
Implementation of CORDIC Based RAKE Receiver Architecture

K.S.Chaitanya1 P.Muralidhar2 C.B.Rama Rao3

Department of Electronics and Communication Engineering
National Institute of Technology

Warangal, India
1kodukula.chaitanya@gmail.com,  2pmurali_nitw@yahoo.co.in, 3cbrr@nitw.ac.in

Abstract— RAKE receiver is used in CDMA-based (Code
Division Multiple Access) systems and can combine multipath
components, which are time-delayed versions of the original
signal transmission. Combining is done in order to improve the
signal to noise ratio at the receiver. RAKE receiver attempts to
collect the time-shifted versions of the original signal by
providing a separate correlation receiver for each of the
multipath signals. This can be done due to multipath
components are practically uncorrelated from another when
their relative propagation delay exceeds a chip period. This
paper aims to present a system-on-chip (SoC) solution for
RAKE receiver using a CORDIC hardware accelerator. The
algorithm is implemented on Cyclone II FPGA device chipped
on Altera DE2 board. The inbuilt NIOS II soft core processor
of the FPGA device acts as the processor for processing
applications. The CORDIC algorithm which computes the
trigonometric functions is developed as a custom instruction
for the NIOS II processor. This hardware accelerator has
drastically improved the performance of the algorithm by
about 70% when compared with the pure software
implementation. This improvement in the performance is
achieved at the cost of area. The performance of RAKE
receiver is illustrated using bit error rate (BER) calculations.
The RAKE receiver performance is examined and compared
using maximal ratio and equal-gain combining techniques.

Keywords-Field programmable gate array (FPGA), system-on-
chip (SoC), NIOS II processor, RAKE receiver, CDMA,
maximal-ratio combining, equal-gain combining, bit error rate
(BER), CORDIC.

I. INTRODUCTION

With the technology advancement in today’s society, the
ability to communicate with people on the move has
evolved remarkably. However, the transmission quality of
the signal has deteriorated due to the modernization of the
urban cities with skyscrapers and other manmade obstacles.
This results in the transmitted signal having to take multiple
paths before reaching the intended receiver. Through the
multipath transmissions, the signal is severely distorted and
attenuated. Methods have to be developed to improve on the
signal quality.

Code Division Multiple Access (CDMA) systems use
the spread spectrum technology and the RAKE receiver
concept to minimize communication errors resulting from
multipath effects. In general, the number of multipath
signals in the wireless channel is unknown and difficult to

predict. The spread spectrum technology aims to spread the
information signal over a wider bandwidth to make
jamming and interception more difficult. A RAKE receiver
allows each arriving multipath signal to be individually
demodulated and then combined to produce a stronger and
more accurate signal.

 In the last few decades, a lot of modern signal
processing applications require such a high computational
power that only ASICs can fulfill the technical demands.
Unfortunately, ASICs are inflexible, costly (development
and debugging) and only economical for mass-products. As
a consequence, system designers are striving to replace
specialized hardware solutions with software based
solutions as developments in the field of software radio
demonstrate. Due to the fact that even the most commonly
used programmable devices, i.e. DSPs, often lack the
required processing power, one tries to develop a solution
that lays somewhere in between the two extreme
programmable signal processing and dedicated hardware.
The efforts in this area are summarized with the term
reconfigurable computing (FPGAs) [1].

The availability of hard/soft core processors in modern
FPGAs allow moving algorithms written for GPP or DSP
processors to FPGAs using the core processors. An
alternative approach is to move part of the algorithm into
hardware (HW) to improve performance. This is a form of
HW/SW Co-design, which requires profiling the software to
efficiently partition it between HW and SW. This solution
could result in a more efficient implementation as a part of
the algorithm is accelerated using HW while the flexibility
is maintained.

In this paper, the most computational intensive tasks of
the algorithm are performed on a dedicated hardware
accelerator using CORDIC processing elements. This paper
first discusses the theory behind the RAKE receiver and
CORDIC algorithm in section II. In section III a description
of the implementation is given while section IV displays the
results obtained. Finally section V gives the conclusions
made from the results obtained.

_____________________________ 
978-1-4244-4520-2/09/$25.00 ©2009 IEEE 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 



II. THEORY

A. RAKE Receiver

Due to reflections from obstacles a radio channel can 

consist of many copies of originally transmitted signals 

having different amplitudes, phases, and delays. If the signal 

components arrive more than duration of one chip apart from 

each other, a RAKE receiver can be used to resolve and 

combine them. The RAKE receiver uses a multipath diversity 

principle. It is like a rake that rakes the energy from the 

multipath propagated signal components [2]. 
1) Multipath Channel Model: Multipath can occur in radio 

channel in various ways such as, reflection and diffraction 
from buildings, and scattering from trees. An M-ray 
multipath model [3] is shown in Fig. 1. Each of the M paths 
has an independent delay, �, and an independent complex 
time-variant gain, G. 

Figure 1. Multipath channel model
2) M-finger RAKE Receiver: A RAKE receiver utilizes

multiple correlators to separately detect M strongest
multipath components. The outputs of each correlator are
weighted to provide better estimate of the transmitted signal
than is provided by a single component. Demodulation and
bit decisions are then based on the weighted outputs of the
M correlators [3]. Each correlator detects a time-shifted 
version of the original CDMA transmission, and each finger of 
the RAKE correlates to a portion of the signal, which is 
delayed by at least one chip in time from the other fingers. 

Figure 2. An M-branch RAKE receiver implementation

Assume M correlators are used in a CDMA receiver to 

capture M strongest multipath components. A weighting 

network is used to provide a linear combination of the 

correlator output for bit decision. Correlator 1 is synchronized 

to the strongest multipath m1. Multipath component m2 

arrived t1 later than m1 but has low correlation with m1. The M 

decision statistics are weighted to form an overall decision 

statistic as shown in Fig. 2. The outputs of the M correlators 

are denoted as Z1, Z2,�, and ZM. They are weighted by α1, α2,�, 

and αM, respectively. The weighting coefficients are based on 

the power or the SNR (Signal-to-Noise Ratio) from each 

correlator output. If the power or SNR is small out of a 

particular correlator, it will be assigned a small weighting 

factor, α. If maximal-ratio combining is used, following 

equation 1 can be written for Z�.  

 
The weighting coefficients, αM, are normalized to the output 

signal power of the correlator in such a way that the 

coefficients sum to unity, as shown in following equation 2. 

 
3) RAKE Receiver Block Diagram: When a signal is

received in a matched filter over a multipath channel, the
multiple delays appear at the receiver, as depicted in Fig 3.
The RAKE receiver uses several baseband correlators to
individually process several signal multipath components.
The correlator outputs are combined to achieve improved
communications reliability and performance [2]. Bit 
decisions based only a single correlation may produce a large 
bit error rate as the multipath component processed in that 
correlator can be corrupted by fading. In a RAKE receiver, if 
the output from one correlator is corrupted by fading, the 
others may not be, and the corrupted signal may be 
discounted through the weighting process. 

Figure 3.  Block diagram of a RAKE receiver

Impulse response measurements of the multipath channel 

profile are executed through a matched filter to make a 

successful de-spreading. It reveals multipath channel peaks 

and gives timing and RAKE finger allocations to different 

receiver blocks. Later it tracks and monitors these peaks with 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 



a measurement rate depending on speeds of mobile station 

and on propagation environment. The number of available 

RAKE fingers depends on the channel profile and the chip 

rate. The higher the chip rate, the more resolvable paths there 

are, but higher chip rate will cause wider bandwidth. To catch 

all the energy from the channel more RAKE fingers are 

needed. A very large number of fingers lead to combining 

losses and practical implementation problems. 

B. CORDIC Algorithm
CORDIC stands for COordinate Rotation Digital

Computer [4]. It calculates the value of trigonometric
functions and hyperbolic functions to desired precision. The
CORDIC algorithm does not use Calculus based methods
such as polynomial or rational function approximation but
computes elementary functions using only additions,
subtractions, digit shifts, comparisons and stored constants.
CORDIC algorithm revolves around the idea of "rotating"
the phase of a complex number, by multiplying it by a
succession of constant values. However, the "multiplies"
can all be powers of 2, so in binary arithmetic they can be
done using just shifts and adds; no actual "multiplier" is
needed thus it simpler and do not require complex hardware
structure as in the case of multiplier. The drawback in
CORDIC is that after completion of each iteration, there is a
gain which is added to the magnitude of resulting vector
which can be removed by multiplying the resulting
magnitude with the inverse of the gain. There are two ways
in CORDIC algorithm for calculation of trigonometric and
other related functions: they are rotation mode and vectoring
mode. Both methods initialize the angle accumulator with
the desired angle value. The rotation mode, determines the
right sequence as the angle accumulator approaches zero
while the vectoring mode minimizes the y component of the
input vector. CORDIC is generally faster than other
approaches when a hardware multiplier is unavailable (e.g.
in a microcontroller), or when the number of gates required
to implement is to be minimized (e.g. in an FPGA) [5].

The CORDIC algorithm provides an iterative method of
performing vector rotations by arbitrary angles using only
shifts and adds. The algorithm, credited to Volder [2] is
derived from the general rotation transform as shown in
equations (3) and (4). The basic equations required to
implement CORDIC are:

X(i+1) = X(i)Cosφ – Y(i)Sinφ (3)
Y(i+1) = Y(i)Cosφ + X(i)Sinφ (4)
X(i+1) = Cosφ (X(i) – Y(i)Tanφ) (5)
Y(i+1) = Cosφ (Y(i) + X(i)Tanφ) (6)

 If the rotation angles are restricted so that Tanφ = ±2e-i,
the multiplication by the tangent term is reduced to simple
shift operation. Equations (5) and (6) can now be expressed
for each iteration as:

X(i+1) = Ki [ X(i)-Y(i)di. 2exp(-i)] (7)
Y(i+1) = Ki [ Y(i)-X(i)di. 2exp(-i)] (8)

Z(i+1) = Z(i) – diφ  (9)
where Ki = Cos (Tan-1 2.exp(-i))
and di= -1 if Z(i) < 0, +1 otherwise
which finally provides the following result

Xn = An [X0 CosZ0 – Y0 SinZ0]   (10)
Yn = An [Y0 CosZ0 + X0 SinZ0] (11)

Zn = 0 (12)
An = Пn (1 + 2-2i)1/2 (13)

 So to reach an expected angle, a series of iterations are
required to be performed and in this design the number of
iterations are i = 8 and in every iteration the new values of x,
y and z depend upon the previous values of the same.

1) Sine and Cosine Calculation: The rotational mode
CORDICoperation can simultaneously compute the sine and
cosine of the input angle. Setting the y component of the
input vector to zero reduces the rotation mode result to:

Xn = An · X0 CosZ0 (14)
Yn = An · Y0 CosZ0 (15)

By setting X0 equals to 1/An, the rotation produces the un-
scaled sine and cosine of the angle argument, Z0. It is worth
noting that the hardware complexity of the CORDIC rotator
is approximately equivalent to that of a single multiplier
with the same word size.

III. IMPLEMENTATION

A. Hardware Platform
The NIOS II system is built using SOPC builder tool

present in the Quartus software and is configured into the
device. The device is configured in passive configuration
mode- JTAG (Joint test action group) mode. The Quartus II
software automatically generates .sof files that can be
downloaded into FPGA using Byte-Blaster II or USB
Blaster Cable for JTAG configuration.

1) Nios II System Design: The NIOS II is Altera’s
Second Generation Soft-Core 32 bit RISC Microprocessor.
NIOS II plus all peripherals written in HDL which can be
targeted for all Altera FPGAs is generated by the SOPC
builder of Quartus II software and synthesized using
Quartus II integrated synthesis. The design of NIOS II
system is performed using SOPC builder [7] and the
implemented system is shown in Fig. 4. The main
components of the system are:

• NIOS II processor
• Avalon Tristate Bridge: To interface all peripherals

with NIOS processor, parallel input/output (PIO).
• Parallel Input/Output peripherals
• SDRAM 8MB [9]
• PLL: To provide delayed clock input to SDRAM

and Timers
• JTAG UART: To establish communication

between PC and the FPGA
• Timer: Issues Interrupts to the processor to obtain

timing information

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 



• Performance Counter: Counts the number of clock
cycles taken by the algorithm

Figure 4.  Components of the implemented system
2) Custom Instruction: NIOS II processor custom

instructions are custom logic blocks adjacent to the ALU in
the cpu data path [8]. With custom instructions we can
reduce a complex sequence of standard instructions to a
single instruction implemented in hardware. The NIOS II
CPU configuration wizard provides a facility to add up to
256 custom instructions to the processor. The custom
instruction logic connects directly to the NIOS II processor
ALU logic as shown in Fig. 5.

Figure 5. Custom instruction logic in NIOS

 The algorithm is implemented in C language and the
most computational intensive tasks of the algorithm are
performed on a dedicated hardware accelerator using
CORDIC processing elements to improve the performance
by reducing the number of clock cycles required to
implement the algorithm. The CORDIC algorithm is used to
compute the sine and cosine values which are required to
calculate the in phase and quadrature phase components of
the received signals of the RAKE receiver. It is
implemented in a pipelined architecture and the Fig. 6
shows one stage of pipelined architecture.

Figure 6. One stage of pipelined CORDIC architecture

The hardware block diagram of the entire NIOS II system is
shown in Fig. 7.

Figure 7. Hardware block diagram of Nios II System

B. Software Implementation
The NIOS II Integrated Development Environment (IDE)

is used to run the software on top of NIOS II system. The
base addresses are specified in the system.h header file and
we need to include this file in our application code to access
different components of the system. The algorithm steps [6]
for the software implementation of the rake receiver are
given below:

1. Compute the In-phase (I) and Quadrature (Q) phase
components of inputs to each RAKE finger.

2. Calculate the Post correlation signal i.e. correlation
of the spreading sequence with inputs computed in
step 1.

3. Estimate the In-phase (I) and Quadrature (Q) phase
components of channel impulse response.

4. Calculate the real and imaginary parts of the RAKE
output.

5. The RAKE output is given to a decision device to
obtain the received bits.

IV. RESULTS

The RAKE receiver is implemented on Altera FPGA and
tested for different input data lengths and different chip rates.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 



The following results are obtained for 3000 bits of input data 
length and 64 chips per bit (chip rate). The profiling results 
regarding number of clock cycles required, time consumed 
by the algorithm, number of logical elements utilized and 
number of embedded multipliers utilized by the system with 
and without CORDIC hardware accelerator are given in 
Table 1. 

 

Table 1. Performance comparison of the system with and with out 
CORDIC custom

 
instruction 

 
With CORDIC 
Custom Instr 

Without 
Custom Instr 

% Impro-
vement 

Clock 
Cycles 1.11 E+10 2.80 E+10 60.5 

Time (sec) 222.003 561.759 60.5 

Logical 
Elements 5892 3662 37.8 

Embedded 
Multipliers 4 4 0 

 

       The profiling results regarding number of clock cycles 
required, time consumed by the algorithm, number of 
logical elements utilized and number of embedded 
multipliers utilized by the system with both CORDIC 
hardware accelerator and floating point hardware and 
without both are given in Table 2. 

 
Table 2. Performance comparison of the system with and with out both 

CORDIC custom instruction and Floating point hardware 

 
With both 

accelerators 
Without both 
accelerators 

% Impro-
vement 

Clock Cycles 7.41 E+09 2.80 E+10 73.6 

Time (sec) 148.367 561.759 73.6 

Logical 
Elements 11819 3662 69 

Embedded 
Multipliers 11 4 63 

 

The above comparison is graphically represented in Fig. 8. 

 
Figure 8. Profiling results 

1 (Blue) – Without Custom Instruction 
2 (Green) – With CORDIC Custom Instruction 
3 (Red) – With CORDIC Custom Instruction and Floating Point Hardware 
         
       The performance of the RAKE receiver is illustrated 
using bit error rate (BER) calculations. These calculations 
depend on the combining scheme employed in the receiver. 
The comparison between different combining schemes for 
RAKE receiver is shown in Fig. 9. 
 

 
Figure9. Performance comparison of receiver based on Combining Scheme 

V. CONCLUSIONS 
In this paper, RAKE receiver for CDMA applications is 

implemented on Cyclone II FPGA using NIOS processor. 
Two different architectures were proposed to implement the 
receiver. A comparison between the two architectures shows 
that using a custom instruction (Hardware accelerator) 
coupled with the processor in a Co-design configuration 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 



reduces the number of cycles required to perform the most
computational intensive tasks in the algorithm. We observed
that an average of 70% improvement in the number of clock
cycles with an average of 60% increase in the number of
logic elements. In addition, while using custom instruction
we can efficiently utilize the embedded multipliers (60%)
provided with the hardware. That is adding custom
instruction to the processor architecture improves the
performance of the processor without losing the flexibility
and with little increase in number of utilized logical blocks.

REFERENCES

[1] Heyne, B. and Goetze, J, “Cordic based algorithms for software
defined radio (SDR) baseband processing,” workshop on
Advances in Radio Science, 2006.

[2] Tero Ojanper�, Ramjee Prasad, Wideband CDMA for Third Generation 
Mobile Communications, Norwood MA, USA, Artect House Inc., 1998, 
439 pp.

[3] Simon Haykin, Michael Moher: Modern Wireless Communications, 
Prentice Hall 2005, pp. 258-338.

[4] Ray Andraka, “A survey of CORDIC algorithms for FPGA based
computers”, ACM 0-89791-978-5/98/01, 1998.

[5] Vikas Kumar, FPGA Implementation of DFT Using CORDIC
Algorithm, Masters Thesis, Thapar University, India, June 2008.

[6] G. J. R. Povey, P. M. Grant, and R. D. Pringle, “A decision-directed
spread-spectrum RAKE receiver for fast-fading mobile channels,”
IEEE Trans. Veh. Technol., vol. 45, pp. 491–502, Aug. 1996.

[7] “Nios II Tutorial”, Altera Corporation, San Jose C.A. 
[8] “Nios Custom Instructions Tutorial”, Altera Corporation, San Jose

C.A., 2002.
[9] “Nios II Hardware Development Tutorial”, Altera Corporation, San

JoseC.A.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 28,2024 at 06:04:52 UTC from IEEE Xplore.  Restrictions apply. 


