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Abstract

In this paper we present a numerical method for the solution of a two-point boundary
value problem posed on an infinite interval involving a second order linear differential
equation. By reducing the infinite interval to a finite interval that is large and imposing
approximate asymptotic boundary condition at the far end, the resulting boundary value
problem is treated by using fourth order finite difference method. The stability of the
method is analyzed and the theory is illustrated by solving test examples.
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1. Introduction

During the last few years much progress has been made in the numerical
treatment of boundary value problems over infinite intervals. Typically, these
problems arise very frequently in fluid dynamics, aerodynamics, quantum me-
chanics, electronics, and other domains of science. A few notable examples are
the Von Karman swirling flows [7,8], combined forced and free convection over
a horizontal plate [10] and eigenvalue problem for the Schrodinger equation [6].
In many cases, the domain of the governing equations of these problems is
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infinite or semi-infinite so that the special treatment is required for these so
called infinite interval problems. The analytical solutions for these problems are
not readily attainable and thus the problem is brought to the problem of finding
efficient computational algorithms for obtaining numerical solution.

Before computing the solution, we plummet the infinite interval to a finite
but large one, so that a finite point represent infinity. This is standard approach
of solving such problems that are posed on infinite intervals. This done in
different approaches. One approach is to replace the boundary conditions at
infinity by the same conditions at a finite value N (the truncated boundary). In
many cases this simple approach is sufficient and efficient and it provides good
results only for very large value of N. Another approach, De Hoog and Weiss
[3] proposed an analytical transformation of the independent variable that
reduces the original problem to a boundary value problem over a finite in-
terval. Usually, that produces a singularity of the second kind at the origin and
must be solved by suitable difference methods. Finally, Hoog and Wiess [4],
Lentini and Keller [6] and Markowich [8] approach to performing a prelimi-
nary asymptotic analysis to find the appropriate boundary conditions to be
imposed at a truncated boundary. Since the imposed conditions are related to
the asymptotic behavior of the solution, for the same value of N this approach
usually yields a more accurate solution than the previous approach.

In this paper we present a numerical method for the solution of a two-point
boundary value problem posed on an infinite interval involving a second order
linear differential equation. By reducing the infinite interval to a finite interval
that is large and imposing approximate asymptotic boundary condition at the
far end, the resulting boundary value problem is treated by using fourth order
finite difference method. The stability of the method is analyzed and the theory
is illustrated by solving test examples.

2. Asymptotic boundary condition

Consider the linear two-point boundary value problem of the form

Ly(x) = y"(x) + P(x)y/ (x) — Q(x)y(x) = R(x) (1)
with

yla) =b 2)

y(00) =¢ or Limy(x)=c (3)

X—00

where P(x), O(x) and R(x) are continuous functions and Q(x) > 0. In order to
find the appropriate asymptotic boundary conditions for Eq. (1), rewrite (1) as
a first order system in the form let y(x) = u(x), y/(x) = v/(x) = v(x), we have

U (x) = v(x) (4)
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v'(x) + P(x)v(x) — O(x)u(x) = R(x) ()
and correspondingly (2) and (3) become

u(a)="> (6)

Limu(x) = us, = ¢ (7)

X—00

Letting U = (u,v)" (t denotes transpose), we can write the first order system (4)
and (5) in the matrix vector form

u'(x) = AX)U + b(x) = F(x,u) (8)

where

19 =of —peo] 4 209= [

A general theory for linear and nonlinear systems of the form (8) on semi-
infinite interval has been developed by Lentini and Keller [6]. We assume that

(1) Lim, . A4(x) = 4, constant matrix,

(i) Lim, ., % =0,
(iil) A(x) is piecewise continuously differentiable on (a, o0) and
(iv) u is required to be the root of Lim, ., F(x,u) = 0.

We also assume that A is in the canonical form such that 4 = EJE~' #0 (a
zero matrix) and J has the block diagonal form J = diag(J*,J°,J ), where J*
contains eigenvalues of 4 with positive real part, J° the eigenvalues of 4 with
zero real part and J— the eigenvalues of 4 with a negative real part. The main
idea is to find all bounded solutions and to eliminate the contribution from the
unbounded solution of Eq. (8). The behavior at infinity of the solution of the
system (8) is essentially given by the eigenvalues of the matrix.

A = LimA(x) = [2 H

where K = Lim, ., O(x), L = Lim,_.,, — P(x).

Suppose the matrix 4, has the eigenvalues 4, and Z,, then depending upon
ReZ;, Red, = 0, we find the linearly independent solution which decay expo-
nentially at infinity and the linearly independent solutions which are un-
bounded as x — oo. Since we need only one condition at the far end we expect
only one eigenvalue with a positive real part and say, this eigenvalue is 4;. we
introduce the projection matrix P, of the form P, = [1,0]. (If the eigenvalue 7,
is with a positive real part, we have P, = [0,1].) Let £ be a matrix of eigen-
vectors of A,
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Ey Ep
E =
{Em Ezz}

By calculating E~! for which E~'4E = diag(4;, ;) we can write the asymp-
totic boundary condition as
LimP,E"'F(x,u) =0 9)

Eq. (9) yields the condition at x = N where N is chosen by taking different
values of X for which the computed solution approximates the actual solution.

3. Fourth order finite difference scheme

In order to solve the finite interval problem obtained above, we describe the
fourth order finite difference scheme for a more general two-point boundary
value problem as follows. For the sake of brevity, we assume that the as-
ymptotic boundary condition (9) is of the form

O‘y(XOO) + ﬁy,(xoc) =0 (10)

For x,, = N, N large but finite, where «, f are known constants such that
off = 0 and |a| + |B| # 0. This guarantees (for details see Keller [2]) the unique
solution of the two-point boundary value given by Ly(x) = ' (x) + P(x)y/ (x) —
O(x)y(x) = R(x) with boundary conditions

y(@)=c and oy(x)+ B (xx) =0

A finite difference scheme is often a convenient choice of method for the
numerical solution of two-point boundary value problems. Throughout the
discussion the symbols u, 6 denote the usual central difference operators,
defined by Fox [l]. As usual, we consider the mesh with grid points
a=xy<x; <---,x, =N with mesh size 7 = x; — x,_;. We use central difference
formulae to obtain the finite difference representations of (1) at a typical mesh
point x;, i =0,1,2,... N as:

1 1
n {6* —56*w +zPi{,“5 — 48}y — Qi = Ri + o (11)
where
1 1
0= ~7a 50" o] =Rl + -] (12)

and ¢, is O(h*). Clearly, the left hand side of (11) is not tridiagonal, because it
involves the differences ud’y; and 8%y;. To make it tridiagonal, we obtain the
tridiagonal estimates of ud’y; and 8%y; as follows.
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Differentiating (1) once with respect to x, then using central difference for-
mulae produces a tridiagonal O(h°) approximation for ud’y; as follows:

:u53yi - _hP5 Yi — hz( Qz).u(s% + h le + th + llllyl (13)
where
W= 1usS + - P{LS Y+ R (P = 0 {4} (14)

Similarly, differentiating (1) twice, then using (1) and central difference for-
mulae, produces a O(h®) approximation for 8%y, as follows

8'yi = (P! — P+ Q)8 + I’ PP, — P! — PO + 20)) udy;

h (PO, + P.Q; — O] )y + h*(R] — RiP, — RiF)) + my; (15)
where
m=1— o =R (PP =P+ 0 {5+ }
— W(2PF — P! = P.O; + 20) {td’ + -+ } (16)
Now, we substitute (13) and (15) in (11) to obtain an equation of the form
Eyi1Fyi + Gyt = Hi + Ky (17)
where

3

h h 2 / h /! /
El»_l—zP—i—lz(P +P — Q,)—ﬁ(P - PO, —20)

h? I/
F=24200+F +P)+5,(0] + PO — F0)

h h2 h3 " ,

h
H; =R, + — (R + R,P, — R,P))

12
and the error term is given by
64 5S4 20 p2
ki = 5500" + o+ hPpd” + -+ gh® (P + P = Q)
54 . ﬁh.’)(Pi// _ P;Q; _ 2Q,),u53

Note that the error term associated with (17) is O(4°) and that the over all
accuracy of the method is O(4*). If the error term in (17) is neglected, the
matrix problem associated with (17) is a tridiagonal algebraic system

Ey 1 —Fy+Gya=H, i=12,...,n (18)
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The boundary conditions (2) and (10) can be written in the form
n=>b (19)
26hy, + Byust = Byn-1 =0 (20)

where the value y,_; at the fictitious point x = (n + 1)A needs to be eliminated
between Egs. (18) and (20).
Let a difference relation of the form

yi+1:VViyi+T; 1'2071,2,...,7’!—1 (21)

where W, and T; correspond to W (x;) and T(x;) are to be determined from (21).
By substituting (21) in (18), we get

E, H, — G,

- . 22
YRG! TG —F @)

By comparing the Eqgs. (22) with (21), we get the recurrence relations

E
Wi_ G, (23)
H —GT

T, =i 24
LT G- F 24
To solve these recurrence relations for W, and 7; (i=n—2,n—3,...,0) we

need to know the values of W, and 7; at i = n — 1. To do this, we have from Eq.
(10)

2]’!0()/,1 + ﬁynﬂ - ﬁynfl =0 (25)
From Eq. (18) at x = x,, we have
Enynfl - Etyn + Gnyn+1 = Hn (26)
By using (25) and (26), we get
E,+G,
Wy =0 (27)
F;z +— Gn
p
H,
Ty = —n——— (28)
2 G+ F,
ﬁ n n

starting with these initial values of W, | and 7, ,, the values of W, and T;
(i=n—-2,n—3,...,0) are obtained by using (23) and (24). Using these values
of W;’s and T;’s are knowing the values of j, (initial condition) solutions y can
be obtained by using (21).
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4. Stability

We will now show that the method is computationally stable. By stability,
we mean the effect of an error made in one stage of calculation is not propa-
gated into errors at latter stages of computation. That is, local errors are not
magnified by further computation.

Let us now examine the recurrence relation given by (23) suppose a small
error ¢; has been introduced in the calculation of 7, then we have

W,=W +e (29)

and we are actually solving

~ E:
i— :71,\, 30
' E-GW, (0
From (27) and (30), we have
E; E; EGe;
€ _1 = — =
' E—G(Wi+e) F—GW [F—Gi(Wi+e)lF — EW] a1)
G
€i-1 = [Wiilfl}ei

Under the assumption that initially the error is small. Let us assume that
G; > 0 and E; > 0 for all i. From the definitions of E;, F; and G;, we also have
F;>0and F;, > E; + G; for all i.

We now make use of the assumptions on E; and G; to show 0 < ; < 1 for
i=n—1,n—2,...,0. From (27)

En + Gn
Wl—l = 2ho,
F, +22G,

Under the above mentioned conditions, it is then easy to verify that
0 < W,_; < 1. Also,

Enfl
w,_
: Foi— G W,
< L since W,_; < 1
F‘nfl - anl
<1

and this 0 < W,_, < 1. Successively it follows that 0 < W; < 1,i=n—3,...,0.
Then it follows that Eq. (28) that ¢;_; < e;, provided G; > E; and thus the re-
currence relation (27) is stable. Similar arguments will show that the recurrence
relation (28) is also stable.



490 A.S.V. Ravi Kanth, Y.N. Reddy | Appl. Math. Comput. 144 (2003 ) 483—494

5. Computational results
In this section, we have implemented the present method on two examples.

The numerical results are compared with exact results. The applicability of
results show that the present method approximate the solution very well.

Example 1. Consider the boundary value problem

LY(x) =" =2y +2y=¢* (32)
with

y(0)=10 (33)

y(00) =0.0 (34)

This problem has earlier been considered by Robertson [9], Kadalbajoo and
Raman [5], and its exact solution is given by

ya) = Je I g e

The asymptotic boundary condition for this example can be written as

1 V3(—1++/3)
— (X)) + ———V (%) =0 35
) 2 (x) (35)

The boundary value problem given by (32), (33) and (35) has been solved
using fourth order finite difference method and the numerical results are pre-
sented in Tables 1-3.

Table 1

Computational results for Example 1 (N = 8)
X Exact FFDM

h=1/16 h=1/32 h=1/64

0.0 0.100000E+-01 0.100000E+-01 0.100000E+-01 0.100000E+-01
1.0 0.100210E+-00 0.100211E4-00 0.100215E+4-00 0.100220E+-00
2.0 0.112759E-01 0.112760E—-01 0.112766E-01 0.112776E-01
3.0 0.137723E-02 0.137725E-02 0.137733E-02 0.137748E-02
4.0 0.176704E-03 0.176706E—-03 0.176717E-03 0.176737E-03
5.0 0.232839E-04 0.232830E-04 0.232844E-04 0.232882E-04
6.0 0.311011E-05 0.310742E-05 0.310760E-05 0.311051E-05
7.0 0.418238E-06 0.412565E-06 0.412558E-06 0.417943E-06

8.0

0.564286E-07

0.446244E-07

0.445621E-07

0.556647E-07
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Table 2
Computational results for Example 1 (N =9)
X Exact FFDM
h=1/16 h=1/32 h=1/64
0.0 0.100000E+01 0.100000E+01 0.100000E+01 0.100000E+01
1.0 0.100210E4-00 0.100211E+00 0.100215E+00 0.100220E+-00
2.0 0.112759E-01 0.112760E—-01 0.112766E—-01 0.112776E-01
3.0 0.137723E-02 0.137725E-02 0.137733E-02 0.137748E-02
4.0 0.176704E-03 0.176706E—-03 0.176717E-03 0.176737E-03
5.0 0.232839E-04 0.232842E-04 0.232857E-04 0.232882E-04
6.0 0.311011E-05 0.310998E—-05 0.311018E-05 0.311051E-05
7.0 0.418238E-06 0.417874E-06 0.417898E-06 0.417943E-06
8.0 0.564286E—-07 0.556608E—-07 0.556598E-07 0.556647E-07
9.0 0.762547E-08 0.602791E-08 0.601950E-08 0.601786E—-08
Table 3
Computational results for Example 1 (N = 10)
X Exact FFDM
h=1/16 h=1/32 h=1/64
0.0 0.100000E+01 0.100000E+-01 0.100000E+-01 0.100000E+-01
1.0 0.100210E+4-00 0.100211E+00 0.100215E+00 0.100220E+-00
2.0 0.112759E-01 0.112760E-01 0.112766E-01 0.112776E-01
3.0 0.137723E-02 0.137725E-02 0.137733E-02 0.137748E-02
4.0 0.176704E-03 0.176706E—-03 0.176717E-03 0.176737E-03
5.0 0.232839E-04 0.232843E-04 0.232857E-04 0.232883E—-04
6.0 0.311011E-05 0.311015E-05 0.311034E-05 0.311068E-05
7.0 0.418238E-06 0.418220E-06 0.418246E-06 0.418291E-06
8.0 0.564286E—-07 0.563793E-07 0.563826E-07 0.563886E—-07
9.0 0.762547E-08 0.752156E—-08 0.752142E-08 0.752208E—-08
10.0 0.103126E-08 0.815049E-09 0.813913E-09 0.813692E-09
Example 2. A second example
" 1 1
LY(X) =—)y + 1 "‘r; y= ; (36)
with
y(1)=1.0 (37)
y(00) = 0.0 (38)

This problem has earlier been considered by Fox [1] and later by Robertson
[9]. The asymptotic boundary condition for this example can be written as

%y(XOO) + %y,(xoc) =0 (39)
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Table 4

Computational results for Example 2 (N = 15)
X FFDM

h=1/8 h=1/16 h=1/32

1.0 0.000000E+-00 0.000000E+-00 0.000000E+00
2.0 0.109816E+00 0.109817E+-00 0.109817E+00
3.0 0.852347E-01 0.852352E-01 0.852347E-01
5.0 0.390871E-01 0.390874E-01 0.390872E-01
7.0 0.200437E-01 0.200437E-01 0.200439E-01
9.0 0.119536E-01 0.119536E-01 0.119537E-01
11.0 0.792264E-02 0.792261E-02 0.792265E-02
13.0 0.545571E-02 0.545546E—-02 0.545541E-02
15.0 0.245363E-02 0.245168E-02 0.245120E-02

Table 5

Computational results for Example 2 (N = 20)
X FFDM

h=1/8 h=1/16 h=1/32

1.0 0.000000E+-00 0.000000E+4-00 0.000000E+4-00
3.0 0.852347E-01 0.852352E-01 0.852347E-01
5.0 0.390872E-01 0.390874E-01 0.390872E-01
7.0 0.200441E-01 0.200442E-01 0.200443E-01
9.0 0.119571E-01 0.119571E-01 0.119572E-01
11.0 0.795100E-02 0.795099E-02 0.795104E-02
13.0 0.568391E-02 0.568389E-02 0.568391E-02
16.0 0.374146E-02 0.374144E-02 0.374145E-02
20.0 0.134216E-02 0.134103E-02 0.134075E-02

Table 6

Computational results for Example 2 (N = 25)
X FFDM

h=1/8 h=1/16 h=1/32

1.0 0.000000E+00 0.000000E+00 0.000000E+4-00
3.0 0.852347E-01 0.852352E-01 0.852347E-01
5.0 0.390872E-01 0.390874E-01 0.390872E-01
7.0 0.200441E-01 0.200442E-01 0.200443E-01
9.0 0.119571E-01 0.119571E-01 0.119572E-01
11.0 0.795110E-02 0.795109E-02 0.795114E-02
13.0 0.568469E—-02 0.568467E—-02 0.568469E—-02
16.0 0.375894E—-02 0.375893E-02 0.375893E-02
17.0 0.333260E—-02 0.333259E-02 0.333259E-02
25.0 0.845859E-03 0.845133E-03 0.844953E-03
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The boundary value problem given by (36), (37) and (39) has been solved by
the method described earlier and the computational results are presented in
Tables 4-6.

6. Discussion and conclusion

A fourth order finite difference method is used for the approximate solution
of the two-point boundary value problems over infinite intervals. The method
has been analyzed for stability. It is a practical method and can easily be im-
plemented on a computer to solve such problems. Test examples, tackled
earlier by Fox [1] and Robertson [9] has been solved to demonstrate the effi-
ciency of the proposed method. For these examples, the asymptotic boundary
condition at x,, = N was first derived and the value x,, = N was the varied
until no significant change in the solution was noticed. The computational
results for the Example 1 are presented in Tables 1-3 at different mesh sizes and
different values of x,, = N. The values of N taken for computation are 8, 9 and
10 for different values of 4. The computational results are presented in tables.
From these tables it can be observed that the approximate results are very close
to the exact solutions. It can be seen that the computed solutions for N = 10
show six places of decimal accuracy and thus N = 10 can be taken to represent
the point at infinity for the problem. The computational results for Example 2
for different values of / are given in Tables 4-6. It is evident from this tables
that the solutions decay relatively slowly which agrees with the observation
made by Fox [1]. The computed solutions also compare very well with that
obtained by Robertson [9] and at x,, =N = 9.
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