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Flow past a porous approximate spherical shell
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Abstract. In this paper, the creeping flow of an incompressible viscous liquid past a porous

approximate spherical shell is considered. The flow in the free fluid region outside the shell and
in the cavity region of the shell is governed by the Navier–Stokes equation. The flow within the
porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used

at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and
Joseph slip condition. An exact solution for the problem is obtained. An expression for the

drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is
evaluated numerically for several values of the parameters governing the flow.
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Introduction

Several researchers have studied the flow of fluids past porous particles, as they are
of great importance in geophysical, industrial and engineering applications. Some
of the applications are flow through porous beds (fixed or fluidized), sedimentation
of fine particulate suspensions, modeling of polymer macromolecule coils in solvent,
catalytic reactions where porous pellets are used, floc settling process etc. Porous
particles are frequently formed by vapor condensation-coagulation process in the
atmosphere and in other environmental systems.

The flow problems past porous particles have been modeled by using Stokes
version of Navier–Stokes equation for the flow out side the porous particles and
Darcy’s [1] or Brinkman’s [2] equation to describe the flow within the porous
particles. Darcy’s law states that the filtration velocity is proportional to the
pressure gradient in the porous medium. Thus momentum equations in the porous
media and the free fluid have different orders. This incompatibility between the
internal and external flow equations has resulted in much uncertainty regarding
the boundary conditions at the interface between a porous medium and the free
fluid. Hence several types of boundary conditions at the interface of the free fluid
and porous region to link the different flow regimes were suggested in literature.
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Using the condition of continuity of normal velocity and pressure at the surface of
the porous sphere and no-slip of tangential velocity component of the free fluid,
Joseph and Tao [3] considered the creeping flow past a porous spherical shell
immersed in a uniform viscous incompressible fluid. It was noted by Beavers and
Joseph [4], in connection with the experimental investigations of viscous flow past
planar permeable surfaces, that a slip occurs at the boundary and they proposed
a slip boundary condition. Using a statistical approach to extend Darcy’s law
to non-homogeneous porous media, Saffman [5] gave a theoretical justification of
the condition proposed by Beavers and Joseph in the limit of small permeability
(i.e. in the limit k → 0, where k is the permeability). Neale et al. [7] proved
that the condition of Saffman was the most satisfactory one. Therefore for small
values of permeability, Saffman’s condition is more appropriate than the usual
no-slip condition. Using the Saffman condition together with continuity of normal
velocity and pressure at the surface of the porous boundary, Rajasekhar et al
[6] have studied the Stokes flow of a viscous fluid inside a sphere with internal
singularities enclosed by a porous spherical shell. A generalization of a boundary
condition suggested by Beavers and Joseph for planar boundaries was proposed by
Jones [8] for curved surfaces. He used this condition to solve the problem of the
slow viscous flow past a porous spherical shell. Sutherland and Tan [9] have used
the continuity of the tangential velocity component to study the sedimentation of a
porous sphere. Using this boundary condition, the flow past and within permeable
spheroid was considered by Vainshtein et al. [10]. They have examined the flow
past permeable circular disk and elongated rods as limiting cases

The aim of the present paper is to study the flow of incompressible viscous
fluid past and within a porous approximate spherical shell. The flow examined
is axially symmetric in nature. The flow equations are based on the Stokesian
version of Navier–Stokes equation in the general viscous flow regime and the use
of Darcy’s Model in the porous regions. As boundary conditions, continuity of
the velocity, pressure and the slip condition at the interface proposed by Jones are
employed.

Formulation of the problem

Consider the spherical polar coordinate system (r, θ, φ). Let (er, eθ, eφ) be the
unit base vectors of the coordinate system and h1 =1, h2 = r and h3 = r sin θ the
scale factors.

Consider the creeping flow of an incompressible Newtonian Viscous fluid past
and within a porous approximate spherical shell of average external and internal
radii a and b (a > b). Assume that there is a uniform velocity Ū far away from the
shell along the axis of symmetry θ = 0. Let the equation of the outer approximate

sphere be r = a{1 +
∞
∑

m=2
βmϑm(ξ)} ≡ ra and inner approximate sphere be r =
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Figure 1. The physical situation and the coordinate system

b{1 +
∞
∑

m=2
γmϑm(ξ)} ≡ rb where βm’s and γm’s are small, ξ = cos θ and ϑn(ξ) is

the Gegenbauer function of the first kind of order n and degree −1/2. If all the
βm’s and γm’s are zero, the approximate spherical shells reduce to spherical shells.

The external region (r ≥ ra), the porous region (rb ≤ r ≤ ra) and the cavity
region (r ≤ rb) are denoted by regions I, II and III respectively. Assume that the
flow in both the regions I and region III i.e. inside and outside of the approximate
spherical shell is governed by Stokes approximation to the Navier–Stokes equation

div~q(i) = 0 (1)

grad p(i) + µ curl curl ~q(i) = 0, i = 1, 3 (2)

and flow in the region – II is governed by the Darcy’s empirical formula

div~q(2) = 0 (3)

~q(2) = −k

µ
grad p(2) (4)

where ~q(i) is the fluid velocity, p(i) is the pressure and µ is the coefficient of
viscosity and k is the permeability of the medium. The superscripts i = 1, 2 and
3 correspond to the fluid properties in the regions I, II and III respectively.

Since the flow of the fluid is in the meridian plane and the flow is axially
symmetric, all the physical quantities are independent of φ. Hence we assume
that

~q(i) = [u(i)(r, θ)~er + v(i)(r, θ)~eθ], i = 1, 2, 3 (5)
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To determine the flow velocity and pressure outside and within the porous
annular approximate spherical region and within the cavity region, we use the
following boundary conditions at the surface of a porous body to link the different
flow regimes.

The first condition is that continuity of normal velocity. i.e.,

u(1)(r, θ) = u(2)(r, θ) on r = a[1 +
∑

β
m

ϑm(ξ)]

u(2)(r, θ) = u(3)(r, θ) on r = b[1 +
∑

γ
m

ϑm(ξ)] (6)

the second condition is that continuity of pressure

p(1)(r, θ) = p(2)(r, θ) on r = a[1 +
∑

β
m

ϑm(ξ)]

p(2)(r, θ) = p(3)(r, θ) on r = b[1 +
∑

γmϑm(ξ)] (7)

and the third condition is the slip condition of Beavers and Joseph [4]

r
∂

∂r

(

v(1)

r

)

+
1

r

∂u(1)

∂θ
=

σ√
k

(

v(1) − v(2)
)

on r = a[1 +
∑

β
m

ϑm(ξ)]

r
∂

∂r

(

v(3)

r

)

+
1

r

∂u(3)

∂θ
= − σ√

k

(

v(3) − v(2)
)

on r = b[1 +
∑

γ
m

ϑm(ξ)] (8)

where σ is a dimensionless parameter that depends on the properties of the porous
medium [8].

In addition to the above boundary conditions, we have the usual regularity
conditions at infinity i.e the flow far away from the body is uniform

Lt
r→∞

u(1)(r, θ) = U cosθ Lt
r→∞

v(1)(r, θ) = −U sin θ (9)

and the condition that velocity and pressure must have no singularities anywhere
in the flow field

Solution of the problem

Introducing the stream functions ψ(i) (r, θ), i = 1, 2 through

u(i) =
−1

r2 sin θ

∂ψ(i)

∂θ
; v(i) =

1

rsin θ

∂ψ(i)

∂r
, i = 1, 2, 3 (10)

in the equations (1)–(4) and eliminating the pressure from the resulting equations,
we get the following dimensionless equations for ψ(i), i = 1, 2, 3
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E4ψ(1) = 0 (11)

E2ψ(2) = 0 (12)

and

E4ψ(3) = 0 (13)

where E2denotes the Stokes stream function operator given by

E2 =
∂2

∂r2
+

1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ
. (14)

For the region I, the solution of (11) which is regular at infinity i.e., far away
from the shell and on the axis is given by

ψ(1) =

(

r2 +
A2

r
+ B2r

)

ϑ2(ξ) +
∞
∑

n=3

(Anr−n+1 + Bnr−n+3)ϑn(ξ). (15)

For the region II, the solution of (12) is given by

ψ(2) =

(

C2r
2 +

D2

r

)

ϑ2(ξ) +

∞
∑

n=3

(Cnrn + Dnr−n+1)ϑn(ξ). (16)

For the region III, the solution of (13) is given by

ψ(3) = (E2r
2 + F2r

4)ϑ2(ξ) +

∞
∑

n=3

(Enrn + Fnrn+2)ϑn(ξ). (17)

Using (15) in (2) and integrating the resulting equations, we get the pressure
distribution p(1) out side the body as

p(1) = −B2

r2
P1(ξ) +

∞
∑

n=3

(6 − 4n)

n
Bnr−nPn−1(ξ) (18)

Similarly, the pressure p(2) within the annulus porous region and p(3) within
the cavity region is obtained by using (16) in (4) and (17) in (2) then integrating
the resulting equations. Hence p(2)(r, θ) and p(3)(r, θ) are given by

p(2) = α2

[

(

C2r−
D2

2r2

)

P1(ξ) +

∞
∑

n=3

(

Cn

rn−1

n − 1
− Dnr−n

n

)

Pn−1(ξ)

]

(19)

and
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p(3) = −10rF2P1(ξ) −
∞
∑

n=3

Fn

(4n + 2)rn−1

(n − 1)
Pn−1(ξ) (20)

where α2 = a2/k
The boundary conditions (6)-(8) in terms of the stream function in dimension-

less form are

ψ(1)(r, θ) = ψ(2)(r, θ), 2[ψ(1)
rr − 1

r
ψ(1)

r ] − E2ψ(1) = ασ(ψ(1)
r − ψ(2)

r )

p(1)(r, θ) = p(2)(r, θ) on r = [1 +
∑

βmϑm(ξ)] (21)

and

ψ(2)(r, θ) = ψ(3)(r, θ), 2[ψ(3)
rr − 1

r
ψ(3)

r ] − E2ψ(3) = ασ(ψ(3)
r − ψ(2)

r )

p(2)(r, θ) = p(3)(r, θ) on r = η[1 +
∑

γmϑm(ξ)] (22)

where η = b/a.
First, we develop the solution corresponding to the boundaries r = a[1 + βm

ϑm (ξ)] and r = b[1 + γmϑm(ξ)]. Assume that the coefficients βm and γm are
sufficiently small so that squares and higher powers of βm and γm can be neglected
[11]. Comparison of the equations (15), (16) and (17) with those obtained in case
of flow of an incompressible viscous fluid past a porous spherical shell, indicates
that the terms involving An, Bn, Cn,Dn, En and Fn for n > 2 are the extra terms
here which are not present in the case of spherical shell [8]. The body that we
are considering is an approximate spherical shell and the flow generated is not
expected to be far different from the one generated by flow past a porous spherical
shell. Also the coefficients An, Bn, Cn, and Dn for n > 2 are of order βm and
the coefficients Cn,Dn, En, and Fn for n > 2 are of order γm. Therefore, while
implementing the boundary conditions, we ignore the departure from the spherical
form and set in (21) r = 1 in the terms involving An, Bn, Cn, and Dn,for n > 2
and in (22) r = η in the terms involving Cn,Dn, En, and Fn, for n > 2.

Expanding the boundary conditions (21) and (22) to the first order in βm and
γm and using the observations made above, we get

A2 =
β

(6 + ασ)

{

2 − (6 + 3ασ)

L
[(3 + ηασ)ηα2(α2(1 − η3)

+ 2 − 2η3) + 30ασ(α2 + 2)]
}

(23)

B2 = −α2[α2(3 + ηασ)η(1 − η3) + 30ασ](6 + 3ασ)/L (24)

C2 = [ηα2(3 + ηασ) + 30ασ](6 + 3ασ)/L (25)
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D2 = 2η4α2(3 + ηασ)(6 + 3ασ)/L (26)

E2 = [3ηα2(3 + 2ηασ) + 30ασ](6 + 3ασ)/L (27)

F2 = −3ασα2(6 + 3ασ)/L (28)

where

L = 18η{−2η3 + α2(η3 − 1) − 1}α2 + α2σ2{2η2α4(η3 − 1) − 3(η2 + 20)α2 − 90}

+ 3ασ{2η(η4 + η3 − η − 1)α4 − (4η5 + 2η2 + 3η + 60)α2 − 60) (29)

For n 6= m − 2,m,m + 2

An = Bn = Cn = Dn = En = Fn = 0 (30)

and the following linear system of equations in An, Bn, Cn,Dn, En and Fn for
n = m − 2,m,m + 2

An + Bn − Cn − Dn = (−2 + A2 − B2 + 2C2 − D2)βmbn (31)

[2(n2 − 1) + (n − 1)β]An + [2n(n − 2) + (n − 3)β]Bn

+ nβCn − (n − 1)βDn = (18A2 + β(2 + 2A2 − 2C2 − 2D2))βmbn (32)

4n − 6

n
Bn + α2

(

1

n − 1
Cn − Dn

n

)

= (2B2 − α2(C2 + D2))βman (33)

−ηnCn − η1−ηDn + ηnEn + ηn+2Fn = (2C2η
2 − D2

η
− 2E2η

2 − 4η4F2)γmbn (34)

2[n{1 + βη(n − 2)}Enηn−1 + {(n2 − 1) + βη(n + 2)}Fnηn

− β{nCnηn−1 − (n − 1)Dnη−n]

= (12F2η
2 + β(2ηE2 + 12F2η

3 − 2C2η − 2D2

η2
))γmbn (35)

−α2Cn

n − 1
ηn−1 +

α2Dn

n
η−n +

(4n + 2)

(n − 1)
Fnηn−1 = (α2(ηC2 + D2/η2) + 10ηF2)γman

(36)
where

bm−2 = −(m − 2)am−2 = − (m − 2)(m − 3)

2(2m − 1)(2m − 3)
(37)
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bm = m(m − 1)am =
m(m − 1)

(2m + 1)(2m − 3)
(38)

bm+2 = (m + 2)am+2 = − (m + 1)(m + 2)

2(2m − 1)(2m + 1)
. (39)

Solving this system of equations, we obtain the values of An, Bn, Cn,Dn, En,
and Fn, for n = m − 2, m, m + 2.

Drag on the shell

The drag force acting on the porous approximate spherical shell is given by

D = 2πa2

π
∫

0

[

τ (1)
rr cos θ − τ

(1)
rθ sin θ

]

r=a[1+
∑

βmϑm(ζ)]
sinθdθ. (40)

Expanding the integrand in terms of stream function the equation (40) can be
written as [11]

D = 2a2π

π
∫

0

r3 sin3 θ
∂

∂r

(

1

r2 sin2 θ
E2ψ(1)

)

rdθ. (41)

Using equation (15) and on carrying out the integration it is found to be

D = 4πµUa[∆1 + (1/5)(∆2β2 + ∆3γ2) + (2/35)(∆4β4 + ∆5γ4)]/L (42)

where

∆1 = −[3α2(2 + ασ){3α2η(−1 + η3) + ασ(−30 + α2η2(−1 + η3))}] (43)

∆2 = −[90ασ(2 + ασ){[9α2(2 + ασ){3α2η + ασ(30 + α2η2 )}]/L}

+ 2α4((6 + ασ)ε1 − ε2)η(−1 + η3)(3 + αση) + 3α2{ − 20ασ((6 + ασ)ε1

− ε2) + (3(2 + ασ)η + ασ(2 + ασ)η2 + 12η4

+ 4ασ η5){[9α2(2 + ασ){3α2η + ασ(30 + α2η2)}]/L}}] (44)

∆3 = −[3α2(6 + ασ) η{ − 20ασ{[54α2(2 + ασ) η3]/L}

− 10η{[18α3σ(2 + ασ)η2(6 + 5ασ η)]/L}

+ (3η2 + ασ η3){−[9α4(2 + ασ)η2(3 + ασ η)]/L}}] (45)

∆4 = [−180ασ(2 + ασ){[9α2(2 + ασ){3α2η + ασ(30 + α2η2)}]/L}

+ α4((6 + ασ) ε1 − ε2)η(−1 + η3)(3 + ασ η) − 6α2{5ασ((6 + ασ) ε1 − ε2)
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+ (3(2 + ασ)η + ασ(2 + ασ) η2 + 12η4

+ 4ασ η5){[9α2(2 + ασ){3α2η + ασ(30 + α2η2)}]/L}}] (46)

∆5 = −[3α2(6 + ασ) η{η(5{[18α3σ(2 + ασ)η2(6 + 5ασ η)]/L}

+ 6η − [9α4(2 + ασ)η2(3 + ασ η)]/L}) + 2ασ(5{[54α2(2 + ασ) η3]/L}
+ η3 − [9α4(2 + ασ)η2(3 + ασ η)]/L})}] (47)

ε1 = [6α2{ − 3α2η + 3(−6 + α2)η4 + ασ(−6(5 + η5) + α2(−η2 + η5))}]/L (48)

ε2 = [6α3σ{5 + ασ)(30ασ + 3α2η + α3ση2)

− (−18 + α2(5 + ασ))(3η4 − αση5)}]/L (49)

Figure 2. Variation of Drag Coefficient with α for various values of β; σ = 0.75, γ = 0.0 and
η = 0.6

It is interesting to note that though the boundary surface is r = a[1+
∑

βmϑm(ξ)]
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and r = b{1+
∞
∑

m=2
γmϑm(ξ) }, the coefficients β2, β4, γ2 and γ4 only, contribute to

the drag. This implies that the drag on the porous approximate spherical shell is
relatively insensitive to the details of the surface geometry. This is similar to the
observation made by Srinivasacharya [12] in case of flow past a porous approximate
sphere.

If βm= γm = 0, for m > 2, the approximate spherical shell reduces to a
spherical shell and the drag on porous spherical shell is

−4πµUa[3α2(2 + ασ){3α2η(−1 + η3) + ασ(−30 + α2η2(−1 + η3))}]/L

The expression for the drag experienced by a porous spherical shell as obtained
by Jones [8] is

6πµaU(2 + aβ)

[

3k

2ab
+

3

20ab
+

b

20a
− 3b3

20a4β
− b4

20a4

]

/

[

3 + aβ +
3k

a2
− 3kβ

2a

] [

3k

2ab
− 3

20aβ
+

b

20a

]

−
[

3 + aβ − 6k

a2

] [

3b3

20a4β
+

b4

20a4

]

(50)

which can be simplified to

Figure 3. Variation of Drag Coefficient with α for various values of β; σ = 0.75, γ = 0.1 and
η = 0.6
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− 6πµUa3(aβ + 2)[a3(βb2 + 3b + 30kβ) − b4(bβ + 3)]/[2β(βb2 + 3b + 30kβ)a6

+ 6(βb2 + 3b + 30kβ)a5 + 3kβ(βb2 + 3b + 30kβ)a4 + (−2β2b5 − 6βb4 + 6kβb2

+ 18kb + 180k2β)a3 − 6b4(bβ + 3)a2 + 12b4k(bβ + 3) (51)

and is same as (50) with η = b/a, α2 = a2/k, σ = β
√

k. Thus the expression for
drag in Jones [8] is recoverable from (50) as a special case.

Figure 4. Variation of Drag Coefficient with α for various values of γ; σ = 0.75, β = 0.1 and
η = 0.6

Since
√

k is of the order of the size of the pore, we take
√

k to be much smaller
than ‘a’ (i.e. α to be greater than one) when Darcy’s model is used in the porous
region. The variation of drag coefficient DN= – D / (4πµUa) for various values
of α, β2= β4= β with σ = 0.75, η= 0.6, γ2 = γ4 = γ = 0.0 is shown in Fig. 2
and for γ = 0.1 is shown in Fig. 3. From these two figures it can be observed that
the drag coefficient is decreasing as the permeability parameter (α) is increasing.
There is increase in the drag coefficient as the deformation parameter of the outer
sphere (β) is increasing. It is interesting to note that the drag coefficient on the
spherical shell is less than that of the drag on the approximate spherical shell. The
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Figure 5. Variation of Drag Coefficient with α for various values of σ; η = 0.6, γ = 0.1 and
β = 0.15

variation of drag coefficient DN for various values of α and γ with β = 0.1, σ =
0.75, η = 0.6 is shown in Fig. 4. There is no effect of deformation parameter of
the inner sphere (γ) on the drag coefficient. The effect the parameter σ on drag
coefficient DN for fixed values γ = 0.1, β = 0.15, η = 0.75 is shown in Fig. 5. As
the parameter σ increases, the drag coefficient is increasing.

Conclusions

An exact solution for the problem of the creeping flow of an incompressible viscous
liquid past a porous approximate spherical shell is obtained by considering the
Darcy’s law in the porous region and Stokes equations in the liquid region. At the
porous-liquid interface Beavers and Joseph slip boundary condition, continuity of
the normal velocity and continuity of the pressure have been used. An expression
for the drag on the porous approximate spherical shell is obtained. It is observed
that the drag coefficient on the spherical shell is less than that of the drag on
the approximate spherical shell and there is increase in the drag coefficient as
the parameter σ is increasing. The drag coefficient increases as the deformation
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parameter of the outer sphere is increasing and the effect of deformation parameter
of the inner sphere on the drag coefficient is negligible.
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