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Abstract

In this paper, we consider the unsteady flow of incompressible micropolar fluid between two parallel
porous plates when there is a periodic suction at the lower plate and injection at the upper plate. Stream
function for the flow is obtained and the effects of microrotation parameter and frequency parameter on
skin friction at the lower and upper plates are numerically studied. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

In the theory of micropolar fluids, originated by Eringen [1], both the effect of couple stresses
and the microscopic effects arising from local structure and microrotation of the fluid element are
simultaneously taken into account. The fluids containing certain additives, some polymeric fluids
and animal blood are examples of micropolar fluids. The mathematical theory of equations of
micropolar fluids and application of these fluids in the theory of lubrication and in the theory of
porous media is presented in [2].

The problem of steady flow of an incompressible viscous fluid through a porous channel was
considered by Berman [3]. He obtained a perturbation solution assuming normal wall velocities to
be equal. The analysis of Berman was extended by Sellars [4], Terrill [5] and Yuan [6] for various
values of suction and injection Reynolds numbers. Terrill and Shrestha [7] have examined the
same problem, assuming different normal velocities at the walls. The steady flow of an incom-
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pressible micropolar fluid between two parallel porous plates was studied by Teeka Rao and
Moizuddin [8]. They obtained the solution by the method of parameter perturbation, with pa-
rameter being the suction Reynolds number. Sastry and Ramamohan Rao [9] have obtained the
solution to the problem of micropolar fluid flow in a channel with porous walls by numerical
method based up on quasilinearisation, parametric differentiation and extrapolation. Several
researchers [10-12] have considered the problems of unsteady flow of classical viscous fluid
through a channel. Das and Sanyal [13] have considered the unsteady flow of a micropolar fluid
through rectangular channel under periodic pressure gradient.

This paper concerns the unsteady flow of an incompressible micropolar fluid between two
parallel plates, assuming periodic suction at the lower plate and injection at the upper plate. The
velocities are expressed in terms of a stream function and expressions for velocities and micro-
rotation component are derived by introducing the similarity variable. The variation of skin
friction at the upper and lower plates is studied with respect to fluid parameters.

Assuming the flow to be stokesian, neglecting the inertial and gyroinertial terms and Ignoring
the body force and body couple, the field equations of the micropolar fluid dynamics are

divg =0, (1)
oq . -

Pa = —grad P — k curl Vv — (u + k)curl curl g, (2)
oV . - . -

Pig, = 2kV + k curl § — y curl curl Vv + (o 4+ f + y)grad (divy), (3)

where ¢ is the velocity vector, v is the microrotation vector and the P is the fluid pressure, p and j
are the fluid density and microgyration parameter, and {u,k} and {«,f,y} are viscosity and
gyroviscosity coefficients.

The stress tensor #; and the couple stress tensor m;; are given by

l,:/‘ = —Pélj + (2# + k)ei,‘ + kE,:/‘m(CL)m — Vm), (4)

mi; = oy 0y + B+ Vi (5)

where @ is the vorticity vector and J;; is the Kronecker delta and ¢, is the alternating symbol.

2. Formulation of the problem

Consider the flow of micropolar fluid through two porous parallel plates y = 0 and y = 4 along
the direction of X-axis. since the flow is along X-direction, all the variables are independent of Z.
Assume that there is a periodic suction of velocity v;e'" at the lower plate and periodic injection of
velocity v,e' at the upper plate. Hence we choose the velocity vector (§), microrotation vector (V)
and the pressure in the form
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= ¢

G = |u(x,»)i+v(xy)je”, ¥=Clxyke and P(x,y) = p(x,y)e*". (6)

In view of the continuity equation (1), we introduce the stream function ¥(x, y) through

0 0
) =g on) = g )

Egs. (2) and (3) give rise to:

. %y op ,0C VY
1pwa—y— 6x+k6y+ T (8)

.y p OC OV
lpa)a—a'i‘ aﬁ‘ o y (9)

ipwjC = —2kC — kV*y + yV>C. (10)
Eliminating pressure p from Eqgs. (8) and (9), we get

VAV = a)(V2 = )y =0 (11)
and

k(ipjo + 2k)C = —y(u + )V + (iypo — )V, (12)
where V2 = 0?/0x? + 0%/0)” is the Laplacian operator and

k(2u+ k) +ipoly + j(u + k)]

2+ = 7 13
b y(n+ k) (1)
ipw(2k +ipjw)
ey ipo( . 14
b 7+ k) (14
Eq. (11) is to be solved with the boundary conditions:
u(x,h) =u(x,0) =0, v(x,0)=v;, and v(x,h) =v;, C(x,0)=C(x,h)=0. (15)
Following Terrill [9], we introduce f(n) and g(#) as follows:
Uy vox 1[Uy vax
A e N cad c=-|2_== 16
b1 22, =g [ D2 e, (16)

where n =y/h, a=1— (v1/v2), 0< |v1| < |v2| and U is the average entrance velocity.
Now Egs. (11) and (12) become
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D*(D* — &’h*) (D* — B*h*) f(n) = 0, (17)

where D? = d*/dy? and

kh? (ipjeo + 2k)g(n) = —y(p + k)D*f () + h*(iype> — K*)D*f (n). (18)
The boundary conditions on f() and g(5) are now given by
fO)=1-a, f(I)=1, f(0)=/(1)=0 and g(0)=g(1)=0. (19)
Solving (17), we get
f(l/]) =c+on+ C3th,7 + C4Ciahn + C5Cﬁh'7 + C6eiﬁhn (20)
and hence
g(n) =4, (qe“’”’ + 04671}"7) + Ag (c5eﬂh" + 0667[””7), (21)
where
—p(p+ k)a*h + (—k* + ipwy)a?h?
A“ - . . ’
k(2k +ipwj) (22)
o TV BB+ (K + ipen) B
= k(2k + ipay) ‘

Using the six boundary conditions in (19), the six constants in (20) can be found. Substituting /' (#)
and g(#n) in (16) the stream function and the microrotation component can be calculated. Using
the expression for y and Eq. (7), the velocity components are determined.

2.1. Pressure distribution

From Egs. (8), (9) and (16), we have

B i) = - e | = g+ D [ S 23)
and

iponsf (1) = —5 2 +52 g0 + 5D ), (24)
From (23) and (25), we have

g+ iy pop(n) = en (25)

Hence ¢; can be obtained as
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k / 'LL + k 111
1= ﬁg (0) + —( 2 )f (0). (26)
Hence the pressure drop is given by

U 0 Uy X

plson) = p0.0) = | 2 = 2 i B iy oy [ e~ dpor ] an. 2)

2.2. Skin friction

From Eq. (4), we get

k U() U X

e =7 [7—7] [@f”(nwrg(n)} (28)

Hence coefficient of skin friction on the lower and upper plates is given by

cf:2—)“ at n=0and n = 1. (29)

3. Numerical calculations and discussion

The variation of skin friction coefficient ¢; = paf™(n) + g(n) with pa = (u+ k)/k for the fre-
quency parameter (pt = pwh?®/(u+ k)), micropolarity parameter (pl = k(2u+ k)h*/(y(u+k)))
and the microrotation parameter (pj = (j(« + k))/y) is shown in Figs. 1-4.

From Egs. (13) and (14), o?h®> and f°h*> can be obtained as the roots of equation
x> + myx +my = 0, where

6 i — pl=1.0 /l/
— - pI=5.0 RS
---- pl=10.0 ,:/
5 g
2 R
5 S
% R
'é ) e
g ///
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&:4 1 )
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Fig. 1. Variation of skin friction with pa at n = 1: pt = 1.0, pj = 0.25, a = 0.5.
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Fig. 2. Variation of skin friction with pa at n = 1: pr = 1.0, pj = 0.25, a = 0.5.
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Fig 3. Varaition of Skin Friction with pa at n=0
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Fig. 3. Variation of skin friction with pa at # = 0: pt = 1.0, pj = 1.0, a = 0.5.

. , ., | Plopa
f— = — . 2 T — .
my = pl +ipt(1 + pj) and m, ptpt - pj + 1[(1 — Zpa)] (30)

By giving different values to the parameters pa, pj, pt and pl, the values of m; and m, are obtained
and then a4 and S can be determined. Then using the boundary conditions (19), the constants
1,62, .. .,¢6 and hence f(n) and g(n) can be calculated.
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Fig. 4. Variation of skin friction with pa at n = 0: pt = 1.0, pj = 1.0, g1 = 0.5.
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It is observed that as the frequency of suction and injection rate increases i.e. as pt increases the
real part of the skin friction coefficient (c;) decreases and imaginary part of ¢} increases. An in-
crease in micropolarity parameter p/ increases the real part of ¢; and decreases the imaginary part
of ¢{. An increment in microrotation parameter pj causes a reduction of real part of ¢{ and in-
crease of imaginary part of c;. It is noted that an increase in suction injection ratio a = vy/v,
increases numerically both the real and imaginary parts of skin friction c{. The skin friction at the
lower plate is numerically same as the skin friction at the upper plate. This is due to the equal
suction and injection frequencies at the upper and lower plates. In the case of steady flow [8], the

skin friction at the upper plate is more than that of the lower plate.
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