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Abstract

In this paper, we study the interaction of peristalsis with heat transfer for the flow of a viscous fluid in a vertical porous annular region
between two concentric tubes. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large in comparison with the
radius of the tube) is used to linearise the governing equations. Using the perturbation method, the solutions are obtained for the velocity and
the temperature fields. Also, the closed form expressions are derived for the pressure–flow relationship and the heat transfer at the wall. The
effect of pressure drop on flux is observed to be almost negligible for peristaltic waves of large amplitude; however, the mean flux is found to
increase by 10–12% as the free convection parameter increases from 1 to 2. Also, the heat transfer at the wall is affected significantly by the
amplitude of the peristaltic wave. This warrants further study on the effects of peristalsis on the flow and heat transfer characteristics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Peristalsis is a mechanism to pump fluids by means of mov-
ing contractions on the tube wall. It appears to be the major
mechanism for urine transport in the ureter, the motion of sper-
matozoa in the cervical canal, bile in the bile duct, etc. Engi-
neering devices like finger pumps and roller pumps work on
this principle. Peristaltic transport of toxic liquid is used in the
nuclear industry so as not to contaminate outside environment.
In view of its importance, several authors [1–6] have studied
peristalsis in both mechanical and physiological situations. In
particular, Shapiro et al. [2] analysed peristaltic pumping at low
Reynolds number and observed the interesting phenomena of
reflux and trapping. Shukla et al. [3] have studied the effect of
peristalsis on the movement of micro-organisms and its appli-
cation to spermatozoa transport. The interaction of peristalsis
and heat transfer has also received some attention [7] as it might
be relevant in processes like hemodialysis and oxygenation.
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Though the actual mechanism for the transport of water from
the ground to upper branches of tall trees is not well understood,
it is speculated that peristalsis and free convection contribute to
this motion. The diameters of the trunks of the trees are found
to vary with time. In view of this, some investigators [8–11]
have studied peristalsis with reference to water transport in
trees. The translocation of water involves its motion through the
porous matrix of the tree. Recently, Radhakrishnamurty et al.
[12] have investigated flow through vertical porous tube with
peristalsis and heat transfer. It is also found that in trees there
is a core region through which water does not flow and water
flows only through the outer region.

Keeping this in view, peristaltic flow through vertical porous
annuli is considered. Perturbation solutions are sought in terms
of free convection and the porosity parameters. The momen-
tum and energy equations are solved and closed form solutions
are obtained. The effects of free convection parameter (Gm),
amplitude ratio (�), porosity parameter (�2) and Eckert number
(Em) on mean flux (Q) for a prescribed pressure drop (�p)

are studied. We observe that for large values of �, the effect
of �p on Q is negligible. However, for given values of other
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parameters, Q increases by about 10–12% as Gm increases
from 1 to 2.

2. Formulation of the problem

The motion of a viscous, Newtonian, incompressible fluid
through a porous vertical annular region between two concen-
tric tubes is considered (see Fig. 1). It is assumed that sinusoidal
waves of very large wavelength travel along the outer bound-
ary of the region. The axisymmetric cylindrical polar coordi-
nate system (X, R) is considered such that the X-coordinate is
along the axis of the tube and R is the radial coordinate. The
inner and outer tubes are maintained at constant temperatures
T1 and T0, respectively.

The deformation of the outer wall due to the propagation of
an infinite train of peristaltic waves is represented by

R = H(X, t) = a0 + b sin(2�/�)(X − ct), (1)

where a0 is the mean radius of the outer tube, a1 is the radius
of the inner tube, b is the amplitude, � is the wavelength, c is
the speed of the wave and t is the time.

The governing equations for the present problem are:
the momentum equation

�
dv

dt
= −∇p + �∇2v − �

k0
v + ��g(T − T0); (2)

the continuity equation

∇.v = 0; (3)

Fig. 1. Flow geometry.

and the energy equation

C�
dT

dt
= k∇2T + �	 + �

k0
v2, (4)

where � is the density, v is the velocity of the fluid, p is the
pressure, � is the coefficient of viscosity, k0 is the permeabil-
ity of the medium, � is the coefficient of expansion, g is the
acceleration due to gravity, T is the temperature, C is specific
heat, k is the thermal conductivity of the fluid, and 	 is viscous
dissipation.

By using the long wavelength approximation, Eqs. (2)–(4)
can be reduced to (for details see [12])

0 = − �p

�X
+ �

R

�

�R

(
R

�W

�R

)
− �

k0
W + �g�(T − T0), (5)

0 = �W

�X
+ U

R
+ �U

�R
, (6)

0 = k

R

�

�R

(
R

�T

�R

)
+ �

(
�W

�R

)2

+ �

K0
W 2, (7)

where W and U are velocity components of the fluid in X and
R directions, respectively.

The boundary conditions are

W = 0 at R = a1 (radius of the inner tube)
W = 0 at R = H(x, t),

}
(8)

T = T1 at R = a1,

T = T0 at R = H.

}
(9)

We introduce the following transformation:

x = X − ct, r = R,

w = W − c, u = U,

}
(10)

and the following non-dimensional quantities:

x′ = x

�
, r ′ = r

a0
, w′ = w

c
, u′ = �u

a0c
,


 = T − T0

T1 − T0
, p′ = p

�c�/a2
0

, a′
1 = a1

a0
,

�(x) = h(x)

a0
, (11)

where h(x) = a0 + b sin(2�x/�).
Eqs. (1), (5)–(7), on using (10) and (11), can be written as

(after dropping the primes),

r = �(x) = 1 + � sin 2�x, (12)

0 = −�p

�x
+ 1

r

�

�r

(
r
�w

�r

)
− �2(w + 1) + Gm
, (13)

O = �w

�x
+ u

r
+ �u

�r
, (14)

O = 1

r

�

�r

(
r
�


�r

)
+ Em

(
�w

�r

)2

+ �2Em(w + 1)2. (15)
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The corresponding non-dimensional boundary conditions are

w = −1 at r = a1,

w = −1 at r = �(x),

}
(16)


 = 1 at r = a1,


 = 0 at r = �(x),

}
(17)

where �2 = a2
0/K0 (porosity parameter), Gm = g�T0a

3
0/�2

(Grashof number), Em = c2/k(T1 − T0) (Eckert number) and
� = b/a0 (amplitude ratio).

3. Method of solution

It is not possible to get closed form solutions for Eqs. (13)
and (15) for arbitrary values of all the parameters. We seek
perturbation solutions in terms of the free convection parameter
(Gm) and porosity parameter (�2) as follows:

f = (f00 + Gmf01 + · · ·) + �2(f10 + Gmf11 + · · ·) + · · · ,

(18)

where f is any flow variable.
Substituting (18) in Eqs. (13)–(17), and collecting the coef-

ficients of various powers of Gm and �2, we get the following
sets of equations:

Zeroth order:

0 = −�p00

�x
+ 1

r

�

�r

(
r
�w00

�r

)
,

0 = 1

r

�

�r

(
r
�
00

�r

)
+ Em

(
�w00

�r

)2

,

w00 = −1 at r = a1,

w00 = −1 at r = �(x),


00 = 1 at r = a1,


00 = 0 at r = �(x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

First order:

0 = −�p01

�x
+ 1

r

�

�r

(
r
�w01

�r

)
+ 
00,

0 = 1

r

�

�r

(
r
�
01

�r

)
+ 2Em

�w00

�r

�w01

�r
,

w01 = 0 at r = a1,

w01 = 0 at r = �(x),


01 = 0 at r = a1,


01 = 0 at r = �(x),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

0 = −�p10

�x
+ 1

r

�

�r

(
r
�w10

�r

)
− (w00 + 1),

0 = 1

r

�

�r

(
r
�
10

�r

)
+ 2Em

�w00

�r

�w10

�r
+ Em(w00 + 1)2,

w10 = 0 at r = a1,

w10 = 0 at r = �(x),


10 = 0 at r = a1,


10 = 0 at r = �(x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

Solving the above sets of equations, we get

w00 = a11(a14 + a15a16)

4
− 1, (22)

v01 = a12(a14 + a15a16) + a14(b11 − b12 − log �) + b12a17,

v02 = Ema2
11

16

[
r6 − �6

144
+ a2

15

4

{
(r log r)2 − (� log �)

2

2

−a17 + 3a14

4

}]
,

w01 = v01

4
+ v02 + Ema2

11a15(�4 − a4
1)

16
+ b13a16, (23)

w10 = (a11/4)

[
(a14 + a15a16) + r4 + 3�4 − 4r2�2

16

+ r2 − a2
1

4 log(a1/�)
(r2a16 − a14)

]
+ b13a16, (24)

t00 = − Ema2
11

16

[
r4 − �4

64
+ a15

{
a15

(log r)2 − (log �)2

2

+ (r2 − �2)

}]
,


00 = t00 + b12a16, (25)

t01 = a11r
4(a12 − b11 + b12(1 − a16))

64

+ Ema11

16

[
r8

768
+ a15r

4

16

{
(log r)2

2
− log r + 11

16

}

+a15r
6

72

]
,

t02 = r2

8

(
a12 − b11 − b12

(
a16 − 3

2

))

+ Ema2
11

16

[
r6

864
+ a2

15r
2

16
((log r)2 − 3 log r + 3)

+a15r
4

64

]
,


01 = − 2Em

[
t01 + a11b14r

2

8
+ b18

(
t02 + b14(log r)2

2

)]

+ b15 log r + b16, (26)

t10 = a11a13r
4

32
+ a2

11

4

[
r6

144
− r4�2

32
+ a15r

4

32
(a16 − 1)

]

+ a11b17r
2

4
+ a2

11r
6

576
,

t11 = b18

[
a13r

2

4
+ a11

4

{
r4

32
− r2�2

4

+a15r
2

4

(
a16 − 3

2

)}
+ b17(log r)2

]
,
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t12 = b2
18r

2

2

[
(log r)2

2
− log r + 3

4

]

+ r2(b19 + 1)

4
+ b18a11r

4

32

(
log r − 1

2

)
,

t13 = (b18(b19 + 1)r2(log r − 1)/2) + (a11(b19 + 1)r4/32),


10 = −Em[t10 + t11 + t12 + t13] + b20 log r + b21, (27)

a11 = �p00

�x
, a12 = �p01

�x
, a13 = �p10

�x
,

a14 = r2 − �2, a15 = �2 − a2
1

log(a1/�)
,

a16 = log(r/�), a17 = r2 log r − �2 log �.

The expressions for bi (i=11.21) are not presented for brevity.
The non-dimensional flux Q is defined by

Q = Q′

�ca2
0

=
∫ �

0
2rw dr , (28)

and the mean flux is given by

Q =
∫ 1

0
Q dt . (29)

Substituting the expression for w in Eqs. (28) and (29), and
after simplification, we get

Q = (Q00 + GmQ01 + · · ·) + �2(Q10 + · · ·) + · · · , (30)

where

Q00 = �p00 + 8B

8A
+ �2

2
− a2

1 + 1, (31)

Q10 = �p01

8A
+ (�2 − a2

1)

8

[
(3�2 − 5a2

1)b12

4
− b11(�

2 − a2
1)

]

+ Em


[
4�6a2

1 − 3�8 − a8
1

576
+ SC

+S

(
3a2

1�4 − 2�6 − a6
1

48

)]

+ b13

[
a2

1 − �2

2
a1 log(a1/�)

]
, (32)

Q10 = �p10

8A
+ 
D + F0

[
a2

1 log(�/a1) + a2
1 − �2

2

]
, (33)

A =
∫ 1

0

dx

a4
1 − �4 − S2

,

B =
∫ 1

0

dx

a2
1 + �2 − S

,

S = �2 − a2
1

log(a1/�)
,

C1 = 2�4 log � + 20a4
1 log a1 − 8�4(log �)2 − 8a4

1(log a1)
4

+ 16a2
1�2(log �)2 − 32�2 log �,

C2 = (7�2 − 17a2
1)(�2 − a2

1),

C = C1 − C2

128
,

D = 5a6
1

48
+ �6

12
− 3a1�4

16
+
(

5a4
1 + 3�4 − 8a2

1�2

32

)
S,


 = ( 1
2�)Q00 + � − a1

a1�2 − (a3
1/3) − (2�2/3) + S[a1 log(a1/�) + a1 − �] .

Here, �p = (�p00 + Gm�p01 + · · ·) + �2(�p10 + · · ·) + · · · is
the non-dimensional pressure drop over one wavelength and is
given by

�p = �p�

�c�/a2
0

,

where �p� = ∫ �
0 (�p/�x)dx.

The heat transfer coefficient Z defined at the outer wall, in
non-dimensional form, defined by

Z =
[

�


�x
+ �


�r

��

�x

]
r=�

, (34)

is finally obtained, after simplification, as

Z = (Z00 + GmZ01 + · · ·) + �2(Z10 + · · ·) + · · · (35)

where

Z00 = −Em
2
[
�3 + S2 log �

�
+ 2S� + b12

�

]
d�

dx
, (36)

Z01 = − 2Em

d�

dx

[
�3

16
F3
 − b12


(
4 log � − 3�2

64

)]

+ Em


[
− �7

96
+ S�3

64
((8 log �2) − 12 log � − 7)

]

+ F1

�

4
+ b18

[
F3

�4

4
− b12

�(log � − 1)

4

+ Em
2

[
�5

144
− S2

16
(� log �)2 − 4(log �) + 3) + S

�4

16

]

+F1 log �

�

]]
+ b15

�

d�

dx
, (37)

Z11 = 
F3�3

8
− 


{
7�5

48
+ 3S�3

16

}
+ 
�

2

+ b18

[
�

2
+ 


{
−3�3

8
+ S

(
7� log �

16
− �

2

)}]
,
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Z12 = (b19 + 1)2 �

2
+ b18


32
(4�3 log � − �3)

+ b18(b18 + b19)

(−�

2
+ � log � − 
(b19 + 1)

�3

8

)
,

Z10 = −Em

d�

dx
[Z11 + b18Z12] + F2

�

d�

dx
. (38)

The expressions for F0, F1, F2 and F3 appearing in the above
equations are not presented here for brevity.

4. Results and discussion

The effects of pressure drop �p, Gm, � and �2 on mean flux
have been presented in Figs. 2–5. Notice that for fixed values
of all other parameters, the mean flux increases with amplitude
as well as with pressure drop. However, variation of flux with
�p is found to be insignificant for large values of �. That is,
the effect of pressure drop on flux is negligible for peristaltic
waves of large amplitude. Further, it is seen that flux increases
with free convection and Eckert number. However, it may be
noted that the increase of Q with Em is not significant. Flux
decreases as channel porosity parameter (�2) increases.

Variations of the heat transfer coefficient at the wall have
been presented in Tables 1–3. For given values of all other
parameters, we can see that the heat transfer coefficient first

Fig. 2. Variation of mean flux with � (Gm = 1,�2 = 1, Em = 2).

Fig. 3. Variation of mean flux with � (Gm = 1,�2 = 1, Em = 4).

Fig. 4. Variation of mean flux with � (Gm = 1,�2 = 2, Em = 2).

Fig. 5. Variation of mean flux with � (Gm = 2,�2 = 1, Em = 2).

Table 1
Heat transfer variation with �2 (Em = 3, Gm = 3, � = 0.1)

X �2 = 1 �2 = 3

0.0 0.67875 0.679012
0.4 1.48593 1.486193
0.8 0.26149 0.26254

Table 2
Heat transfer variation with Gm (Em = 3,�2 = 2, � = 0.1)

X Gm = 1 Gm = 5

0.0 0.68451 0.693262
0.4 1.49195 1.493177
0.8 0.26259 0.26544

Table 3
Heat transfer variation with � (Em = 3, Gm = 3,�2 = 2)

X � = 0.1 � = 0.2

0.0 0.67888 1.357762
0.4 1.48606 1.867313
0.8 0.26152 0.67841
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increases with X and then decreases, which may be due to peri-
stalsis. Notice further that the heat transfer at the wall increases
with an increase in the free convection parameter (Gm), poros-
ity parameter (�2) and amplitude ratio parameter (�): increase
of Z with Gm and �2 is almost negligible. However, the mean
flux (Q) is found to increase by 10–12% as the free convection
parameter (Gm) increases from 1 to 2, for given values of all
other parameters.
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