg).^e Catalyst (25 mg).

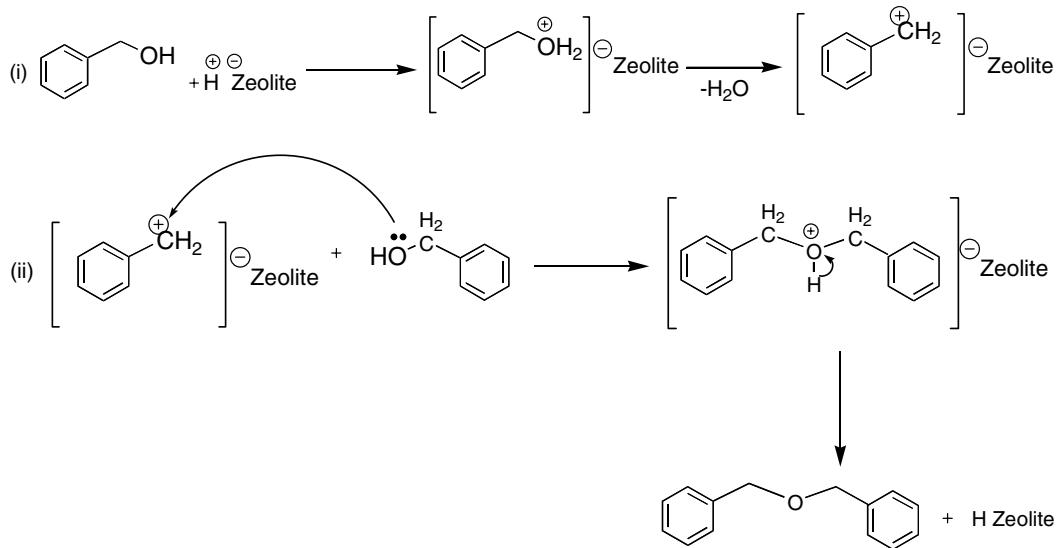
$\text{SiO}_2\text{--Al}_2\text{O}_3$ and SiO_2 . It was found that $\text{H}\beta$ was good catalyst for benzylation of both benzene and toluene with 100% conversion of benzyl alcohol compared to other catalysts due to its higher acidity and large pore size. Selectivity of mono benzylated products diphenylmethane, in the case of benzylation of benzene and substituted diphenylmethane, in the case of benzylation of toluene, have been found to be 92% and 80% (Tables 1 and 2), respectively. It is observed that reaction does not proceed in the absence of a catalyst (Table 1, S. No. 9; Table 2, S. No. 7). Catalyst (100 mg) gave better results compared to 50 mg and 25 mg (Table 1, S. No. 1, 2, 3).


3.2. Benzylation of benzene and toluene over modified β -zeolite

Benzylation reactions of benzene and toluene with benzyl alcohol have also been carried out using β -zeolite modified with various transition metal cations. Results of reaction time, conversion and selectivity percentages of products in respect of different metal ion modified zeolites are listed in Tables 3 and 4. The metal ion modified zeolites decreased the reaction time to half of that observed in the case of unmodified β -zeolite. The conversion percentage of benzyl alcohol has been drastically changed over different


metal modified β -zeolite and the selectivity towards diphenylmethane has been increased from $\text{Cu}\beta$ to $\text{Ce}\beta$. Remarkable conversion and selectivity percentages were observed when $\text{Ce}\beta$, $\text{Fe}\beta$ and $\text{W}\beta$ were used as catalysts (Table 3, S. No. 5, 8 and 9). Whereas $\text{Zn}\beta$ is shown less

conversion of benzyl alcohol (11%) and 79% selectivity of diphenylmethane (Table 3, S. No. 12).


In order to optimize the amount of catalyst required for better conversion, studies using varying amounts of $\text{Ce}\beta$ were carried out. The conversion percentage is found to

Scheme 1.

Scheme 2.

Scheme 3.

be 21, 64 and 99 using 25 mg, 50 mg and 100 mg of $\text{Ce}\beta$, respectively (Table 3, S. No. 5, 6 and 7). Since 100 mg of catalyst gave best conversion, studies on all the other modified catalysts were carried out using this optimum amount.

In the case of benzylation of toluene, $\text{W}\beta$ and $\text{Fe}\beta$ gave better results compared to other metal ion modified β -zeolites, $\text{W}\beta$ and $\text{Fe}\beta$ showed 98% conversion of benzyl alcohol and selectivity of 78% (*para* 78%, *ortho* 22%), 77% (*para* 78, *ortho* 22) mono benzylated product and 22%, 23% benzyl ether (Table 4, S. No. 6, 7). The reaction time has been decreased from 2 h to 1 h. Studies on the effect of amount of the catalyst using varying amount of $\text{W}\beta$ revealed that increases in the amount of catalyst increase the conversion (Table 4, S. No. 7, 8 and 9). The catalyst (zeolite) was easily separated from the reaction mixture

by simple filtration. Further, catalyst was reused in the benzylation of benzene and toluene. The recovered catalyst showed consistent activity. The high catalytic activity and selectivity were maintained even after third reuse. The catalyst was highly crystalline before and after the reaction, which was confirmed by XRD. The Bronsted acidic centers presented at the channel intersection of the zeolites are assumed to be the active centers in this reaction (Schemes 2 and 3).

3.3. Temperature programmed desorption of ammonia (NH_3 -TPD)

The temperature programmed desorption (TPD) is one of the efficient methods of determining the nature and level of acidity and basicity in a catalyst. The amount and strength of acid sites are determined by temperature programmed desorption (TPD) of ammonia. The NH_3 -TPD profiles of some typical catalysts are given in Fig. 1.

NH_3 -TPD profile of 5 wt% $\text{W}\beta$ showed temperature maxima at 174 °C and 363 °C (Fig. 1k). NH_3 -TPD profile of 5 wt% $\text{Fe}\beta$ showed temperature maxima at 179 °C, 340 °C and 492 °C (Fig. 1f) and NH_3 -TPD profile of 5 wt% $\text{Ce}\beta$ showed temperature maxima at 166 and 374 °C (Fig. 1h). The NH_3 -desorption peaks of 5 wt% $\text{Fe}\beta$, 5 wt% $\text{Cu}\beta$, and 5 wt% $\text{Pb}\beta$ at 340 °C, 322 °C, and 307 °C temperature maxima are considered as β -state sites, which can be assigned as medium strength sites.

The results of ammonia desorption of modified β -zeolite in weak, medium and strong regions are depicted in Table 5.

In $\text{H}\beta$ zeolite, weak acidic sites and few medium acidic sites are observed while strong acidic sites are not found (Fig. 1d). Upon modification of $\text{H}\beta$ with different metal ions, the medium and strong acidic sites are enhanced (Fig. 1). The medium and strong acidic sites are found to be more in the case of 5 wt% $\text{Fe}\beta$ (Fig. 1f), 5 wt% $\text{W}\beta$ (Fig. 1k) and 5 wt% $\text{Ce}\beta$ (Fig. 1h). In the case of 5 wt%

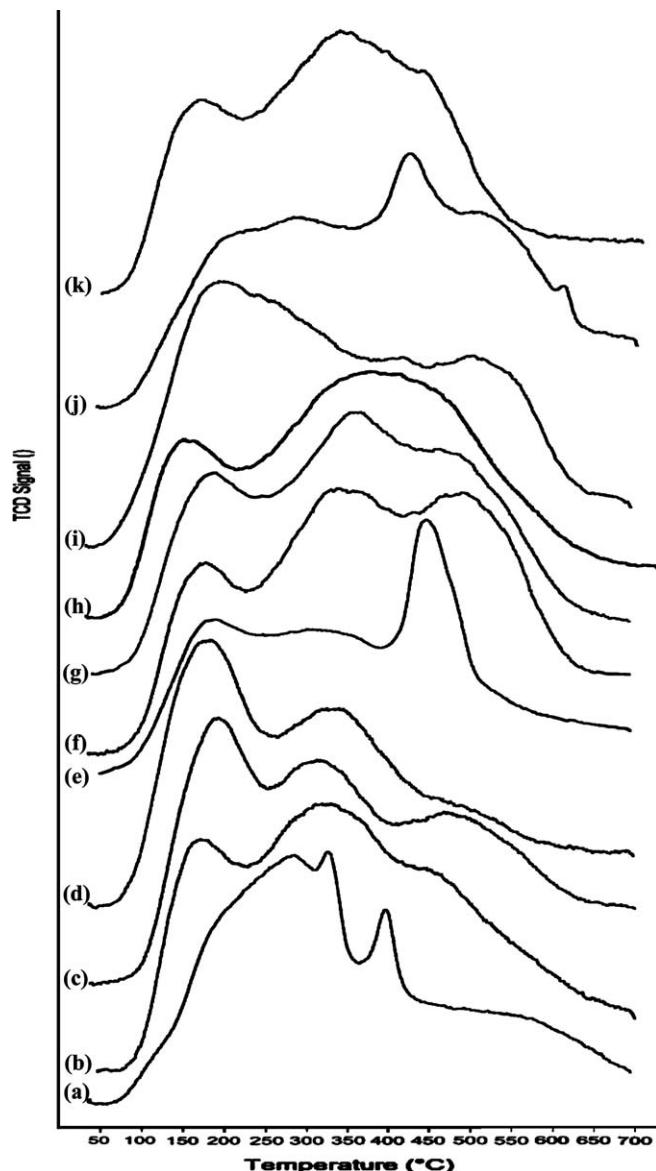


Fig. 1. NH_3 -TPD profiles of: (a) $\text{Cu}\beta$, (b) $\text{La}\beta$, (c) $\text{Pb}\beta$, (d) $\text{H}\beta$, (e) $\text{Ni}\beta$, (f) $\text{Fe}\beta$, (g) $\text{Cr}\beta$, (h) $\text{Ce}\beta$, (i) $\text{Zn}\beta$, (j) $\text{Co}\beta$, and (k) $\text{W}\beta$.

Table 5
Desorption of ammonia of modified zeolites at different acidic regions

S. No.	Catalyst	Desorption of ammonia (ml/g STP)		
		Weak acidic site (150–300 °C)	Medium acidic site (300–400 °C)	Strong acidic site (400–500 °C)
1	$\text{H}\beta$	10.88	8.60	–
2	$\text{Ni}\beta$	10.97	5.70	8.41
3	$\text{Cu}\beta$	20.38	6.06	15.42
4	$\text{Pb}\beta$	8.49	8.99	4.00
5	$\text{La}\beta$	7.27	14.28	6.01
6	$\text{Ce}\beta$	6.31	26.62 (medium + strong)	
7	$\text{Cr}\beta$	8.57	15.50	7.97
8	$\text{Fe}\beta$	6.41	15.12	8.73
9	$\text{W}\beta$	6.23	23.75 (medium + strong)	
10	$\text{Zn}\beta$	20.56	6.62	–
11	$\text{Co}\beta$	15.95	11.52	5.37

$\text{Ni}\beta$, there are more number of stronger acidic sites than medium and weak acidic sites (Fig. 1e).

3.4. Correlation of selectivity with acidity

The variation of acidity of various metal ion modified β -zeolites measured by TPD technique is shown graphically in Fig. 2a. The selectivity percentage of diphenylmethane formed in the benzylation of benzene is plotted against different metal ion modified β -zeolites (arranged in increasing order of acidity) is also shown in Fig. 2b.

These results revealed that the combination of medium and strong acidic sites are responsible for high selectivity towards diphenylmethane.

From Fig. 2, it is evident that increase in the acidity of the zeolite increases the selectivity of the diphenylmethane. The small deviations from the trend may be due to the distribution of acidic sites in medium and strong regions.

Fig. 3 gives graphical representation of variation of acidity of modified zeolites (a) and also selectivity % of 1-benzyl-4-methylbenzene (*para* isomer) formed in the benzylation of toluene over modified zeolites (b). Increase in the acidity from $\text{Zn}\beta$ to $\text{Ce}\beta$ has increased

the selectivity similar to the case of selectivity of diphenylmethane.

3.5. Reaction mechanism

The proposed reaction mechanisms for formation of diphenylmethane and formation of benzyl ether are shown in Schemes 2 and 3, respectively. Benzyl ether formation from benzyl alcohol can be explained on the basis of the intermolecular reaction pathway involving Bronsted acid sites of the zeolite.

4. Conclusions

The benzylation of benzene and toluene with benzyl alcohol in liquid phase can be carried out in the presence of metal ion modified β -zeolites to get high selectivity and conversion within shorter reaction time. Use of Benzyl alcohol instead of benzyl chloride is advantageous due to the formation of side product is only water, which is environmentally friendly. The catalyst (zeolite) is reusable.

Acknowledgements

K.V.V. Krishna Mohan thank CSIR, India for the award of Research fellowship. Authors are thankful to Dr. K.V.R. Chary for his help in NH_3 -TPD of catalysts.

References

- [1] T.W. Bastock, J.H. Clark, Speciality Chemicals, Elsevier, London, 1991.
- [2] B.M. Khadilkar, S.D. Borkar, Chem. Technol. Biotechnol. 71 (1998) 209.
- [3] R. Commandeur, N. Berger, P. Jay, J. Kervennal, Eup. Pat. Appl. EP. 0 442 986, 1991.
- [4] G.A. Olh, Friedel-Crafts and related reactions, vol. 1, Wiley Interscience, New York, 1963, p. 32.
- [5] P. Laszlo, A. Mathy, Helv. Chim. Acta 70 (1987) 577.
- [6] Nilesh.B. Shrigadi, Ajit.B. Shinde, Shrinivas.D. Samant, Appl. Catal. A 252 (2003) 269.
- [7] A. Cornelis, C. Dony, P. Laszlo, K.M. Ssunda, Tetrahedron Lett. 32 (1991) 3901.
- [8] A. Cornelis, C. Dony, P. Laszlo, K.M. Ssunda, Tetrahedron Lett. 32 (1991) 1423.
- [9] M. Davister, P. Laszlo, Tetrahedron Lett. 34 (1993) 3533.
- [10] G.D. Yadav, T.S. Thorat, P.S. Kumbhar, Tetrahedron Lett. 34 (1993) 529.
- [11] Maria Sol Marques da Silva, Claudia Lucas da Costa, Miriam de Magdala Pinto, Elizabeth Roditi Lachter, React. Polym. 25 (1995) 55.
- [12] Marcus Henrique C. dela Cruz, Joao Francis Co C. da Silva, Elizabeth R. Lachter, Appl. Catal. A. 245 (2003) 377.
- [13] Da-Qing Zhou, Ti-Huo Yang, Guang-Ming Dong, Mei-Yu Huang, Ying Yan Jiang, J. Mol. Catal. A 159 (2000) 85.
- [14] V.R. Choudhary, S.K. Jana, V.S. Narkhede, Appl. Catal. A 253 (2002) 207.
- [15] V.R. Choudhary, K. Mantri, Micropor. Mesopor. Mater. 56 (2002) 317.
- [16] M.S. Hamdy, G. Mul, J.C. Jansen, A. Ebaid, Z. Shan, A.R. Overweg, Th. Maschmeyer, Catal. Today 100 (2005) 255.
- [17] A. Vinu, D.P. Sawant, K. Ariga, M. Hartmann, S.B. Halligudi, Micropor. Mesopor. Mater. 80 (2005) 195.

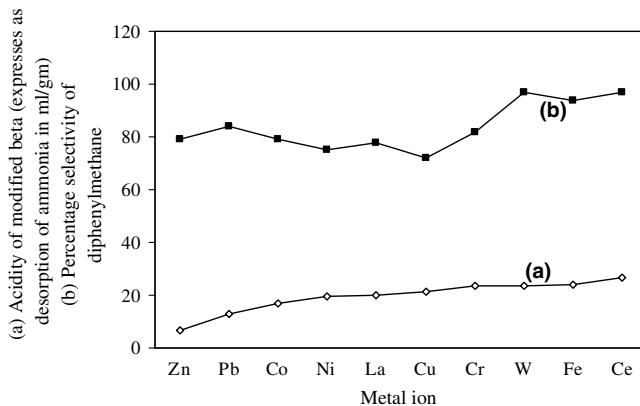


Fig. 2. Variation of acidity of modified zeolites and selectivity of diphenylmethane.



Fig. 3. Variation of acidity of modified zeolites and selectivity of 1-benzyl-4-methylbenzene.