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Abstract

In this paper we examine the flow of an incompressible micropolar fluid between two concentric spheres,

generated by their rotary oscillations about a common diameter. The spheres are assumed to be oscillating

with the same amplitude but with different angular speeds. The speeds of oscillation are assumed to be small

so that the nonlinear terms in the equations of motion can be neglected under the usual Stokesian

assumption. The analytical expressions for velocity and microrotation components are determined in terms
of modified Bessel functions of first and second kind. The couples experienced by the inner and outer

spheres are calculated and are expressed in terms of two real parameters K and K 0 whose variation is studied

numerically. The variations of K and K 0 with respect to micropolarity parameter and frequency parameter

are displayed graphically.

� 2004 Published by Elsevier Ltd.
1. Introduction

The study of micropolar fluids initiated by Eringen [1] is a general microcontinuum approach in
which microrotational effects are present and surface and body couples are permitted. The theory
involves two basic and independent kinematical vector fields viz., the velocity vector representing
the translational velocity of the fluid particles and the microrotation vector representing the
angular velocity of the particles. Rigid particles contained in a small volume element can rotate
about the centroid of the volume element and the microrotation vector describes this rotation in
an average sence. This is a local rotation of the particles and is an addition to the usual rigid body
*
Corresponding author.

E-mail address: iyengar@nitw.ernet.in (T.K.V. Iyengar).

0020-7225/$ - see front matter � 2004 Published by Elsevier Ltd.

doi:10.1016/j.ijengsci.2003.10.006

mail to: iyengar@nitw.ernet.in


1036 T.K.V. Iyengar, V. Geetha Vani / International Journal of Engineering Science 42 (2004) 1035–1059
motion of the entire volume element. This theory of micropolar fluids is a special case of the
theory of simple microfluids [2] introduced by Eringen himself.

Ever since the theory of micropolar fluids appeared, several workers attempted diverse fluid
flow problems concerning these fluids. One interesting class of problems that attracted the
attention of researchers is constituted by the axisymmetric flow problems in micropolar fluids.
Lakshmana Rao et al. [3,4], Lakshmana Rao and Bhujanga Rao [5], have dealt with axisymmetric
micropolar fluids in sphere geometry. Lakshmana Rao and Iyengar discussed the micropolar fluid
flow problems concerning spheroids [6–9]. Iyengar and Srinivasacharya have discussed the flow
problems involving near sphere [10,11]. Ramkissoon and Majumdar derived an elegant formula
for the drag on an axially symmetric body in the Stokes flow of a micropolar fluid [12]. While
Ramkissoon derived a formula for the couple on an axially symmetric body slowly rotating about
its axis of symmetry [13], recently Srinivasa charya and Iyengar derived a formula for the drag on
an axisymmetric body performing rectilinear oscillations along its axis of symmetry in an
incompressible micropolar fluid medium [14]. These authors have also discussed the rotary
oscillations of an approximate sphere in an incompressible micropolar fluid [15]. In all these
problems, the thrust of investigation has been to obtain the drag or couple (as the case may be) on
the body under consideration.

In this paper we consider an incompressible micropolar fluid present in the region between two
concentric spheres (r ¼ a, r ¼ b, a < b). Let the inner sphere and outer sphere perform rotary
oscillations with the same frequency, but with different angular speeds X1 and X2 about a common
diameter. We assume X1 and X2 to be small so that the nonlinear terms and gyroinertial terms can
be neglected from the equations governing the flow under the usual Stokesian approximation. The
expressions for the velocity component and the two microrotation components are obtained
under the hyperstick conditions on the boundary. The stress and couple stress components are
calculated on the inner and outer sphere and these are expressed in terms of two parameters K and
K 0. The numerical variation of these parameters is studied for diverse values of the micropolarity,
gyrorotation and frequency parameters through figures.
2. Basic equations and formulation of the problem

The field equations governing an incompressible micropolar fluid flow are [1],
oq
ot

þ divðq�qÞ ¼ 0 ð1Þ

q
d�q
dt

¼ q�f � grad p þ k curl �t� ðlþ kÞ curl curl �qþ ðk1 þ 2lþ kÞ grad ðdiv �qÞ ð2Þ

qj
d�t
dt

¼ q�l� 2k�tþ k curl �q� c curl curl �tþ ðaþ bþ cÞ grad ðdiv �tÞ ð3Þ
in which �q, �t are velocity and microrotation vectors, �f , �l are body force per unit mass, body couple
per unit mass respectively and p is the fluid pressure at any point. q and j are the density of the
fluid and gyration parameters respectively and are assumed to be constants. The material con-
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stants (k1, l, k) are viscosity coefficients and (a, b, c) are gyroviscosity coefficients. These constants
confirm to the inequalities,
kP 0; 2lþ kP 0; 3k1 þ 2lþ kP 0

cP 0; jbj6 c; 3aþ bþ cP 0
ð4Þ
The stress tensor tij and the couple stress tensor mij are given by
tij ¼ ð�p þ k1 þ div �qÞdij þ ð2lþ kÞeij þ keijmðwm � tmÞ ð5Þ

mij ¼ aðdiv �tÞdij þ bti;j þ ctj;i ð6Þ
in which the symbols p, dij, eij, wm, vm and tj;i have their usual meanings.
Consider the concentric spheres with radii ‘a’ and ‘b’ (a < b). Let ðr; h;/Þ be a spherical polar

coordinate system with the common centre of the spheres as the origin. Let the region a < r < b
be filled by an incompressible micropolar fluid and the spheres r ¼ a and r ¼ b perform rotary
oscillations with small angular speeds X1 and X2 about the common diameter (h ¼ 0) with the
same amplitude of oscillation r. The fluid flow generated is axially symmetric and the field
variables will be independent of /. We choose the field vectors �q, �t in the form
�q ¼ V ðr; hÞe/ eirt ð7Þ

�t ¼ ðAðr; hÞer þ Bðr; hÞehÞeirt ð8Þ
Assuming that the flow is Stokesian, we neglect the nonlinear terms in the equations of motion
and hence the field equations (1)–(3) simplify to
div �q ¼ 0 ð9Þ

q
o�q
ot

¼ �grad p þ k curl �t� ðlþ kÞ curl curl �q ð10Þ

qj
o�t
ot

¼ �2k�tþ k curl �q� c curl curl �tþ ðaþ bþ cÞgrad div �t ð11Þ
Defining the functions f ðr; hÞ and gðr; hÞ through
div �t ¼ f ðr; hÞeirt ð12Þ

curl �t ¼ gðr; hÞeirte/ ð13Þ
Eqs. (7)–(13) lead to
op
or

¼ op
oh

¼ 0 ð14Þ



1038 T.K.V. Iyengar, V. Geetha Vani / International Journal of Engineering Science 42 (2004) 1035–1059
iqrV ðr; hÞ ¼ kg þ ðlþ kÞ
r sin h

E2ðr sin hV Þ ð15Þ

ð2k þ iqjrÞðAðr; hÞerBðr; hÞehÞ ¼
1

r2 sin h
o

oh
½r sin hðkV � cgÞer� �

1

r sin h
o

or
½r sin hðkV � cgÞeh�

þ ðaþ bþ cÞ of
or

er

�
þ 1

r
of
oh

eh

�
ð16Þ
where
E2 ¼ o2

or2
� cot h

r2
o

oh
þ 1

r2
o2

oh2
ð17Þ
Further we note that
ðr2 � p2Þf ¼ 0 ð18Þ
where
p2 ¼ a2ð2k þ iqjrÞ
aþ bþ c

ð19Þ
and
r2 ¼ o2

or2
þ 2

r
o

or
þ 1

r2
o2

oh2
þ cot h

r2
o

oh
ð20Þ
From (16) we get
iqjr
�

þ kð2lþ kÞ
lþ k

�
g ¼ �iqr

ðlþ kÞ kV þ c
r sin h

E2ðr sin hV Þ ð21Þ
Eliminating ‘g’ from (15) and (21) we get
cðlþ kÞE4ðr sin hV Þ � ½kð2lþ kÞ þ iqrðcþ jðlþ kÞÞ�E2ðr sin hV Þ
þ iqrð2k þ iqjrÞðr sin hV Þ ¼ 0 ð22Þ
As in [4], this can be rewritten in the form
ðE2 � a2ÞðE2 � b2Þðr sin hV Þ ¼ 0 ð23Þ
where
a2 þ b2 ¼ ½kð2lþ kÞ þ iqrðcþ jðlþ kÞÞ�
cðlþ kÞ a2
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a2b2 ¼ iqrð2k þ iqjrÞ
cðlþ kÞ a4 ð24Þ
Eqs. (18) and (23) enable us to determine f and V respectively. We can determine the microro-
tation components A, B through the equations
ð2k þ iqjrÞA ¼ 1

r2 sin h
o

oh
cðlþ kÞ

k
E2ðr sin hV Þ

�
þ k
�

� iqrc
k

�
ðr sin hV Þ

�
þ ðaþ bþ cÞ of

or

ð25Þ

ð2k þ iqjrÞB ¼ �1

r sin h
o

or
cðlþ kÞ

k
E2ðr sin hV Þ

�
þ k
�

� iqrc
k

�
ðr sin hV Þ

�
þ ðaþ bþ cÞ

r
of
oh

ð26Þ
which are together equivalent to (16). The arbitrary constants that arise in the solutions obtained
can be determined through the hyperstick boundary conditions, which mean that
V ðr; hÞ ¼ X1r sin h on r ¼ a

¼ X2r sin h on r ¼ b ð27Þ
and
ð�tÞBoundary ¼
1

2
curl ð�qBoundaryÞ ð28Þ

Aðr; hÞ ¼ X1 cos h on r ¼ a

¼ X2 cos h on r ¼ b ð29Þ

Bðr; hÞ ¼ �X1 sin h on r ¼ a

¼ �X2 sin h on r ¼ b ð30Þ
3. Solution of the problem

Using the method of separation of variables, the solution of (18) is seen to be
f ðr; hÞ ¼ Ar�1=2I3=2ðprÞ
�

þ Br�1=2K3=2ðprÞ
�
cos h ð31Þ
The solution of Eq. (23) can be obtained by superposing the solutions of
ðE2 � a2Þðr sin hV Þ ¼ 0

ðE2 � b2Þðr sin hV Þ ¼ 0
ð32Þ
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and hence using again the method of separation of variables, we see that
V ðr; hÞ ¼ r�1=2 CI3=2ðarÞ
�

þ DK3=2ðarÞ þ EI3=2ðbrÞ þ FK3=2ðbrÞ
�
sin h ð33Þ
The constants A;B;C;D;E; F that appear in (31) and (33) are arbitrary constants to be determined
using the boundary conditions (27), (29), (30). Using the expressions of ‘f ’ and ‘V ’ of (31) and (33)
in (25) and (26), we get
ð2k þ iqjrÞA ¼ ða
	

þ bþ cÞ A
�	
� 2r�3=2I3=2ðprÞ þ pr�1=2I1=2ðprÞ

�
þ B

�
� 2r�3=2K3=2ðprÞ

� pr�1=2K1=2ðprÞ
�


þ 2 Aa Cr�3=2I3=2ðarÞ
�	

þ Dr�3=2K3=2ðarÞ
�

þ Ab Er�3=2I3=2ðbrÞ
�

þ Fr�3=2K3=2ðbrÞ
�



cos h ð34Þ

ð2k þ iqjrÞB ¼ ða
n

þ bþ cÞ Ar�3=2I3=2ðprÞ
�

þ Br�3=2K3=2ðprÞ
�
þ Aa C r�3=2I3=2ðarÞ

�n
� r�1=2aI1=2ðarÞ

�
þ D r�3=2K3=2ðarÞ

h
þ r�1=2aK1=2ðarÞ

io
þ Ab E r�3=2I3=2ðbrÞ

�n
� r�1=2bI1=2ðbrÞ

�
þ F r�3=2K3=2ðbrÞ

�
þ r�1=2bK1=2ðbrÞ

�oo
sin h ð35Þ
where
Aa ¼
cðlþ kÞa2 þ k2 � iqrc

a2kð2k þ iqjrÞ

Ab ¼
cðlþ kÞb2 þ k2 � iqrc

a2kð2k þ iqjrÞ

ð36Þ
4. Determination of arbitrary constants

Before proceeding to determine the arbitrary constants, let us introduce the nondimensional-
ization scheme, r ¼ a~r, V ¼ aX1

eV , A ¼ X1
~A, B ¼ X1

eB and later drop the tildes. The boundary
conditions (27), (29), (30) take the nondimensional formv
V ðr; hÞ ¼ r sin h on r ¼ 1 ð37Þ

V ðr; hÞ ¼ Xr sin h on r ¼ g ð38Þ

Aðr; hÞ ¼ cos h on r ¼ 1 ð39Þ

Aðr; hÞ ¼ X cos h on r ¼ g ð40Þ

Bðr; hÞ ¼ � sin h on r ¼ 1 ð41Þ

Bðr; hÞ ¼ �X sin h on r ¼ g ð42Þ

where g ¼ b

a and X ¼ X2

X1
.

The expressions for V ðr; hÞ, Aðr; hÞ and Bðr; hÞ are given by
V ðr; hÞ ¼ r�1=2 CI3=2ðarÞ
�

þ DK3=2ðarÞ þ EI3=2ðbrÞ þ FK3=2ðbrÞ
�
sin h ð43Þ
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A ¼
�
� 1

p2
A
�	
� 2r�3=2I3=2ðprÞ þ pr�1=2I1=2ðprÞ

�
þ B

�
� 2r�3=2K3=2ðprÞ

� pr�1=2K1=2ðprÞ
�


þ 2 Aa Cr�3=2I3=2ðarÞ
�	

þ Dr�3=2K3=2ðarÞ
�
þ Ab Er�3=2I3=2ðbrÞ

�
þ Fr�3=2K3=2ðbrÞ

�
�
cos h ð44Þ

B ¼
�
� 1

p2
Ar�3=2I3=2ðprÞ
�

þ Br�3=2K3=2ðprÞ
�
þ Aa C r�3=2I3=2ðarÞ

�	
� r�1=2aI1=2ðarÞ

�
þ D r�3=2K3=2ðarÞ

�
þ r�1=2aK1=2ðarÞ

�

þ Ab E r�3=2I3=2ðbrÞ

�	
� r�1=2bI1=2ðbrÞ

�
þ F r�3=2K3=2ðbrÞ

�
þ r�1=2bK1=2ðbrÞ

�
�
sin h ð45Þ
Hence the conditions (37)–(42) on (43)–(45) give rise to the following 6 · 6 system of linear
equations for the determination of the arbitrary constants A;B;C;D;E; F .
MX ¼ N ð46Þ
where the elements of the matrix M are given below:
M11 ¼ M12 ¼ M21 ¼ M22 ¼ 0

M23 ¼ g�3=2I3=2ðagÞ; M24 ¼ g�3=2K3=2ðagÞ
M25 ¼ g�3=2I3=2ðbgÞ; M26 ¼ g�3=2K3=2ðbgÞ
ðM13;M14;M15;M16Þ ¼ ðM23;M24;M25;M26Þ with g ¼ 1:

M41 ¼ � 1

p2
�
� 2g�3=2I3=2ðpgÞ þ pg�1=2I1=2ðpgÞ

�
M42 ¼ � 1

p2
�
� 2g�3=2K3=2ðpgÞ � pg�1=2K1=2ðpgÞ

�
M43 ¼ 2Aag

�3=2I3=2ðagÞ; M44 ¼ 2Aag
�3=2K3=2ðagÞ

M45 ¼ 2Abg
�3=2I3=2ðbgÞ; M46 ¼ 2Abg

�3=2K3=2ðbgÞ
ðM31;M32;M33;M34;M35;M36Þ ¼ ðM41;M42;M43;M44;M45;M46Þ with g ¼ 1:

M61 ¼ � 1

p2
g�3=2I3=2ðpgÞ
� �

; M62 ¼ � 1

p2
g�3=2K3=2ðpgÞ
� �

M63 ¼ Aa g�3=2I3=2ðagÞ
�

� ag�1=2I1=2ðagÞ
�

M64 ¼ Aa g�3=2K3=2ðagÞ
�

þ ag�1=2K1=2ðagÞ
�

M65 ¼ Ab g�3=2I3=2ðbgÞ
�

� bg�1=2I1=2ðbgÞ
�

M66 ¼ Ab g�3=2K3=2ðbgÞ
�

� bg�1=2K1=2ðbgÞ
�

ðM51;M52;M53;M54;M55;M56Þ ¼ ðM61;M62;M63;M64;M65;M66Þ with g ¼ 1:

ð47Þ
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Further
X ¼ ½A;B;C;D;E; F �T

N ¼ ½1;X; 1;X;�1;�X�T:
The constants A;B;C;D;E; F can be readily determined. The expressions for these are not
explicitly written as they can be obtained in a straight forward manner, of course, through cal-
culation.
5. Stress and couple stress components

The components of the stress tensor tij are given by
trr ¼ thh ¼ t// ¼ �p

trh ¼ thr ¼ 0

tr/ ¼ l
oV
or

� ðlþ kÞ V
r
þ kB

t/r ¼ ðlþ kÞ oV
or

� l
V
r
� kB

th/ ¼ l
r
oV
oh

� ðlþ kÞ V cot h
r

� kA

t/h ¼
ðlþ kÞ

r
oV
oh

� l
V cot h

r
þ kA

ð48Þ
and the components of couple stress tensor are seen to be
mrr ¼ af þ ðbþ cÞ oA
or

mhh ¼ af þ ðbþ cÞ 1

r
oB

oh

�
þA

r

�

m// ¼ af þ ðbþ cÞ A

r

�
þ cot h

r
B

�

mrh ¼ b
1

r
oA

oh

�
�B

r

�
þ c

oB

or

mhr ¼ b
oB

or
þ c

1

r
oA

oh

�
�B

r

�
mr/ ¼ m/r ¼ mh/ ¼ m/h ¼ 0

ð49Þ



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4
Pl

K

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 1. Variation of K w.r.t. Pl (inner sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.3.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4
Pl

K'

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 2. Variation of K 0 w.r.t. Pl (inner sphere) for Pa ¼ 3.5, Pt ¼ 0.8, Pg¼ 0.3.

T.K.V. Iyengar, V. Geetha Vani / International Journal of Engineering Science 42 (2004) 1035–1059 1043
These can be put in nondimensional form using
tr/ ¼ lX1~tr/; th/ ¼ lX1~th/ etc:
mrr ¼ X1

c
a
~mrr; mrh ¼ X1

c
a
~mrh etc
where ~tr/;~th/; . . . ; ~mrr; ~mrh; . . . are nondimensional quantities (We shall drop the tildes later).
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6. Calculation of the couple acting on the spheres

The couple acting on the inner sphere/outer sphere has contributions both from the surface
stress tensor and couple stress tensor.

The contribution of the surface stress tensor to the couple is given by
NS ¼
Z

�r � ð�n : tÞ � K ds ð50Þ
where
�r ¼ aer; ð�n : tÞ ¼ trr �er þ trheh þ tr/e/
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and K is the unit vector in the direction of the axis of rotation and the integral is taken over the
surface of the boundary.

We find that
NS ¼ 2pa3
Z p

0

ðtr/Þ sin2 hdh ð51Þ
in dimensional form where the integrand is calculated on r ¼ a or r ¼ b as the case may be. The
contribution of the couple stress tensor to the couple is given by
NC ¼
Z

ð�n : mÞ � K ds ð52Þ



0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4
Pl

K

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 7. Variation of K w.r.t. Pl (inner sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.5.

0

1

2

3

4

5

6

0 1 2 3 4
Pl

K'

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 8. Variation of K 0 w.r.t. Pl (inner sphere) for Pa¼ 3.5 Pt¼ 0.8, Pg¼ 0.5.

1046 T.K.V. Iyengar, V. Geetha Vani / International Journal of Engineering Science 42 (2004) 1035–1059
where
ð�n : mÞ ¼ mrrer þ mrheh þ mr/e/
and this is seen to be
2pa2
Z p

0

ðmrr cos h� mrh sin hÞ sin hdh
where the integrand is calculated on r ¼ a or r ¼ b as the case may be.
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It is interesting to see that, in nondimensional form
mrr ¼
ðaþ bþ cÞ

c
f ðr; hÞ ð53Þ
on r ¼ 1 and r ¼ g.
Further
mrh ¼
oB
or

� �
ð54Þ
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and on r ¼ 1 and on r ¼ g, it takes the delightfully simple form
mrh ¼ gðr; hÞ: ð55Þ
6.1. Couple acting on the inner sphere

The nondimensional NS on the inner sphere r ¼ 1 is seen to be
NS ¼ � 4

3

3lþ 2k
l

� ��
� a CI1=2ðaÞ

�
� DK1=2ðaÞ

�
� b EI1=2ðbÞ

�
� FK1=2ðbÞ

��
eirt ð56Þ
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Fig. 13. Variation of K w.r.t. Pt (inner sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 1.5.
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Fig. 14. Variation of K 0 w.r.t. Pt (inner sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 1.5.
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The nondimensional NC on the inner sphere r ¼ 1 is seen to be
NC ¼ 2

3

aþ bþ c
c

� �
AI3=2ðpÞ
�

þ BK3=2ðpÞ
�
� 4

3

iqra2

k

� �
þ 4

3

lþ k
k

� �
a2 CI3=2ðaÞ
�	

þ DK3=2ðaÞ
�
þ b2 EI3=2ðbÞ

�
þ FK3=2ðbÞ

�

eirt ð57Þ
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Fig. 15. Variation of K w.r.t. Pt (inner sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 2.5.

0

1

2

3

4

5

6

0 1 2 3 4
Pt

K'

Pa = 1.5

Pa = 2.5

Pa = 3.5

Newtonian

Fig. 16. Variation of K 0 w.r.t. Pt (inner sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 2.5.
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Hence the total couple on the inner sphere is seen to be
N ¼ NS þ NC

¼ � 4

3

3lþ 2k
l

� ��
� a CI1=2ðaÞ

�
� DK1=2ðaÞ

�
� b EI1=2ðbÞ

�
� FK1=2ðbÞ

��

þ 2

3

aþ bþ c
c

� �
AI3=2ðpÞ
�

þ BK3=2ðpÞ
�
� 4

3

iqra2

k

� �
þ 4

3

lþ k
k

� �
a2 CI3=2ðaÞ
�	

þ DK3=2ðaÞ
�
þ b2 EI3=2ðbÞ

�
þ FK3=2ðbÞ

�

eirt ð58Þ
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Fig. 1*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.3.
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Fig. 2*. Variation of K 0 w.r.t. Pl (outer sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.3.
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6.2. Couple acting on the outer sphere

The nondimensional NS on the outer sphere r ¼ g is seen to be
NS ¼
�
� 4

3

3lþ 2k
l

� �
Xþ 4

3
g�1=2 a CI1=2ðaÞ

��
� DK1=2ðaÞ

�
� b EI1=2ðbÞ

�
� FK1=2ðbÞ

���
eirt

ð59Þ
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Fig. 3*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 2.5, Pt¼ 0.8, Pg¼ 0.5.
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Fig. 4*. Variation of K 0 w.r.t. Pl (outer sphere) for Pa ¼ 2.5 Pt ¼ 0.8 Pg ¼ 0.5.
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The nondimensional NC on the outer sphere r ¼ g is seen to be
NC ¼ � 4

3

iqra2 � ðlþ kÞa2
k

� �
Xþ 4

3

aþ bþ c
c

� �
Ag�1=2I3=2ðpgÞ
�

þ Bg�1=2K3=2ðpgÞ
�

þ 4

3

lþ k
k

� �
b2
�	

� a2
�
Eg�1=2I3=2ðbgÞ
�

þ FK3=2ðbgÞ
�

eirt ð60Þ
Hence the total couple on the outer sphere is seen to be
N ¼ NS þ NC ð61Þ
and this can be simplified as in the earlier case. As g ! 1 and X ¼ 0, the above expression re-
duces to the expression for the couple on a single sphere performing rotary oscillations as seen in
[4] by Lakshmana Rao and Bhujanga Rao with the present hyperstick boundary conditions.



0

5

10

15

20

25

30

35

40

45

0 1 2 3 4
Pl

K

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 5*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 1.5, Pt¼ 0.8, Pg¼ 0.5.
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6.3. Newtonian fluid

If the fluid is Newtonian, the velocity component V can be determined from the equation
iqrV ðr; hÞ ¼ l
r sin h

E2ðr sin hV Þ ð62Þ
which is Eq. corresponding to (15) with k ¼ 0. Eq. (16) does not obviously arise in this case. The
above Eq. (62) can be written as
E2

�
� iqr

l

�
ðr sin hV Þ ¼ 0 ð63Þ
This can be obtained from (22) by taking c ¼ 0 and allowing k tend to zero.
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Fig. 7*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.5.
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Fig. 8*. Variation of K 0 w.r.t. Pl (outer sphere) for Pa¼ 3.5, Pt¼ 0.8, Pg¼ 0.5.
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Defining
V ¼ aX1
eV ; r ¼ a~r ð64Þ
and dropping tildes later we have the nondimensional equation
ðE2 � q2Þðr sin hV Þ ¼ 0 ð65Þ
where V is to satisfy the boundary conditions (37) and (38). Solving (65) we get
V ðr; hÞ ¼ r�1=2 CI3=2ðqrÞ
�

þ DK3=2ðqrÞ
�
sin h ð66Þ
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Fig. 9*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 1.5, Pt¼ 0.8, Pg¼ 0.5.
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Fig. 10*. Variation of K 0 w.r.t. Pl (outer sphere) for Pa¼ 1.5, Pt¼ 0.8, Pg¼ 0.3.
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where
C ¼
g�3=2K3=2ðqgÞ � XK3=2ðqÞ
� �

Den
ð67Þ

D ¼
XI3=2ðqÞ � g�3=2I3=2ðqgÞ
� �

Den
ð68Þ

Den ¼ g�3=2 I3=2ðqÞK3=2ðqgÞ
�

� K3=2ðqÞI3=2ðqgÞ
�

ð69Þ
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Fig. 11*. Variation of K w.r.t. Pl (outer sphere) for Pa¼ 2.5, Pt¼ 0.8, Pg¼ 0.3.

0

2

4

6

8

10

12

14

16

0 1 2 3 4
Pl 

K'

Pj = 1.5

Pj = 2.5

Pj = 3.5

Fig. 12*. Variation of K 0 w.r.t. Pl (outer sphere) for Pa¼ 2.5, Pt¼ 0.8, Pg¼ 0.3.
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and
q2 ¼ iqra2

l
ð70Þ
Proceeding as before, the couple on the inner sphere is seen to be
Ninner ¼ �4þ 4

3
q CI1=2ðqÞ
�

� DK1=2ðqÞ
�
eirt ð71Þ
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Fig. 13*. Variation of K w.r.t. Pt (outer sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 1.5.
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Fig. 14*. Variation of K 0 w.r.t. Pt (outer sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 1.5.
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and the couple on the outer sphere is seen to be
Nouter ¼ �4Xþ 4

3
g�1=2q CI1=2ðqgÞ

�
� DK1=2ðqgÞ

�
eirt ð72Þ
6.4. Numerical work

The expressions for the couple on the inner and outer spheres (given in (58) and (61) for the
micropolar case and (70) and (71) for the Newtonian case) are all expressed in the form
ð�K þ iK 0Þeirt ð73Þ
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Fig. 15*. Variation of K w.r.t. Pt (outer sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 2.5.
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Fig. 16*. Variation of K 0 w.r.t. Pt (outer sphere) for Pl¼ 0.2, Pg¼ 0.3, Pj¼ 2.5.
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The couple parameters K and K 0 are evaluated for diverse values of
fp ¼
qra2

lþ k
; mp ¼

k
lþ k

Pj ¼ jðlþ kÞ
c

; k2 ¼ kð2lþ kÞa2
cðlþ kÞ ; Pg ¼ c

ðaþ bþ cÞ

ð74Þ
Pt, Pl, Pg, Pj, Pa in Figs. 1–16 and (1*)–(16*) respectively stand for fp, k
2, Pg, Pj and ð1=mpÞ. The

values of the parameters considered are indicated on the figures. Figs. 1, 3, 5, 7, 9, 11 indicate the
variation of K on the inner sphere with respect to Pl and for a fixed set of values of Pa, Pt, Pg with
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Pj varying. Figs. 2, 4, 6, 8, 10, 12 depict the variation of K 0 on the inner sphere. Figs. 13–16
indicate the variation of K and K 0 on the inner sphere with respect to the frequency parameter Pt
and a fixed set of values of Pl, Pg and Pj with Pa varying.Figs. (1*)–(16*) concern the couple
parameters K and K 0 on the outer sphere.

For a fixed Pa, Pg, Pt and Pj as k increases, the parameter K increases initially but decreases
subsequently. Irrespective of other parameters, for large k the difference in K’s seems to be
decreasing. The couple parameter K 0 decreases as k increases for fixed values of other parameters.
This trend is seen even with respect to the couple parameters K and K 0 on the outer sphere. As the
gyration parameter Pj increases the parameters K and K 0 are both increasing. As k tends to zero,
i.e. as Pa ! 1, the fluid tends to be Newtonian. The graphs 13–16 indicate that, as k tends to
zero, i.e. as the fluid tends to become Newtonian, the parameter K increases while the parameter
K 0 steadily decreases.
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