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Abstract

In this paper we present a numerical method for the solution of a two-point boundary

value problem posed on an infinite interval involving a second order linear differential

equation. By reducing the infinite interval to a finite interval that is large and imposing

approximate asymptotic boundary condition at the far end, the resulting boundary value

problem is treated by using fourth order finite difference method. The stability of the

method is analyzed and the theory is illustrated by solving test examples.
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1. Introduction

During the last few years much progress has been made in the numerical

treatment of boundary value problems over infinite intervals. Typically, these

problems arise very frequently in fluid dynamics, aerodynamics, quantum me-

chanics, electronics, and other domains of science. A few notable examples are

the Von Karman swirling flows [7,8], combined forced and free convection over

a horizontal plate [10] and eigenvalue problem for the Schrodinger equation [6].
In many cases, the domain of the governing equations of these problems is
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infinite or semi-infinite so that the special treatment is required for these so

called infinite interval problems. The analytical solutions for these problems are
not readily attainable and thus the problem is brought to the problem of finding

efficient computational algorithms for obtaining numerical solution.

Before computing the solution, we plummet the infinite interval to a finite

but large one, so that a finite point represent infinity. This is standard approach

of solving such problems that are posed on infinite intervals. This done in

different approaches. One approach is to replace the boundary conditions at

infinity by the same conditions at a finite value N (the truncated boundary). In

many cases this simple approach is sufficient and efficient and it provides good
results only for very large value of N. Another approach, De Hoog and Weiss

[3] proposed an analytical transformation of the independent variable that

reduces the original problem to a boundary value problem over a finite in-

terval. Usually, that produces a singularity of the second kind at the origin and

must be solved by suitable difference methods. Finally, Hoog and Wiess [4],

Lentini and Keller [6] and Markowich [8] approach to performing a prelimi-

nary asymptotic analysis to find the appropriate boundary conditions to be

imposed at a truncated boundary. Since the imposed conditions are related to
the asymptotic behavior of the solution, for the same value of N this approach

usually yields a more accurate solution than the previous approach.

In this paper we present a numerical method for the solution of a two-point

boundary value problem posed on an infinite interval involving a second order

linear differential equation. By reducing the infinite interval to a finite interval

that is large and imposing approximate asymptotic boundary condition at the

far end, the resulting boundary value problem is treated by using fourth order

finite difference method. The stability of the method is analyzed and the theory
is illustrated by solving test examples.
2. Asymptotic boundary condition

Consider the linear two-point boundary value problem of the form
LyðxÞ ¼ y00ðxÞ þ P ðxÞy0ðxÞ � QðxÞyðxÞ ¼ RðxÞ ð1Þ
with
yðaÞ ¼ b ð2Þ
yð1Þ ¼ c or Lim

x!1
yðxÞ ¼ c ð3Þ
where P ðxÞ, QðxÞ and RðxÞ are continuous functions and QðxÞ > 0. In order to
find the appropriate asymptotic boundary conditions for Eq. (1), rewrite (1) as

a first order system in the form let yðxÞ ¼ uðxÞ, y0ðxÞ ¼ u0ðxÞ ¼ vðxÞ, we have

u0ðxÞ ¼ vðxÞ ð4Þ
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v0ðxÞ þ P ðxÞvðxÞ � QðxÞuðxÞ ¼ RðxÞ ð5Þ
and correspondingly (2) and (3) become
uðaÞ ¼ b ð6Þ

Lim
x!1

uðxÞ ¼ u1 ¼ c ð7Þ
Letting U ¼ ðu; vÞt (t denotes transpose), we can write the first order system (4)
and (5) in the matrix vector form
u0ðxÞ ¼ AðxÞU þ bðxÞ ¼ F ðx; uÞ ð8Þ
where
AðxÞ ¼ 0 1

QðxÞ �P ðxÞ

� �
and bðxÞ ¼ 0

RðxÞ

� �
A general theory for linear and nonlinear systems of the form (8) on semi-

infinite interval has been developed by Lentini and Keller [6]. We assume that

ii(i) Limx!1AðxÞ ¼ A, constant matrix,
i(ii) Limx!1

dAðxÞ
dx ¼ 0,

(iii) AðxÞ is piecewise continuously differentiable on ða;1Þ and
(iv) u1 is required to be the root of Limx!1 F ðx; uÞ ¼ 0.

We also assume that A is in the canonical form such that A ¼ EJE�1 6¼ 0 (a
zero matrix) and J has the block diagonal form J ¼ diagðJþ; J 0; J�Þ, where Jþ

contains eigenvalues of A with positive real part, J 0 the eigenvalues of A with
zero real part and J� the eigenvalues of A with a negative real part. The main

idea is to find all bounded solutions and to eliminate the contribution from the

unbounded solution of Eq. (8). The behavior at infinity of the solution of the

system (8) is essentially given by the eigenvalues of the matrix.
A1 ¼ Lim
x!1

AðxÞ ¼ 0 1

K L

� �
where K ¼ Limx!1QðxÞ, L ¼ Limx!1 � P ðxÞ.
Suppose the matrix A1 has the eigenvalues k1 and k2, then depending upon

Rek1, Rek2P 0, we find the linearly independent solution which decay expo-

nentially at infinity and the linearly independent solutions which are un-

bounded as x ! 1. Since we need only one condition at the far end we expect
only one eigenvalue with a positive real part and say, this eigenvalue is k1. we
introduce the projection matrix Pn of the form Pn ¼ ½1; 0�. (If the eigenvalue k2
is with a positive real part, we have Pn ¼ ½0; 1�.) Let E be a matrix of eigen-
vectors of A1,
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E ¼ E11 E12
E21 E22

� �
By calculating E�1 for which E�1A1E ¼ diagðk1; k2Þ we can write the asymp-
totic boundary condition as
Lim
x!1

PnE�1F ðx; uÞ ¼ 0 ð9Þ
Eq. (9) yields the condition at x ¼ N where N is chosen by taking different

values of X for which the computed solution approximates the actual solution.
3. Fourth order finite difference scheme

In order to solve the finite interval problem obtained above, we describe the

fourth order finite difference scheme for a more general two-point boundary

value problem as follows. For the sake of brevity, we assume that the as-
ymptotic boundary condition (9) is of the form
ayðx1Þ þ by0ðx1Þ ¼ 0 ð10Þ
For x1 ¼ N , N large but finite, where a, b are known constants such that
abP 0 and jaj þ jbj 6¼ 0. This guarantees (for details see Keller [2]) the unique
solution of the two-point boundary value given by LyðxÞ ¼ y00ðxÞ þ P ðxÞy0ðxÞ�
QðxÞyðxÞ ¼ RðxÞ with boundary conditions
yðaÞ ¼ c and ayðx1Þ þ by0ðx1Þ ¼ 0
A finite difference scheme is often a convenient choice of method for the

numerical solution of two-point boundary value problems. Throughout the

discussion the symbols l, d denote the usual central difference operators,
defined by Fox [1]. As usual, we consider the mesh with grid points

a ¼ x0 < x1 < 
 
 
 ; xn ¼ N with mesh size h ¼ xi � xi�1. We use central difference
formulae to obtain the finite difference representations of (1) at a typical mesh
point xi, i ¼ 0; 1; 2; . . . ;N as:
1

h2
d2

�
� 1
12
d4
�
yi þ

1

h
Pi ld
�

� 1
6
ld3

�
yi � Qiyi ¼ Ri þ uiyi ð11Þ
where
ui ¼ � 1
h2

1
96
d6

�
þ 
 
 


�
� 1
h
Pi 1

30
ld5

�
þ 
 
 


�
ð12Þ
and ui is O(h
4). Clearly, the left hand side of (11) is not tridiagonal, because it

involves the differences ld3yi and d4yi. To make it tridiagonal, we obtain the
tridiagonal estimates of ld3yi and d4yi as follows.
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Differentiating (1) once with respect to x, then using central difference for-

mulae produces a tridiagonal O(h5) approximation for ld3yi as follows:
ld3yi ¼ �hPid
2yi � h2ðP 0

i � QiÞldyi þ h3Q0
iyi þ h3Ri þ Wiyi ð13Þ
where
Wi ¼ 1
4
ld5 þ 
 
 
 þ hPi 1

12
d4

�
þ 
 
 


�
þ h2ðP 0

i � QiÞ 1
6
ld3

�
þ 
 
 


�
ð14Þ
Similarly, differentiating (1) twice, then using (1) and central difference for-

mulae, produces a O(h6) approximation for d4yi, as follows
d4yi ¼ h2ðP 2i � P 0
i þ QiÞd2yi þ h3ð2PiP 0

i � P 00
i � PiQi þ 2Q0

iÞldyi

� h4ðP 0
i Qi þ PiQ0

i � Q00
i Þyi þ h4ðR00

i � R0
iPi � RiP 0

i Þ þ piyi ð15Þ
where
pi ¼ 1
6
d6 � 
 
 
 � h2ðP 2i � P 0

i þ QiÞ 1
12
d4

�
þ 
 
 


�
� h3ð2PiP 0

i � P 00
i � PiQi þ 2Q0

iÞ 1
6
ld3

�
þ 
 
 


�
ð16Þ
Now, we substitute (13) and (15) in (11) to obtain an equation of the form
Eiyi�1Fiyi þ Giyiþ1 ¼ Hi þ Kiyi ð17Þ
where
Ei ¼ 1�
h
2
Pi þ

h2

12
ðP 2i þ P 0

i � QiÞ �
h3

24
ðP 00

i � PiQi � 2Q0
iÞ

Fi ¼ 2þ
h2

6
ð5Qi þ P 0

i þ P 2i Þ þ
h4

24
ðQ00

i þ PiQ0
i � P 0

i QiÞ

Gi ¼ 1þ
h
2
Pi þ

h2

12
ðP 2i þ P 0

i � QiÞ þ
h3

24
ðP 00

i � PiQi � 2Q0
iÞ

Hi ¼ h2Ri þ
h4

12
ðR00

i þ R0
iPi � RiP 0

i Þ
and the error term is given by
ki ¼ 1
360

d6 þ 
 
 
 þ 1
120
hPild5 þ 
 
 
 þ 1

144
h2ðP 2i þ P 0

i � QiÞ
d4 þ 
 
 
 þ 1

72
h3ðP 00

i � PiQi � 2Q0
iÞld3 þ 
 
 

Note that the error term associated with (17) is O(h6) and that the over all
accuracy of the method is O(h4). If the error term in (17) is neglected, the

matrix problem associated with (17) is a tridiagonal algebraic system
Eiyi�1 � Fiyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; . . . ; n ð18Þ
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The boundary conditions (2) and (10) can be written in the form
y0 ¼ b ð19Þ

2ahyn þ bynþ1 � byn�1 ¼ 0 ð20Þ
where the value yn�1 at the fictitious point x ¼ ðnþ 1Þh needs to be eliminated
between Eqs. (18) and (20).

Let a difference relation of the form
yiþ1 ¼ Wiyi þ Ti; i ¼ 0; 1; 2; . . . ; n� 1 ð21Þ
where Wi and Ti correspond to W ðxiÞ and T ðxiÞ are to be determined from (21).
By substituting (21) in (18), we get
yi ¼
Ei

Fi � GiWi
yi�1 þ

Hi � GiTi
GiWi � Fi

ð22Þ
By comparing the Eqs. (22) with (21), we get the recurrence relations
Wi�1 ¼
Ei

Fi � GiWi
ð23Þ

Ti�1 ¼
Hi � GiTi
GiWi � Fi

ð24Þ
To solve these recurrence relations for Wi and Ti ði ¼ n� 2; n� 3; . . . ; 0Þ we
need to know the values of Wi and Ti at i ¼ n� 1. To do this, we have from Eq.
(10)
2hayn þ bynþ1 � byn�1 ¼ 0 ð25Þ
From Eq. (18) at x ¼ xn, we have
Enyn�1 � Fnyn þ Gnynþ1 ¼ Hn ð26Þ
By using (25) and (26), we get
Wn�1 ¼
En þ Gn

Fn þ
2ha
b

Gn

ð27Þ

Tn�1 ¼ � Hn

2ha
b

Gn þ Fn
ð28Þ
starting with these initial values of Wn�1 and Tn�1, the values of Wi and Ti
ði ¼ n� 2; n� 3; . . . ; 0Þ are obtained by using (23) and (24). Using these values
of Wi �s and Ti�s are knowing the values of y0 (initial condition) solutions y can
be obtained by using (21).
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4. Stability

We will now show that the method is computationally stable. By stability,

we mean the effect of an error made in one stage of calculation is not propa-

gated into errors at latter stages of computation. That is, local errors are not

magnified by further computation.

Let us now examine the recurrence relation given by (23) suppose a small

error ei has been introduced in the calculation of Wi , then we have
eWWi ¼ Wi þ ei ð29Þ
and we are actually solving
eWWi�1 ¼
Ei

Fi � Gi
eWWi

ð30Þ
From (27) and (30), we have
ei�1 ¼
Ei

Fi � GiðWi þ eiÞ
� Ei

Fi � GiWi
¼ EiGiei

½Fi � GiðWi þ eiÞ�½Fi � EiWi �

ei�1 ¼ W 2
i�1

Gi

Ei

� �
ei

ð31Þ
Under the assumption that initially the error is small. Let us assume that

Gi > 0 and Ei > 0 for all i. From the definitions of Ei; Fi and Gi, we also have

Fi > 0 and Fi > Ei þ Gi for all i.

We now make use of the assumptions on Ei and Gi to show 0 < Wi < 1 for
i ¼ n� 1; n� 2; . . . ; 0. From (27)
Wn�1 ¼
En þ Gn

Fn þ 2ha
b Gn
Under the above mentioned conditions, it is then easy to verify that

0 < Wn�1 < 1. Also,
Wn�2 ¼ En�1

Fn�1 � Gn�1Wn�1

<
En�1

Fn�1 � Gn�1
since Wn�1 < 1

< 1
and this 0 < Wn�2 < 1. Successively it follows that 0 < Wi < 1, i ¼ n� 3; . . . ; 0.
Then it follows that Eq. (28) that ei�1 < ei, provided Gi PEi and thus the re-

currence relation (27) is stable. Similar arguments will show that the recurrence

relation (28) is also stable.



490 A.S.V. Ravi Kanth, Y.N. Reddy / Appl. Math. Comput. 144 (2003) 483–494
5. Computational results

In this section, we have implemented the present method on two examples.

The numerical results are compared with exact results. The applicability of

results show that the present method approximate the solution very well.
Example 1. Consider the boundary value problem
Table

Compu

X

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
LYðxÞ ¼ �y 00 � 2y 0 þ 2y ¼ e�2x ð32Þ
with
yð0Þ ¼ 1:0 ð33Þ
yð1Þ ¼ 0:0 ð34Þ
This problem has earlier been considered by Robertson [9], Kadalbajoo and

Raman [5], and its exact solution is given by
yðxÞ ¼ 1
2
e�ð1þ

ffiffi
3

p
Þx þ 1

2
e�2x
The asymptotic boundary condition for this example can be written as
1ffiffiffi
3

p yðx1Þ þ
ffiffiffi
3

p
ð�1þ

ffiffiffi
3

p
Þ

6
y 0ðx1Þ ¼ 0 ð35Þ
The boundary value problem given by (32), (33) and (35) has been solved

using fourth order finite difference method and the numerical results are pre-

sented in Tables 1–3.
1

tational results for Example 1 (N ¼ 8)

Exact FFDM

h ¼ 1=16 h ¼ 1=32 h ¼ 1=64
0.100000Eþ01 0.100000Eþ01 0.100000Eþ01 0.100000Eþ01
0.100210Eþ00 0.100211Eþ00 0.100215Eþ00 0.100220Eþ00
0.112759E)01 0.112760E)01 0.112766E)01 0.112776E)01
0.137723E)02 0.137725E)02 0.137733E)02 0.137748E)02
0.176704E)03 0.176706E)03 0.176717E)03 0.176737E)03
0.232839E)04 0.232830E)04 0.232844E)04 0.232882E)04
0.311011E)05 0.310742E)05 0.310760E)05 0.311051E)05
0.418238E)06 0.412565E)06 0.412558E)06 0.417943E)06
0.564286E)07 0.446244E)07 0.445621E)07 0.556647E)07



Table 2

Computational results for Example 1 (N ¼ 9)

X Exact FFDM

h ¼ 1=16 h ¼ 1=32 h ¼ 1=64
0.0 0.100000Eþ01 0.100000Eþ01 0.100000Eþ01 0.100000Eþ01
1.0 0.100210Eþ00 0.100211Eþ00 0.100215Eþ00 0.100220Eþ00
2.0 0.112759E)01 0.112760E)01 0.112766E)01 0.112776E)01
3.0 0.137723E)02 0.137725E)02 0.137733E)02 0.137748E)02
4.0 0.176704E)03 0.176706E)03 0.176717E)03 0.176737E)03
5.0 0.232839E)04 0.232842E)04 0.232857E)04 0.232882E)04
6.0 0.311011E)05 0.310998E)05 0.311018E)05 0.311051E)05
7.0 0.418238E)06 0.417874E)06 0.417898E)06 0.417943E)06
8.0 0.564286E)07 0.556608E)07 0.556598E)07 0.556647E)07
9.0 0.762547E)08 0.602791E)08 0.601950E)08 0.601786E)08

Table 3

Computational results for Example 1 (N ¼ 10)

X Exact FFDM

h ¼ 1=16 h ¼ 1=32 h ¼ 1=64
0.0 0.100000Eþ01 0.100000Eþ01 0.100000Eþ01 0.100000Eþ01
1.0 0.100210Eþ00 0.100211Eþ00 0.100215Eþ00 0.100220Eþ00
2.0 0.112759E)01 0.112760E)01 0.112766E)01 0.112776E)01
3.0 0.137723E)02 0.137725E)02 0.137733E)02 0.137748E)02
4.0 0.176704E)03 0.176706E)03 0.176717E)03 0.176737E)03
5.0 0.232839E)04 0.232843E)04 0.232857E)04 0.232883E)04
6.0 0.311011E)05 0.311015E)05 0.311034E)05 0.311068E)05
7.0 0.418238E)06 0.418220E)06 0.418246E)06 0.418291E)06
8.0 0.564286E)07 0.563793E)07 0.563826E)07 0.563886E)07
9.0 0.762547E)08 0.752156E)08 0.752142E)08 0.752208E)08
10.0 0.103126E)08 0.815049E)09 0.813913E)09 0.813692E)09

A.S.V. Ravi Kanth, Y.N. Reddy / Appl. Math. Comput. 144 (2003) 483–494 491
Example 2. A second example
LYðxÞ ¼ �y 00 þ 1

	
þ 1

x



y ¼ 1

x2
ð36Þ
with
yð1Þ ¼ 1:0 ð37Þ

yð1Þ ¼ 0:0 ð38Þ
This problem has earlier been considered by Fox [1] and later by Robertson

[9]. The asymptotic boundary condition for this example can be written as
1
2
yðx1Þ þ 1

2
y0ðx1Þ ¼ 0 ð39Þ



Table 4

Computational results for Example 2 (N ¼ 15)

X FFDM

h ¼ 1=8 h ¼ 1=16 h ¼ 1=32
1.0 0.000000Eþ00 0.000000Eþ00 0.000000Eþ00
2.0 0.109816Eþ00 0.109817Eþ00 0.109817Eþ00
3.0 0.852347E)01 0.852352E)01 0.852347E)01
5.0 0.390871E)01 0.390874E)01 0.390872E)01
7.0 0.200437E)01 0.200437E)01 0.200439E)01
9.0 0.119536E)01 0.119536E)01 0.119537E)01
11.0 0.792264E)02 0.792261E)02 0.792265E)02
13.0 0.545571E)02 0.545546E)02 0.545541E)02
15.0 0.245363E)02 0.245168E)02 0.245120E)02

Table 5

Computational results for Example 2 (N ¼ 20)

X FFDM

h ¼ 1=8 h ¼ 1=16 h ¼ 1=32
1.0 0.000000Eþ00 0.000000Eþ00 0.000000Eþ00
3.0 0.852347E)01 0.852352E)01 0.852347E)01
5.0 0.390872E)01 0.390874E)01 0.390872E)01
7.0 0.200441E)01 0.200442E)01 0.200443E)01
9.0 0.119571E)01 0.119571E)01 0.119572E)01
11.0 0.795100E)02 0.795099E)02 0.795104E)02
13.0 0.568391E)02 0.568389E)02 0.568391E)02
16.0 0.374146E)02 0.374144E)02 0.374145E)02
20.0 0.134216E)02 0.134103E)02 0.134075E)02

Table 6

Computational results for Example 2 (N ¼ 25)

X FFDM

h ¼ 1=8 h ¼ 1=16 h ¼ 1=32
1.0 0.000000Eþ00 0.000000Eþ00 0.000000Eþ00
3.0 0.852347E)01 0.852352E)01 0.852347E)01
5.0 0.390872E)01 0.390874E)01 0.390872E)01
7.0 0.200441E)01 0.200442E)01 0.200443E)01
9.0 0.119571E)01 0.119571E)01 0.119572E)01
11.0 0.795110E)02 0.795109E)02 0.795114E)02
13.0 0.568469E)02 0.568467E)02 0.568469E)02
16.0 0.375894E)02 0.375893E)02 0.375893E)02
17.0 0.333260E)02 0.333259E)02 0.333259E)02
25.0 0.845859E)03 0.845133E)03 0.844953E)03
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The boundary value problem given by (36), (37) and (39) has been solved by

the method described earlier and the computational results are presented in
Tables 4–6.
6. Discussion and conclusion

A fourth order finite difference method is used for the approximate solution

of the two-point boundary value problems over infinite intervals. The method

has been analyzed for stability. It is a practical method and can easily be im-
plemented on a computer to solve such problems. Test examples, tackled

earlier by Fox [1] and Robertson [9] has been solved to demonstrate the effi-

ciency of the proposed method. For these examples, the asymptotic boundary

condition at x1 ¼ N was first derived and the value x1 ¼ N was the varied

until no significant change in the solution was noticed. The computational

results for the Example 1 are presented in Tables 1–3 at different mesh sizes and

different values of x1 ¼ N . The values of N taken for computation are 8, 9 and
10 for different values of h. The computational results are presented in tables.
From these tables it can be observed that the approximate results are very close

to the exact solutions. It can be seen that the computed solutions for N ¼ 10
show six places of decimal accuracy and thus N ¼ 10 can be taken to represent
the point at infinity for the problem. The computational results for Example 2

for different values of h are given in Tables 4–6. It is evident from this tables
that the solutions decay relatively slowly which agrees with the observation

made by Fox [1]. The computed solutions also compare very well with that

obtained by Robertson [9] and at x1 ¼ N ¼ 9.
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