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Abstract

In this paper, a method of reduction of order is proposed for solving singularly

perturbed two-point boundary value problems with a boundary layer at one end point.

It is distinguished by the following fact: the original singularly perturbed boundary

value problem is replaced by a pair of initial value problems. Classical fourth order

Runge–Kutta method is used to solve these initial value problems. Several linear and

non-linear singular perturbation problems have been solved and the numerical results

are presented to support the theory.
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1. Introduction

Singular perturbation problems occur very frequently in fluid mechanics and

other branches of applied mathematics. There are a wide variety of methods

for the solution of the singular perturbation problems. Many of these methods

consists of: (a) dividing the problem into an inner region (boundary layer)

problem and an outer region problem; (b) expressing the inner and outer
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solutions as asymptotic expansions; (c) equating various terms in the inner

and outer expressions to determine the constants in these expressions; and
(d) combining the inner and outer solutions in some fashion to obtain a uni-

formly valid solution. Typically, the inner region problems are obtained from

the original problem by rescaling the independent variable. These methods and

their variations have been used successfully on a variety of linear and non-

linear singular perturbation problems. However, there can be difficulties in

applying these methods, such as the matching of the coefficients of the inner

and outer expansions. Success may depend on finding the proper scaling or the

proper transformation to express the dependent and independent variables.
For a detailed discussion, one may refer to O�Malley [7], Kevorkian and Cole

[5], Bender and Orszag [1], Nayfeh [6] and research papers by Kadalbajoo and

Reddy [3,4], Hu et al. [2] and Reinhardt [8].

In view of the wealth of literature on singular perturbation problems, we

raise the question of whether there are other ways to attack singular pertur-

bation problems, namely, ways that are very easy to use and ready for com-

puter implementation. In response to this need for a fresh approach to singular

perturbation problems, we propose and illustrate in this paper, the method of
reduction of order for solving singularly perturbed two-point boundary value

problems with a boundary layer at one end point of the underlying interval.

It is distinguished by the following fact: the original singularly perturbed

boundary value problem is replaced by a pair of initial value problems. This

replacement is significant from the computational point of view. Classical

fourth order Runge–Kutta method is used to solve these initial value problems.

Numerical experience with several examples is described.

2. Method of reduction of order

For convenience, we call our method as the method of reduction of order.

To describe the method, we first consider a linear singularly perturbed two-

point boundary value problem of the form:

ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½p; q� ð1Þ

with

yðpÞ ¼ a and yðqÞ ¼ b; ð2Þ

where e is a small positive parameter ð0 < e 	 1Þ and a; b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable
functions in ½p; q�. Furthermore, we assume that aðxÞPM > 0 throughout the

interval ½p; q�, where M is some positive constant. This assumption merely

implies that the boundary layer will be in the neighbourhood of x ¼ p.
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The method of reduction of order consists the following steps:

Step 1. Obtain the reduced problem by setting e ¼ 0 in Eq. (1) and solve it
for the solution with the appropriate boundary condition. Let y0ðxÞ be the

solution of the reduced problem of (1) and (2), i.e.;

aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ ð3Þ

with

y0ðqÞ ¼ b: ð4Þ

Step 2. Setup the two first-order equations equivalent to Eq. (1) as follows:

z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�yðxÞ ¼ f ðxÞ ð5Þ

and

ey 0ðxÞ þ aðxÞyðxÞ ¼ zðxÞ: ð6Þ

Step 3. Setup the initial conditions as follows:
Using y0ðxÞ, the solution of the reduced problem, in Eq. (6) we have

zðqÞ ¼ ey 00ðqÞ þ aðqÞy0ðqÞ: ð7Þ

This will be the initial condition for Eq. (5) and yðpÞ ¼ a will be the initial

condition for Eq. (6).
Step 4. Get the pair of initial value problems as follows:

Replacing yðxÞ by y0ðxÞ in (5), we get

z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�y0ðxÞ ¼ f ðxÞ: ð8Þ

Now the differential equation (8) with condition (7) constitute an initial value
problem and the differential equation (6) with the condition yðpÞ ¼ a constitute
another initial value problem.

Therefore the pair of initial value problems corresponding to (1) and (2) are

given by

ðiÞ z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�y0ðxÞ ¼ f ðxÞ with zðqÞ ¼ ey 00ðqÞ þ aðqÞy0ðqÞ; ð9Þ
ðiiÞ ey0ðxÞ þ aðxÞyðxÞ ¼ zðxÞ with yðpÞ ¼ a: ð10Þ

Thus in a manner of speaking, we have replaced the original boundary value

problem (1) and (2) by a pair of initial value problems. The integration of these

initial value problems goes in opposite direction, and the second problem is

solved only if the solution of the first one is known. We solve these initial value

problems (9) and (10) to obtain the solution over the interval ½p; q�. There now
exist a number of efficient methods for the solution of initial value problems. In
order to solve the initial value problems in our numerical experimentation, we

make use of classical fourth order Runge–Kutta method. In fact, any standard

analytical or numerical method can be used.
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3. Numerical examples

To demonstrate the applicability of the method of reduction of order, we

have applied it to three linear singular perturbation problems with left-end

boundary layer. These examples have been chosen because they have been

widely discussed in the literature and because approximate solutions are

available for comparison.

Example 1. Consider the following homogeneous singular perturbation

problem from Bender and Orszag [1, p. 480; problem (9.17)] with a ¼ 0;

ey 00ðxÞ þ y0ðxÞ 
 yðxÞ ¼ 0; x 2 ½0; 1� ð11Þ

with

yð0Þ ¼ 1 and yð1Þ ¼ 1: ð12Þ

The exact solution is given by

yðxÞ ¼ ½ðem2 
 1Þem1x þ ð1
 em1Þem2x�=½em2 
 em1 �; ð13Þ

where m1 ¼ ð
1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ and m2 ¼ ð
1


ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ.

From step 1, the reduced problem is y 00ðxÞ 
 y0ðxÞ ¼ 0; y0ð1Þ ¼ 1. The so-

lution of this problem is y0ðxÞ ¼ ex
1.

From step 2, the two first-order equations equivalent to Eq. (11) are

z0ðxÞ 
 yðxÞ ¼ 0 ð14Þ

and

ey 0ðxÞ þ yðxÞ ¼ zðxÞ: ð15Þ

From step 3, we have

zð1Þ ¼ ey 00ð1Þ þ að1Þy0ð1Þ; i:e:; zð1Þ ¼ e þ 1: ð16Þ

Replacing yðxÞ by y0ðxÞ in (14) we get

z0ðxÞ 
 y0ðxÞ ¼ 0: ð17Þ

Hence the pair of initial value problems corresponding to (11) and (12) are

ðiÞ z0ðxÞ ¼ ex
1 with zð1Þ ¼ e þ 1;

ðiiÞ ey 0ðxÞ þ yðxÞ ¼ zðxÞ with yð0Þ ¼ 1:

The numerical results are given in Tables 1 and 2 for e ¼ 10
3 and 10
4,
respectively.

Example 2. Now consider the following non-homogeneous singular pertur-

bation problem from fluid dynamics for fluid of small viscosity, Reinhardt [8,

Example 2].
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ey 00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1� ð18Þ

with

yð0Þ ¼ 0 and yð1Þ ¼ 1: ð19Þ

The exact solution is given by

yðxÞ ¼ xðxþ 1
 2eÞ þ ð2e 
 1Þð1
 e
x=eÞ=ð1
 e
1=eÞ: ð20Þ

From step 1, the reduced problem is y 00ðxÞ ¼ 1þ 2x; y0ð1Þ ¼ 1. The solution

of this problem is

y0ðxÞ ¼ x2 þ x
 1: ð21Þ

From step 2, the two first-order equations equivalent to Eq. (18) are

z0ðxÞ ¼ 1þ 2x ð22Þ

Table 2

Numerical results of Example 1 with e ¼ 10
4, h ¼ 10
4

x yðxÞ Exact solution

0.00 1.0000000 1.0000000

0.02 0.3753700 0.3753479

0.04 0.3829486 0.3829296

0.06 0.3906853 0.3906645

0.08 0.3985749 0.3985557

0.10 0.4066239 0.4066062

0.20 0.4493805 0.4493649

0.40 0.5488544 0.5488445

0.60 0.6703461 0.6703468

0.80 0.8187459 0.8187471

1.00 0.9999999 1.0000000

Table 1

Numerical results of Example 1 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 1.0000000 1.0000000

0.02 0.3758743 0.3756784

0.04 0.3834493 0.3832599

0.06 0.3911773 0.3909945

0.08 0.3990614 0.3988851

0.10 0.4071048 0.4069350

0.20 0.4498258 0.4496879

0.40 0.5492191 0.5491404

0.60 0.6706182 0.6705877

0.80 0.8188952 0.8188942

1.00 1.0000010 1.0000000
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and

ey 0ðxÞ þ yðxÞ ¼ zðxÞ: ð23Þ

Now from step 3, we have zð1Þ ¼ ey00ð1Þ þ að1Þy0ð1Þ, i.e.; zð1Þ ¼ 3e þ 1.

Hence the pair of initial value problems related to (18) and (19) are

ðiÞ z0ðxÞ ¼ 1þ 2x with zð1Þ ¼ 3e þ 1;

ðiiÞ ey 0ðxÞ þ yðxÞ ¼ zðxÞ with yð0Þ ¼ 0:

The numerical results are given in Tables 3 and 4 for e ¼ 10
3 and 10
4,

respectively.

Example 3. Finally we consider the following variable coefficient singular

perturbation problem from Kevorkian and Cole [5, p. 33; Eqs. (2.3.26) and

(2.3.27)] with a ¼ 
1=2;

Table 3

Numerical results of Example 2 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 )0.9778339 )0.9776400
0.04 )0.9566700 )0.9564800
0.06 )0.9347062 )0.9345200
0.08 )0.9119419 )0.9117600
0.10 )0.8883780 )0.8882000
0.20 )0.7585579 )0.7584000
0.40 )0.4389180 )0.4388000
0.60 )0.0392781 )0.0391999
0.80 0.4403619 0.4404000

1.00 1.0000020 1.0000000

Table 4

Numerical results of Example 2 with e ¼ 10
4, h ¼ 10
4

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 )0.9794231 )0.9794040
0.04 )0.9582251 )0.9582080
0.06 )0.9362285 )0.9362120
0.08 )0.9134333 )0.9134160
0.10 )0.8898363 )0.8898200
0.20 )0.7598536 )0.7598400
0.40 )0.4398913 )0.4398800
0.60 )0.0399276 )0.0399201
0.80 0.4400363 0.4400399

1.00 0.9999999 1.0000000
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ey 00ðxÞ þ 1
�


 1
2
x
�
y0ðxÞ 
 1

2
yðxÞ ¼ 0; x 2 ½0; 1� ð24Þ

with

yð0Þ ¼ 0 and yð1Þ ¼ 1: ð25Þ

We have chosen to use uniformly valid approximation (which is obtained by

the method given by Nayfeh [6, p. 148; Eq. (4.2.32)]) as our �exact� solution;

yðxÞ ¼ 1=ð2
 xÞ 
 ð1=2Þe
ðx
x2=4Þ=e: ð26Þ

From step 1, the reduced problem is

ð1
 1
2
xÞy 00ðxÞ 
 1

2
y0ðxÞ ¼ 0; y0ð1Þ ¼ 1:

The solution of this problem is y0ðxÞ ¼ 1=ð2
 xÞ.
From step 2, the two first-order equations equivalent to Eq. (24) are

z0ðxÞ ¼ 0 ð27Þ

and

ey 0ðxÞ þ ð1
 1
2
xÞyðxÞ ¼ zðxÞ: ð28Þ

Now from step 3, we have zð1Þ ¼ ey00ð1Þ þ að1Þy0ð1Þ, i.e.; zð1Þ ¼ e þ 1=2.
Hence the pair of initial value problems related to (24) and (25) are

ðiÞ z0ðxÞ ¼ 0 with zð1Þ ¼ e þ 1=2; ð29Þ
ðiiÞ ey0ðxÞ þ ð1
 1

2
xÞyðxÞ ¼ zðxÞ with yð0Þ ¼ 0: ð30Þ

The numerical results are given in Tables 5 and 6 for e ¼ 10
3 and 10
4,

respectively.

Table 5

Numerical results of Example 3 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 0.5058028 0.5050505

0.04 0.5109587 0.5102041

0.06 0.5162208 0.5154639

0.08 0.5215923 0.5208333

0.10 0.5270767 0.5263158

0.20 0.5563236 0.5555556

0.40 0.6257619 0.6250000

0.60 0.7149862 0.7142857

0.80 0.8338451 0.8333333

1.00 1.0000080 1.0000000
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4. Non-linear problems

We now extend this method of reduction of order for a class of non-linear

singularly perturbed two-point boundary value problems with left-end

boundary layer of the underlying interval. For this we consider a class of non-

linear singularly perturbed two-point boundary value problems of the form:

ey 00ðxÞ þ ½aðyðxÞÞ�0 þ bðx; yðxÞÞ ¼ f ðxÞ; x 2 ½p; q� ð31Þ

with

yðpÞ ¼ a and yðqÞ ¼ b; ð32Þ

where e is a small positive parameter ð0 < e 	 1Þ and a; b are known constants.

We assume that aðyðxÞÞ, bðx; yÞ and f ðxÞ are sufficiently continuously differ-

entiable functions in ½p; q�. Furthermore, we assume that (31) and (32) has a

solution which displays a boundary layer of width OðeÞ at x ¼ p for small

values of e.
Step 1. Obtain the reduced problem by setting e ¼ 0 in Eq. (31) and solve it

for the solution with the appropriate boundary condition. Let y0ðxÞ be the

solution of the reduced problem of (31) and (32), i.e.;

½aðy0ðxÞÞ�0 þ bðx; y0ðxÞÞ ¼ f ðxÞ ð33Þ

with

y0ðqÞ ¼ b: ð34Þ

Step 2. Setup the two first-order equations equivalent to Eq. (31) as follows:

z0ðxÞ þ bðx; yðxÞÞ ¼ f ðxÞ ð35Þ

Table 6

Numerical results of Example 3 with e ¼ 10
4, h ¼ 10
4

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 0.5051258 0.5050505

0.04 0.5102796 0.5102041

0.06 0.5155396 0.5154639

0.08 0.5209092 0.5208333

0.10 0.5263919 0.5263158

0.20 0.5556324 0.5555555

0.40 0.6250762 0.6250000

0.60 0.7143557 0.7142857

0.80 0.8333843 0.8333333

1.00 1.0000000 1.0000000
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and

ey 0ðxÞ þ aðyðxÞÞ ¼ zðxÞ: ð36Þ

Step 3. Setup the initial conditions as follows:

Using y0ðxÞ, the solution of the reduced problem, in Eq. (36) we have

zðqÞ ¼ ey 00ðqÞ þ aðy0ðqÞÞ: ð37Þ

This will be the initial condition for Eq. (35) and yðpÞ ¼ a will be the initial

condition for Eq. (36).

Step 4. Get the pair of initial value problems as follows: Replacing yðxÞ by
y0ðxÞ in (35), we get

z0ðxÞ þ bðx; y0ðxÞÞ ¼ f ðxÞ: ð38Þ

Now the differential equation (38) with condition (37) constitute an initial

value problem and the differential equation (36) with the condition yðpÞ ¼ a
constitute another initial value problem.

Therefore the pair of initial value problems corresponding to Eqs. (31) and
(32) are given by

ðiÞ z0ðxÞ þ bðx; y0ðxÞÞ ¼ f ðxÞ with zðqÞ ¼ ey00ðqÞ þ aðy0ðqÞÞ; ð39Þ
ðiiÞ ey0ðxÞ þ aðyðxÞÞ ¼ zðxÞ with yðpÞ ¼ a: ð40Þ

Thus in a manner of speaking, we have replaced the original boundary value

problem (31) and (32) by a pair of initial value problems. The integration of

these initial value problems goes in opposite direction, and the second problem

is solved only if the solution of the first one is known. We solve these initial
value problems (39) and (40) to obtain the solution over the interval ½p; q�.

5. Non-linear examples

Again to demonstrate the applicability of the method of reduction of order,

we have applied it to three non-linear singular perturbation problems with left-

end boundary layer.

Example 4. Consider the following singular perturbation problem from

Bender and Orszag [1, p. 463; Eqs. (9.7.1)];

ey 00ðxÞ þ 2y0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1� ð41Þ

with

yð0Þ ¼ 0 and yð1Þ ¼ 0: ð42Þ
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We have chosen to use Bender and Orszag�s uniformly valid approximation [1,

p. 463; Eq. (9.7.6)] for comparison,

yðxÞ ¼ logeð2=ð1þ xÞÞ 
 ðloge 2Þe
2x=e: ð43Þ

For this example, we have boundary layer of thickness OðeÞ at x ¼ 0 (cf. [1]).

From step 1, the reduced problem is

2y00ðxÞ þ ey0ðxÞ ¼ 0; y0ð1Þ ¼ 0: ð44Þ

The solution of this problem is

y0ðxÞ ¼ logeð2=ðxþ 1ÞÞ: ð45Þ

From step 2, the two first-order equations equivalent to Eq. (41) are

z0ðxÞ þ eyðxÞ ¼ 0 ð46Þ

and

ey 0ðxÞ þ 2yðxÞ ¼ zðxÞ: ð47Þ

From step 3, we have

zð1Þ ¼ ey 00ð1Þ þ aðy0ð1ÞÞ; i:e:; zð1Þ ¼ 
e=2: ð48Þ

Replacing yðxÞ by y0ðxÞ in (46) we get z0ðxÞ þ ey0ðxÞ ¼ 0.

Hence the pair of initial value problems related to (41) and (42) are

ðiÞ z0ðxÞ ¼ 
2=ðxþ 1Þ with zð1Þ ¼ 
e=2; ð49Þ
ðiiÞ ey0ðxÞ þ 2yðxÞ ¼ zðxÞ with yð0Þ ¼ 0: ð50Þ

The numerical results are given in Tables 7 and 8 for e ¼ 10
3 and 10
4,

respectively.

Table 7

Numerical results of Example 4 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 0.6735372 0.6733446

0.04 0.6541116 0.6539265

0.06 0.6350562 0.6348783

0.08 0.6163570 0.6161861

0.10 0.5980009 0.5978370

0.20 0.5109591 0.5108256

0.40 0.3567606 0.3566749

0.60 0.2231937 0.2231435

0.80 0.1053829 0.1053605

1.00 0.0000000 0.0000000
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Example 5. Now consider the following singular perturbation problem from

Kevorkian and Cole [5, p. 56; Eqs. (2.5.1)];

ey 00ðxÞ þ yðxÞy0ðxÞ 
 yðxÞ ¼ 0; x 2 ½0; 1� ð51Þ

with yð0Þ ¼ 
1 and yð1Þ ¼ 3:9995.
We have chosen to use Kevorkian and Cole�s uniformly valid approximation

[5, pp. 57 and 58; Eqs. (2.5.5), (2.5.11) and (2.5.14)] for comparison,

yðxÞ ¼ xþ c1 tanhðc1ðx=e þ c2Þ=2Þ; ð52Þ

where c1 ¼ 2:9995 and c2 ¼ ð1=c1Þ loge½ðc1 
 1Þ=ðc1 þ 1Þ�.
For this example also we have a boundary layer of width OðeÞ at x ¼ 0 (cf.

[2]).

First we rewrite the given equation as

ey 00ðxÞ þ ½yðxÞ2=2�0 
 yðxÞ ¼ 0:

From step 1, the reduced problem is ½y0ðxÞ2=2�0 
 y0ðxÞ ¼ 0; y0ð1Þ ¼ 3:9995;
whose solution is

y0ðxÞ ¼ xþ 2:9995: ð53Þ

From step 2, the two first-order equations equivalent to Eq. (50) are

z0ðxÞ 
 yðxÞ ¼ 0 ð54Þ

and

ey 0ðxÞ þ yðxÞ2

2
¼ zðxÞ: ð55Þ

Now from step 3, we have zð1Þ ¼ ey00ð1Þ þ aðy0ð1ÞÞ, i.e.; zð1Þ ¼ e þ
ð3:9995Þ2=2.

Table 8

Numerical results of Example 4 with e ¼ 10
4, h ¼ 10
4

x yðxÞ Exact solution

0.00 0.0000000 0.0000000

0.02 0.6733618 0.6733446

0.04 0.6539454 0.6539265

0.06 0.6348970 0.6348783

0.08 0.6162032 0.6161861

0.10 0.5978512 0.5978370

0.20 0.5108411 0.5108256

0.40 0.3566844 0.3566750

0.60 0.2231481 0.2231436

0.80 0.1053628 0.1053605

1.00 0.0000000 0.0000000
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Replacing yðxÞ by y0ðxÞ in (54) we have z0ðxÞ 
 y0ðxÞ ¼ 0.

Hence the pair of initial value problems related to (50) and (51) are

ðiÞ z0ðxÞ ¼ xþ 2:9995 with zð1Þ ¼ e þ ð3:9995Þ2=2; ð56Þ

ðiiÞ ey0ðxÞ þ yðxÞ2

2
¼ zðxÞ with yð0Þ ¼ 
1: ð57Þ

The numerical results are given in Tables 9 and 10 for e ¼ 10
3 and 10
4,

respectively.

Example 6. Finally we consider the following singular perturbation problem

from O�Malley [7, p. 9; Eqs. (1.10) case 2];

ey 00ðxÞ 
 yðxÞy0ðxÞ ¼ 0; x 2 ½
1; 1� ð58Þ

Table 9

Numerical results of Example 5 with e ¼ 10
3, h ¼ 10
4

x yðxÞ Exact solution

0.00 )1.0000000 )1.0000000
0.02 3.0194650 3.0195000

0.04 3.0394760 3.0395000

0.06 3.0594940 3.0595000

0.08 3.0794360 3.0795000

0.10 3.0995030 3.0995000

0.20 3.1995000 3.1995000

0.40 3.3994760 3.3995000

0.60 3.5994310 3.5995000

0.80 3.7994730 3.7995000

1.00 3.9994990 3.9995000

Table 10

Numerical results of Example 5 with e ¼ 10
4, h ¼ 10
5

x yðxÞ Exact solution

0.00 )1.0000000 )1.0000000
0.02 3.0209980 3.0195000

0.04 3.0398800 3.0395000

0.06 3.0586450 3.0595000

0.08 3.0772960 3.0795000

0.10 3.0958400 3.0995000

0.20 3.2018430 3.1995000

0.40 3.4039620 3.3995000

0.60 3.5978090 3.5995000

0.80 3.8039610 3.7995000

1.00 3.9995010 3.9995000
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with

yð
1Þ ¼ 0 and yð1Þ ¼ 
1: ð59Þ
We have chosen to use O�Malley�s approximate solution [7, pp. 9 and 10; Eqs.
(1.13) and (1.14)] for comparison,

yðxÞ ¼ 
ð1
 e
ðxþ1Þ=eÞ=ð1þ e
ðxþ1Þ=eÞ:

For this example, we have a boundary layer of width OðeÞ at the left end of the
interval. That is at x ¼ 
1 (cf. [7]).

First we rewrite the given equation as

ey 00ðxÞ 
 ½yðxÞ2=2�0 ¼ 0: ð60Þ

From step 1, the reduced problem is ½y0ðxÞ2=2�0 ¼ 0; y0ð1Þ ¼ 
1; whose so-
lution is y0ðxÞ ¼ 
1.

From step 2, the two first-order equations equivalent to Eq. (60) are

z0ðxÞ ¼ 0

and

ey 0ðxÞ 
 yðxÞ2

2
¼ zðxÞ:

Now from step 3, we have zð1Þ ¼ ey00ð1Þ þ aðy0ð1ÞÞ, i.e.; zð1Þ ¼ 
1=2.
Hence the pair of initial value problems related to (58) and (59) are

ðiÞ z0ðxÞ ¼ 0 with zð1Þ ¼ 
1=2; ð61aÞ

ðiiÞ ey0ðxÞ 
 yðxÞ2

2
¼ zðxÞ with yð
1Þ ¼ 0: ð61bÞ

The numerical results are given in Tables 11 and 12 for e ¼ 10
3 and 10
4,

respectively.

Table 11

Numerical results of Example 6 with e ¼ 10
3, h ¼ 0:002

x yðxÞ Exact solution

)1.00 0.0000000 0.0000000

)0.96 )1.0000000 )1.0000000
)0.92 )1.0000000 )1.0000000
)0.88 )1.0000000 )1.0000000
)0.84 )1.0000000 )1.0000000
)0.80 )1.0000000 )1.0000000
)0.60 )1.0000000 )1.0000000
)0.20 )1.0000000 )1.0000000
0.20 )1.0000000 )1.0000000
0.60 )1.0000000 )1.0000000
1.00 )1.0000000 )1.0000000
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6. Right-end boundary layer problems

Finally, we extend this method of reduction of order for singularly per-

turbed two-point boundary value problems with right-end boundary layer of

the underlying interval. To be specific, we consider a class of singular pertur-

bation problem of the form:

ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½p; q� ð62Þ

with

yðpÞ ¼ a and yðqÞ ¼ b; ð63Þ

where e is a small positive parameter ð0 < e 	 1Þ and a; b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable
functions in ½p; q�. Furthermore, we assume that aðxÞ6M < 0 throughout the

interval ½p; q�, where M is some negative constant. This assumption merely

implies that the boundary layer will be in the neighbourhood of x ¼ q.
Step 1. Obtain the reduced problem by setting e ¼ 0 in Eq. (62) and solve it

for the solution with the appropriate boundary condition. Let y0ðxÞ be the
solution of the reduced problem of (62) and (63), i.e.;

aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ ð64Þ

with

y0ðpÞ ¼ a: ð65Þ

Step 2. Setup the two first-order equations equivalent to the Eq. (62) as

follows:

z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�yðxÞ ¼ f ðxÞ ð66Þ

Table 12

Numerical results of Example 6 with e ¼ 10
4, h ¼ 0:0002

x yðxÞ Exact solution

)1.00 0.0000000 0.0000000

)0.96 )1.0000000 )1.0000000
)0.92 )1.0000000 )1.0000000
)0.88 )1.0000000 )1.0000000
)0.84 )1.0000000 )1.0000000
)0.80 )1.0000000 )1.0000000
)0.60 )1.0000000 )1.0000000
)0.20 )1.0000000 )1.0000000
0.20 )1.0000000 )1.0000000
0.60 )1.0000000 )1.0000000
1.00 )1.0000000 )1.0000000
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and

ey 0ðxÞ þ aðxÞyðxÞ ¼ zðxÞ: ð67Þ

Step 3. Set up the initial conditions as follows:

Using y0ðxÞ, the solution of the reduced problem, in Eq. (67) we have

zðpÞ ¼ ey 00ðpÞ þ aðpÞy0ðpÞ: ð68Þ

This is the initial condition for Eq. (66) and yðqÞ ¼ b will be the initial con-

dition for Eq. (67).

Step 4. Get the pair of initial value problems as follows: Replacing yðxÞ by
y0ðxÞ in (66), we get

z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�y0ðxÞ ¼ f ðxÞ: ð69Þ

Now the differential equation (69) with condition (68) constitute an initial

value problem and the differential equation (67) with the condition yðqÞ ¼ b
constitute another initial value problem.

Therefore the pair of initial value problems corresponding to Eqs. (62) and
(63) are given by

ðiÞ z0ðxÞ þ ½bðxÞ 
 a0ðxÞ�y0ðxÞ ¼ f ðxÞ with zðpÞ ¼ ey00ðpÞ þ aðpÞy0ðpÞ;
ð70Þ

ðiiÞ ey0ðxÞ þ aðxÞyðxÞ ¼ zðxÞ with yðqÞ ¼ b: ð71Þ

Thus in a manner of speaking, we have replaced the original boundary value
problem (62) and (63) by a pair of initial value problems. The integration of

these initial value problems goes in opposite direction, and the second problem

is solved only if the solution of the first one is known. We solve these initial

value problems (70) and (71) to obtain the solution over the interval ½p; q�.

7. Examples with right-end boundary layer

To illustrate the method of reduction of order for singularly perturbed two-

point boundary value problems with right-end boundary layer of the under-

lying interval we considered two examples.

Example 7. Consider the following singular perturbation problem

ey 00ðxÞ 
 y0ðxÞ ¼ 0; x 2 ½0; 1� ð72Þ

with

yð0Þ ¼ 1 and yð1Þ ¼ 0: ð73Þ

Clearly, this problem has a boundary layer at x ¼ 1. i.e.; at the right-end of the

underlying interval.
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The exact solution is given by

yðxÞ ¼ ðeðx
1Þ=e 
 1Þ=ðe
1=e 
 1Þ: ð74Þ

From step 1, the reduced problem is y 00ðxÞ ¼ 0; y0ð0Þ ¼ 1; whose solution is
y0ðxÞ ¼ 1.

From step 2, the two first-order equations equivalent to Eq. (72) are

z0ðxÞ ¼ 0

and ey0ðxÞ 
 yðxÞ ¼ zðxÞ.
From step 3, we have

zð0Þ ¼ ey 00ð0Þ þ að0Þy0ð0Þ i:e:; zð0Þ ¼ 
1 ð75Þ

Hence the pair of initial value problems related to (72) and (73) are

ðiÞ z0ðxÞ ¼ 0 with zð0Þ ¼ 
1; ð76Þ
ðiiÞ ey0ðxÞ 
 yðxÞ ¼ zðxÞ with yð1Þ ¼ 0: ð77Þ

The numerical results are given in Tables 13 and 14 for e ¼ 10
3 and 10
4,

respectively.

Example 8. We now consider the following singular perturbation problem

ey 00ðxÞ 
 y0ðxÞ 
 ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1� ð78Þ

with

yð0Þ ¼ 1þ expð
ð1þ eÞ=eÞ; and yð1Þ ¼ 1þ 1=e: ð79Þ

Clearly this problem has a boundary layer at x ¼ 1. The exact solution is given

by

yðxÞ ¼ eð1þeÞðx
1Þ=e þ e
x: ð80Þ

Table 13

Numerical results of Example 7 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 1.0000000 1.0000000

0.20 1.0000000 1.0000000

0.40 1.0000000 1.0000000

0.60 1.0000000 1.0000000

0.80 1.0000000 1.0000000

0.90 1.0000000 1.0000000

0.92 1.0000000 1.0000000

0.94 1.0000000 1.0000000

0.96 1.0000010 1.0000000

0.98 1.0007730 1.0000000

1.00 0.0000000 0.0000000
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From step 1, the reduced problem is; y00ðxÞ þ y0ðxÞ ¼ 0; y0ð0Þ ¼ 1. The so-

lution of this problem is

y0ðxÞ ¼ e
x: ð81Þ

From step 2, the two first-order equations equivalent to Eq. (78) are

z0ðxÞ 
 ð1þ eÞyðxÞ ¼ 0 ð82Þ

and

ey 0ðxÞ 
 yðxÞ ¼ zðxÞ: ð83Þ

Now from step 3, we have zð0Þ ¼ ey00ð0Þ þ að0Þy0ð0Þ, i.e.; zð0Þ ¼ 
e 
 1.

Replacing yðxÞ by y0ðxÞ in (82) we have z0ðxÞ 
 ð1þ eÞy0ðxÞ ¼ 0.
Hence the pair of initial value problems related to (78) and (79) are

Table 14

Numerical results of Example 7 with e ¼ 10
4, h ¼ 10
4

x yðxÞ Exact solution

0.00 1.0000000 1.0000000

0.20 1.0000000 1.0000000

0.40 1.0000000 1.0000000

0.60 1.0000000 1.0000000

0.80 1.0000000 1.0000000

0.90 1.0000000 1.0000000

0.92 1.0000000 1.0000000

0.94 1.0000000 1.0000000

0.96 1.0000000 1.0000000

0.98 1.0000000 1.0000000

1.00 0.0000000 0.0000000

Table 15

Numerical results of Example 8 with e ¼ 10
3, h ¼ 10
3

x yðxÞ Exact solution

0.00 1.0000000 1.0000000

0.20 0.8187319 0.8187308

0.40 0.6703215 0.6703200

0.60 0.5488131 0.5488116

0.80 0.4493306 0.4493290

0.90 0.4065710 0.4065697

0.92 0.3985204 0.3985190

0.94 0.3906293 0.3906278

0.96 0.3828960 0.3828929

0.98 0.3769802 0.3753111

1.00 1.3678790 1.3678790
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ðiÞ z0ðxÞ ¼ ð1þ eÞe
x with zð0Þ ¼ 
e 
 1; ð84Þ
ðiiÞ ey0ðxÞ 
 yðxÞ ¼ zðxÞ with yð1Þ ¼ 1þ 1=e: ð85Þ

The numerical results are given in Tables 15 and 16 for e ¼ 10
3 and 10
4,

respectively.

8. Discussion and conclusions

We have presented and illustrated the method of reduction of order for

solving singularly perturbed two-point boundary value problems. The solution

of the given singularly perturbed boundary value problem is computed nu-

merically by solving a pair of initial value problems, which are deduced from

the original problem. This method is very easy to implement on any computer

with minimum problem preparation. We have implemented the present method

on three linear examples, three non-linear examples with left-end boundary

layer and two examples with right-end boundary layer by taking different
values of e. To solve the initial value problems we used the classical fourth

order Runge–Kutta method. In fact any standard analytical or Numerical

method can be used. Computational results are presented in tables. Here we

have given results for only few values, although the solutions are computed at

all points with mesh size h. The approximate solution is compared with exact

solution. It can be observed from the results that the present method agrees

with exact solution very well, which shows the efficiency of the method.
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