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Abstract

In this paper, a method of reduction of order is proposed for solving singularly
perturbed two-point boundary value problems with a boundary layer at one end point.
It is distinguished by the following fact: the original singularly perturbed boundary
value problem is replaced by a pair of initial value problems. Classical fourth order
Runge-Kutta method is used to solve these initial value problems. Several linear and
non-linear singular perturbation problems have been solved and the numerical results
are presented to support the theory.
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1. Introduction

Singular perturbation problems occur very frequently in fluid mechanics and
other branches of applied mathematics. There are a wide variety of methods
for the solution of the singular perturbation problems. Many of these methods
consists of: (a) dividing the problem into an inner region (boundary layer)
problem and an outer region problem; (b) expressing the inner and outer
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solutions as asymptotic expansions; (¢) equating various terms in the inner
and outer expressions to determine the constants in these expressions; and
(d) combining the inner and outer solutions in some fashion to obtain a uni-
formly valid solution. Typically, the inner region problems are obtained from
the original problem by rescaling the independent variable. These methods and
their variations have been used successfully on a variety of linear and non-
linear singular perturbation problems. However, there can be difficulties in
applying these methods, such as the matching of the coefficients of the inner
and outer expansions. Success may depend on finding the proper scaling or the
proper transformation to express the dependent and independent variables.
For a detailed discussion, one may refer to O’Malley [7], Kevorkian and Cole
[5], Bender and Orszag [1], Nayfeh [6] and research papers by Kadalbajoo and
Reddy [3,4], Hu et al. [2] and Reinhardt [8].

In view of the wealth of literature on singular perturbation problems, we
raise the question of whether there are other ways to attack singular pertur-
bation problems, namely, ways that are very easy to use and ready for com-
puter implementation. In response to this need for a fresh approach to singular
perturbation problems, we propose and illustrate in this paper, the method of
reduction of order for solving singularly perturbed two-point boundary value
problems with a boundary layer at one end point of the underlying interval.
It is distinguished by the following fact: the original singularly perturbed
boundary value problem is replaced by a pair of initial value problems. This
replacement is significant from the computational point of view. Classical
fourth order Runge-Kutta method is used to solve these initial value problems.
Numerical experience with several examples is described.

2. Method of reduction of order

For convenience, we call our method as the method of reduction of order.
To describe the method, we first consider a linear singularly perturbed two-
point boundary value problem of the form:

&y’ (x) + a(x)y'(x) + b(x)y(x) = f(x), x € [p,q] (1)
with

y(p)=0o and y(g)=p, (2)

where ¢ is a small positive parameter (0 < ¢ < 1) and o, f are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
functions in [p,g]. Furthermore, we assume that a(x) > M > 0 throughout the
interval [p,q], where M is some positive constant. This assumption merely
implies that the boundary layer will be in the neighbourhood of x = p.
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The method of reduction of order consists the following steps:

Step 1. Obtain the reduced problem by setting ¢ = 0 in Eq. (1) and solve it
for the solution with the appropriate boundary condition. Let yy(x) be the
solution of the reduced problem of (1) and (2), i.e.;

a(x)yp(x) + b(x)y(x) = f(x) 3)

with
n(q) = B. )
Step 2. Setup the two first-order equations equivalent to Eq. (1) as follows:
Z(x) + [b(x) = d X)y(x) =/ (x) (5)

and
&' (x) + a(x)y(x) = z(x). (6)

Step 3. Setup the initial conditions as follows:
Using yy(x), the solution of the reduced problem, in Eq. (6) we have

z(q) = evy(q) + a(g)y(q)- (7)

This will be the initial condition for Eq. (5) and y(p) = o will be the initial
condition for Eq. (6).

Step 4. Get the pair of initial value problems as follows:

Replacing y(x) by y(x) in (5), we get

Z(x) + [b(x) — d (¥)In(x) =/ (x). ®)

Now the differential equation (8) with condition (7) constitute an initial value
problem and the differential equation (6) with the condition y(p) = « constitute
another initial value problem.

Therefore the pair of initial value problems corresponding to (1) and (2) are
given by

(i) 2/(x) + [b(x) —d (¥)In(x) = f(x)  with z(q) = &y(q) + alg)w(q), ()
(ii) &/ (x) + a(x)y(x) = z(x) with y(p) = o. (10)

Thus in a manner of speaking, we have replaced the original boundary value
problem (1) and (2) by a pair of initial value problems. The integration of these
initial value problems goes in opposite direction, and the second problem is
solved only if the solution of the first one is known. We solve these initial value
problems (9) and (10) to obtain the solution over the interval [p, g]. There now
exist a number of efficient methods for the solution of initial value problems. In
order to solve the initial value problems in our numerical experimentation, we
make use of classical fourth order Runge—Kutta method. In fact, any standard
analytical or numerical method can be used.
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3. Numerical examples

To demonstrate the applicability of the method of reduction of order, we
have applied it to three linear singular perturbation problems with left-end
boundary layer. These examples have been chosen because they have been
widely discussed in the literature and because approximate solutions are
available for comparison.

Example 1. Consider the following homogeneous singular perturbation
problem from Bender and Orszag [1, p. 480; problem (9.17)] with o = 0;

&"(x) +)'(x) —y(x) =0; x€[0,1] (11)
with

»(0)=1 and y(1)=1. (12)
The exact solution is given by

y(x) = [(e" = D)™ + (1 —e™)e™]/[e™ —e™], (13)

where m; = (=1 + /1 +4¢)/(2¢) and my = (=1 — /1 +4¢)/(2¢).

From step 1, the reduced problem is y;(x) — yo(x) = 0; (1) = 1. The so-
lution of this problem is yp(x) = e* 1.

From step 2, the two first-order equations equivalent to Eq. (11) are

Z(x) = y(x) =0 (14)
and
&y (x) + y(x) = z(x). (15)
From step 3, we have
z(1) = eyp(1) +a()y(1), 1ie., z(1) =e+ L. (16)
Replacing y(x) by y(x) in (14) we get
2(x) = (x) = 0. (17)

Hence the pair of initial value problems corresponding to (11) and (12) are
(i) Z(x) =" with z(1) = e + 1,
(ii) &/ (x) + y(x) = z(x) with y(0) = 1.

The numerical results are given in Tables 1 and 2 for ¢ = 10~ and 104,
respectively.

Example 2. Now consider the following non-homogeneous singular pertur-
bation problem from fluid dynamics for fluid of small viscosity, Reinhardt [8,
Example 2].



Y.N. Reddy, P. Pramod Chakravarthy | Appl. Math. Comput. 136 (2003) 2745 31

Table 1

Numerical results of Example 1 with e = 1073, 7 = 1073
X y(x) Exact solution
0.00 1.0000000 1.0000000
0.02 0.3758743 0.3756784
0.04 0.3834493 0.3832599
0.06 0.3911773 0.3909945
0.08 0.3990614 0.3988851
0.10 0.4071048 0.4069350
0.20 0.4498258 0.4496879
0.40 0.5492191 0.5491404
0.60 0.6706182 0.6705877
0.80 0.8188952 0.8188942
1.00 1.0000010 1.0000000

Table 2

Numerical results of Example 1 with e = 107, 7 = 107*
X y(x) Exact solution
0.00 1.0000000 1.0000000
0.02 0.3753700 0.3753479
0.04 0.3829486 0.3829296
0.06 0.3906853 0.3906645
0.08 0.3985749 0.3985557
0.10 0.4066239 0.4066062
0.20 0.4493805 0.4493649
0.40 0.5488544 0.5488445
0.60 0.6703461 0.6703468
0.80 0.8187459 0.8187471
1.00 0.9999999 1.0000000

g'(x)+)y(x)=142x; xe]0,1] (18)
with
»(0)=0 and y(1)=1. (19)

The exact solution is given by
y(x) =x(x+1—2¢) + (26 — 1)(1 —e™) /(1 —e™/?). (20)

From step 1, the reduced problem is y(x) = 1 + 2x; y(1) = 1. The solution
of this problem is

wx) =x* +x— 1. (21)
From step 2, the two first-order equations equivalent to Eq. (18) are

Zx)=1+2x (22)
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and
&y (x) + y(x) = z(x). (23)
Now from step 3, we have z(1) = ey (1) + a(1)y(1), i.e; z(1) =3¢+ 1.
Hence the pair of initial value problems related to (18) and (19) are
(i) Z(x) =1+ 2x with z(1) =3¢+ 1,
(i) &/ (x) + y(x) = z(x) with y(0) = 0.

The numerical results are given in Tables 3 and 4 for ¢ = 107> and 1074,
respectively.

Example 3. Finally we consider the following variable coefficient singular
perturbation problem from Kevorkian and Cole [5, p. 33; Egs. (2.3.26) and
(2.3.27)] with o = —1/2;

Table 3

Numerical results of Example 2 with ¢ = 1073, 7 =103
x y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 —0.9778339 —-0.9776400
0.04 —0.9566700 —-0.9564800
0.06 —0.9347062 —0.9345200
0.08 -0.9119419 -0.9117600
0.10 —0.8883780 —-0.8882000
0.20 —-0.7585579 —0.7584000
0.40 —-0.4389180 —0.4388000
0.60 —0.0392781 —0.0391999
0.80 0.4403619 0.4404000
1.00 1.0000020 1.0000000

Table 4

Numerical results of Example 2 with ¢ = 107, 7 = 107*
X y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 —0.9794231 —0.9794040
0.04 —-0.9582251 —0.9582080
0.06 —0.9362285 —-0.9362120
0.08 —0.9134333 —-0.9134160
0.10 —0.8898363 —0.8898200
0.20 —0.7598536 —0.7598400
0.40 —0.4398913 —0.4398800
0.60 —-0.0399276 —-0.0399201
0.80 0.4400363 0.4400399

1.00 0.9999999 1.0000000
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&'(x) + (1 - )y (x) —b(x) =0; x€]0,1] (24)

with
$0)=0 and y(1)=1. (25)

We have chosen to use uniformly valid approximation (which is obtained by
the method given by Nayfeh [6, p. 148; Eq. (4.2.32)]) as our ‘exact’ solution;

yx) =1/(2=x) = (1/2)e” /%, (26)
From step 1, the reduced problem is
(1 = 3005(x) = 50(x) =05 (1) =1.

The solution of this problem is yy(x) = 1/(2 — x).
From step 2, the two first-order equations equivalent to Eq. (24) are

Z(x)=0 (27)
and
&y (x) + (1 = 2)y(x) = z(x). (28)
Now from step 3, we have z(1) = gyy(1) + a(1)w(1), i.e; z(1) = e+ 1/2.
Hence the pair of initial value problems related to (24) and (25) are
(i) Z(x) =0 with z(1) = ¢+ 1/2, (29)
(i) &/ (x) + (1 = x)y(x) = z(x) with y(0) = 0. (30)

The numerical results are given in Tables 5 and 6 for ¢ = 1073 and 1074,
respectively.

Table 5

Numerical results of Example 3 with ¢ = 1073, h = 1073
X y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 0.5058028 0.5050505
0.04 0.5109587 0.5102041
0.06 0.5162208 0.5154639
0.08 0.5215923 0.5208333
0.10 0.5270767 0.5263158
0.20 0.5563236 0.5555556
0.40 0.6257619 0.6250000
0.60 0.7149862 0.7142857
0.80 0.8338451 0.8333333

1.00 1.0000080 1.0000000
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Table 6

Numerical results of Example 3 with ¢ = 107, 7 = 107*
X y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 0.5051258 0.5050505
0.04 0.5102796 0.5102041
0.06 0.5155396 0.5154639
0.08 0.5209092 0.5208333
0.10 0.5263919 0.5263158
0.20 0.5556324 0.5555555
0.40 0.6250762 0.6250000
0.60 0.7143557 0.7142857
0.80 0.8333843 0.8333333
1.00 1.0000000 1.0000000

4. Non-linear problems

We now extend this method of reduction of order for a class of non-linear
singularly perturbed two-point boundary value problems with left-end
boundary layer of the underlying interval. For this we consider a class of non-
linear singularly perturbed two-point boundary value problems of the form:

&y (x) + [a(v(x))] + b(x,¥(x)) = f(x), x€[p.q] (31)
with
y(p) =o and y(q) =P, (32)

where ¢ is a small positive parameter (0 < ¢ < 1) and a, § are known constants.
We assume that a(y(x)), b(x,y) and f(x) are sufficiently continuously differ-
entiable functions in [p, g]. Furthermore, we assume that (31) and (32) has a
solution which displays a boundary layer of width O(e) at x = p for small
values of ¢.

Step 1. Obtain the reduced problem by setting ¢ = 0 in Eq. (31) and solve it
for the solution with the appropriate boundary condition. Let yy(x) be the
solution of the reduced problem of (31) and (32), i.e.;

[a(ro())])" + b(x, 30(x)) = £ (x) (33)

with
wlq) = B (34)
Step 2. Setup the two first-order equations equivalent to Eq. (31) as follows:
Z(x) + blx, y(x)) = f(x) (35)
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and
&y’ (x) +a(y(x)) = z(x). (36)

Step 3. Setup the initial conditions as follows:
Using yp(x), the solution of the reduced problem, in Eq. (36) we have

z(q) = eyy(q) +a(n(q))- (37)

This will be the initial condition for Eq. (35) and y(p) = « will be the initial
condition for Eq. (36).

Step 4. Get the pair of initial value problems as follows: Replacing y(x) by
Yo(x) in (35), we get

2(x) + b(x, o (x)) = f(x). (38)

Now the differential equation (38) with condition (37) constitute an initial
value problem and the differential equation (36) with the condition y(p) = o
constitute another initial value problem.

Therefore the pair of initial value problems corresponding to Egs. (31) and
(32) are given by

(i) 2(x) + bx, () = £(x)  with =(q) = 35(q) + a0 (), (39)
(i) &/(x) + ay(x) = 2(x) with y(p) = o (40)

Thus in a manner of speaking, we have replaced the original boundary value
problem (31) and (32) by a pair of initial value problems. The integration of
these initial value problems goes in opposite direction, and the second problem
is solved only if the solution of the first one is known. We solve these initial
value problems (39) and (40) to obtain the solution over the interval [p, q|.

5. Non-linear examples

Again to demonstrate the applicability of the method of reduction of order,
we have applied it to three non-linear singular perturbation problems with left-
end boundary layer.

Example 4. Consider the following singular perturbation problem from
Bender and Orszag [1, p. 463; Egs. (9.7.1)];

& (x) +20/(x) + W =0; xe[0,1] (41)
with
»(0)=0 and y(1)=0. (42)
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We have chosen to use Bender and Orszag’s uniformly valid approximation [1,
p. 463; Eq. (9.7.6)] for comparison,

V() = log,(2/(1 +x)) — (log, 2)e . (43)

For this example, we have boundary layer of thickness O(e) at x = 0 (cf. [1]).
From step 1, the reduced problem is

2yp(x) + " =0; (1) =0. (44)
The solution of this problem is
Jo(x) = log,(2/(x + 1)). (45)
From step 2, the two first-order equations equivalent to Eq. (41) are
Z(x)+e¥ =0 (46)
and
&y (x) + 2p(x) = z(x). (47)
From step 3, we have
z(1) = eyp(1) +a(w(1)), 1ie., z(1) = —g/2. (48)

Replacing y(x) by yo(x) in (46) we get 2/(x) + ™) = 0.
Hence the pair of initial value problems related to (41) and (42) are
(i) Z(x) = -2/(x+1) with z(1) = —¢/2, (49)
(i) &' (x) 4+ 2y(x) = z(x) with »(0) = 0. (50)

The numerical results are given in Tables 7 and 8 for ¢ = 107> and 1074,
respectively.

Table 7

Numerical results of Example 4 with ¢ = 1073, 7 = 1073
x y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 0.6735372 0.6733446
0.04 0.6541116 0.6539265
0.06 0.6350562 0.6348783
0.08 0.6163570 0.6161861
0.10 0.5980009 0.5978370
0.20 0.5109591 0.5108256
0.40 0.3567606 0.3566749
0.60 0.2231937 0.2231435
0.80 0.1053829 0.1053605

1.00 0.0000000 0.0000000
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Table 8

Numerical results of Example 4 with ¢ = 107, 7 = 107*
X y(x) Exact solution
0.00 0.0000000 0.0000000
0.02 0.6733618 0.6733446
0.04 0.6539454 0.6539265
0.06 0.6348970 0.6348783
0.08 0.6162032 0.6161861
0.10 0.5978512 0.5978370
0.20 0.5108411 0.5108256
0.40 0.3566844 0.3566750
0.60 0.2231481 0.2231436
0.80 0.1053628 0.1053605
1.00 0.0000000 0.0000000

Example 5. Now consider the following singular perturbation problem from
Kevorkian and Cole [5, p. 56; Egs. (2.5.1)];
8" (x) + y(x)y'(x) = y(x) = 0;  x €[0,1] (51)

with y(0) = —1 and y(1) = 3.9995.
We have chosen to use Kevorkian and Cole’s uniformly valid approximation
[5, pp- 57 and 58; Egs. (2.5.5), (2.5.11) and (2.5.14)] for comparison,

y(x) = x + ¢y tanh(c(x/e + ¢2)/2), (52)

where ¢; = 2.9995 and ¢, = (1/¢y)log,[(c; — 1)/(c1 + 1)].
For this example also we have a boundary layer of width O(¢) at x = 0 (cf.
(2]).
First we rewrite the given equation as
&' (x) + [(x)* /2] = y(x) = 0.

From step 1, the reduced problem is [yo(x)*/2] — yo(x) = 0; 3(1) = 3.9995;
whose solution is

Yo(x) = x +2.9995. (53)
From step 2, the two first-order equations equivalent to Eq. (50) are
Z(x) = y(x) =0 (54)
and
2
/() + 2 — o). (59)

Now from step 3, we have z(1) = ey)(1) + a((l)), ie; z(1) = ¢ +
(3.9995)*/2.



38 Y.N. Reddy, P. Pramod Chakravarthy | Appl. Math. Comput. 136 (2003) 2745

Replacing y(x) by y(x) in (54) we have z/(x) — yy(x) = 0.
Hence the pair of initial value problems related to (50) and (51) are

(i) Z(x) =x +2.9995 with z(1) = & + (3.9995)% /2, (56)
(ii) &/ (x) +2 ?2 =z(x) with y(0) = —1. (57)

The numerical results are given in Tables 9 and 10 for ¢ = 10~ and 1074,
respectively.

Example 6. Finally we consider the following singular perturbation problem
from O’Malley [7, p. 9; Eqgs. (1.10) case 2];

&"(x) = y(x)y/(x) =0; x€[-11] (58)

Table 9

Numerical results of Example 5 with ¢ = 1073, 7 = 10"*
x y(x) Exact solution
0.00 —1.0000000 —1.0000000
0.02 3.0194650 3.0195000
0.04 3.0394760 3.0395000
0.06 3.0594940 3.0595000
0.08 3.0794360 3.0795000
0.10 3.0995030 3.0995000
0.20 3.1995000 3.1995000
0.40 3.3994760 3.3995000
0.60 3.5994310 3.5995000
0.80 3.7994730 3.7995000
1.00 3.9994990 3.9995000

Table 10

Numerical results of Example 5 with ¢ = 107, 7 = 107>
X y(x) Exact solution
0.00 —1.0000000 —1.0000000
0.02 3.0209980 3.0195000
0.04 3.0398800 3.0395000
0.06 3.0586450 3.0595000
0.08 3.0772960 3.0795000
0.10 3.0958400 3.0995000
0.20 3.2018430 3.1995000
0.40 3.4039620 3.3995000
0.60 3.5978090 3.5995000
0.80 3.8039610 3.7995000

1.00 3.9995010 3.9995000
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with
y»(=1)=0 and y(1)=-1. (59)

We have chosen to use O’Malley’s approximate solution [7, pp. 9 and 10; Eqgs.
(1.13) and (1.14)] for comparison,

Y = =(1 = ) /(1 4 e ),
For this example, we have a boundary layer of width O(e) at the left end of the
interval. That is at x = —1 (cf. [7]).
First we rewrite the given equation as
&' (x) = v(x)?/2] = 0. (60)

From step 1, the reduced problem is [yy(x)*/2]' = 0; y(1) = —1; whose so-
lution is yy(x) = —1.
From step 2, the two first-order equations equivalent to Eq. (60) are

Z(x)=0

and

Now from step 3, we have z(1) = &y)(1) + a(w (1)), i.e.; z(1) = —1/2.
Hence the pair of initial value problems related to (58) and (59) are

(i) Z(x) =0 with z(1) = —1/2, (61a)
(i) & (x) —y(%)z =z(x) with y(—1)=0. (61b)

The numerical results are given in Tables 11 and 12 for ¢ = 10~ and 107,
respectively.

Table 11
Numerical results of Example 6 with & = 1073, # = 0.002
x y(x) Exact solution
-1.00 0.0000000 0.0000000
—-0.96 —1.0000000 —1.0000000
-0.92 —1.0000000 —1.0000000
—-0.88 —1.0000000 —1.0000000
—-0.84 —1.0000000 —1.0000000
—-0.80 —1.0000000 —1.0000000
—-0.60 —1.0000000 —1.0000000
-0.20 —1.0000000 —1.0000000
0.20 —-1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000

1.00 -1.0000000 -1.0000000
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Table 12
Numerical results of Example 6 with ¢ = 107#, & = 0.0002
X y(x) Exact solution
-1.00 0.0000000 0.0000000
-0.96 —1.0000000 —1.0000000
-0.92 —1.0000000 —1.0000000
—0.88 —1.0000000 —1.0000000
—-0.84 —1.0000000 —1.0000000
-0.80 —1.0000000 —1.0000000
-0.60 —1.0000000 —1.0000000
—0.20 —1.0000000 —1.0000000
0.20 —1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000
1.00 —1.0000000 —1.0000000

6. Right-end boundary layer problems

Finally, we extend this method of reduction of order for singularly per-
turbed two-point boundary value problems with right-end boundary layer of
the underlying interval. To be specific, we consider a class of singular pertur-
bation problem of the form:

&y (x) + a(x)y' (x) + b(x)y(x) = f(x), x € [p,q] (62)
with
y(p)=o and y(q) =B, (63)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, § are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
functions in [p, ¢]. Furthermore, we assume that a(x) <M < 0 throughout the
interval [p,q|, where M is some negative constant. This assumption merely
implies that the boundary layer will be in the neighbourhood of x = ¢.

Step 1. Obtain the reduced problem by setting ¢ = 0 in Eq. (62) and solve it
for the solution with the appropriate boundary condition. Let yy(x) be the
solution of the reduced problem of (62) and (63), i.e.;

a(x)y(x) + b(x)y(x) = f(x) (64)
with
w(p) = o (65)

Step 2. Setup the two first-order equations equivalent to the Eq. (62) as
follows:

Z(x) + [b(x) —d (X)y(x) = f(x) (66)
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and
& (x) + a(x)y(x) = z(x). (67)

Step 3. Set up the initial conditions as follows:
Using )p(x), the solution of the reduced problem, in Eq. (67) we have

z(p) = &y (p) + a(P)3o(p)- (68)

This is the initial condition for Eq. (66) and y(¢) = p will be the initial con-
dition for Eq. (67).

Step 4. Get the pair of initial value problems as follows: Replacing y(x) by
o(x) in (66), we get

Z(x) + [b(x) = d'(x) ]y (x) = /(). (69)

Now the differential equation (69) with condition (68) constitute an initial
value problem and the differential equation (67) with the condition y(q) = f
constitute another initial value problem.

Therefore the pair of initial value problems corresponding to Egs. (62) and
(63) are given by

(i) Z(x) + [b(x) — @ (xX)h(x) = f(x)  with z(p) = &y(p) + a(p)y(p),
(70)
(ii) &'(x) + a(x)y(x) = z(x) with y(q) = B. (71)
Thus in a manner of speaking, we have replaced the original boundary value
problem (62) and (63) by a pair of initial value problems. The integration of
these initial value problems goes in opposite direction, and the second problem

is solved only if the solution of the first one is known. We solve these initial
value problems (70) and (71) to obtain the solution over the interval [p, q].

7. Examples with right-end boundary layer

To illustrate the method of reduction of order for singularly perturbed two-
point boundary value problems with right-end boundary layer of the under-
lying interval we considered two examples.

Example 7. Consider the following singular perturbation problem

8"(x) /() =0; xe[0,1] (72)
with

»(0)=1 and y(1)=0. (73)

Clearly, this problem has a boundary layer at x = 1. i.e.; at the right-end of the
underlying interval.
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The exact solution is given by

y(x) = =1/ 1), (74)
From step 1, the reduced problem is yj(x) = 0; y(0) = 1; whose solution is

y(x) = 1.
From step 2, the two first-order equations equivalent to Eq. (72) are

Z(x)=0

and &/ (x) — y(x) = z(x).
From step 3, we have

2(0) = a3y 0) + a(O)(0) ies 2(0) = —1 (75)
Hence the pair of initial value problems related to (72) and (73) are

(i) Z(x) =0 with z(0) = —1, (76)

(i) & (x) — y(x) = z(x) with y(1) =0. (77)

The numerical results are given in Tables 13 and 14 for ¢ = 10~ and 1074,
respectively.
Example 8. We now consider the following singular perturbation problem
&'(x) =y (x) = (I +e)y(x) =0; x€[0,1] (78)
with
y(0) =1+exp(—(1+¢)/e); and y(1)=1+1/e. (79)

Clearly this problem has a boundary layer at x = 1. The exact solution is given
by

y(x) — e(l+x)(x71)/s +e™, (80)

Table 13
Numerical results of Example 7 with ¢ = 1073, 7 = 1073

x y(x) Exact solution

0.00 1.0000000 1.0000000

0.20 1.0000000 1.0000000

0.40 1.0000000 1.0000000

0.60 1.0000000 1.0000000

0.80 1.0000000 1.0000000

0.90 1.0000000 1.0000000

0.92 1.0000000 1.0000000

0.94 1.0000000 1.0000000

0.96 1.0000010 1.0000000

0.98 1.0007730 1.0000000

1.00 0.0000000 0.0000000
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Table 14

Numerical results of Example 7 with e = 107, 7 = 1074

43

X y(x) Exact solution
0.00 1.0000000 1.0000000
0.20 1.0000000 1.0000000
0.40 1.0000000 1.0000000
0.60 1.0000000 1.0000000
0.80 1.0000000 1.0000000
0.90 1.0000000 1.0000000
0.92 1.0000000 1.0000000
0.94 1.0000000 1.0000000
0.96 1.0000000 1.0000000
0.98 1.0000000 1.0000000
1.00 0.0000000 0.0000000

From step 1, the reduced problem is; y;(x) + yo(x) = 0; »(0) = 1. The so-

lution of this problem is

w(x)=e

From step 2, the two first-order equations equivalent to Eq. (78) are

Z(x) = (1 +e)y(x) =0

and

&y (x) = y(x) = z(x).

(81)

(82)

(83)

Now from step 3, we have z(0) = ¢y;(0) + a(0)»0(0), i.e.; z(0) = —¢ — 1.

Replacing y(x) by y(x) in (82) we have z'(x) — (1 + &)w(x) = 0.
Hence the pair of initial value problems related to (78) and (79) are

Table 15

Numerical results of Example 8 with ¢ = 1073, 7 = 1073

x y(x) Exact solution
0.00 1.0000000 1.0000000
0.20 0.8187319 0.8187308
0.40 0.6703215 0.6703200
0.60 0.5488131 0.5488116
0.80 0.4493306 0.4493290
0.90 0.4065710 0.4065697
0.92 0.3985204 0.3985190
0.94 0.3906293 0.3906278
0.96 0.3828960 0.3828929
0.98 0.3769802 0.3753111
1.00 1.3678790 1.3678790
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Table 16
Numerical results of Example 8 with ¢ = 107, 7 = 107*
X y(x) Exact solution
0.00 1.0000000 1.0000000
0.20 0.8187292 0.8187308
0.40 0.6703162 0.6703200
0.60 0.5488135 0.5488117
0.80 0.4493309 0.4493290
0.90 0.4065703 0.4065697
0.92 0.3985207 0.3985191
0.94 0.3906303 0.3906278
0.96 0.3828928 0.3828929
0.98 0.3753136 0.3753111
1.00 1.3678790 1.3678790
() Z(x) = (1 +e)e™ with 2(0) = —¢ — 1, (84)
(i) &' (x) — y(x) = z(x) with y(1) =1+ 1/e. (85)

The numerical results are given in Tables 15 and 16 for ¢ = 1073 and 1074,
respectively.

8. Discussion and conclusions

We have presented and illustrated the method of reduction of order for
solving singularly perturbed two-point boundary value problems. The solution
of the given singularly perturbed boundary value problem is computed nu-
merically by solving a pair of initial value problems, which are deduced from
the original problem. This method is very easy to implement on any computer
with minimum problem preparation. We have implemented the present method
on three linear examples, three non-linear examples with left-end boundary
layer and two examples with right-end boundary layer by taking different
values of ¢. To solve the initial value problems we used the classical fourth
order Runge-Kutta method. In fact any standard analytical or Numerical
method can be used. Computational results are presented in tables. Here we
have given results for only few values, although the solutions are computed at
all points with mesh size /. The approximate solution is compared with exact
solution. It can be observed from the results that the present method agrees
with exact solution very well, which shows the efficiency of the method.
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