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Abstract

In this paper we examine the flow of an incompressible micropolar fluid between two concentric spheres,
generated by their rotary oscillations about a common diameter. The spheres are assumed to be oscillating
with the same amplitude but with different angular speeds. The speeds of oscillation are assumed to be small
so that the nonlinear terms in the equations of motion can be neglected under the usual Stokesian
assumption. The analytical expressions for velocity and microrotation components are determined in terms
of modified Bessel functions of first and second kind. The couples experienced by the inner and outer
spheres are calculated and are expressed in terms of two real parameters K and K’ whose variation is studied
numerically. The variations of K and K’ with respect to micropolarity parameter and frequency parameter
are displayed graphically.
© 2004 Published by Elsevier Ltd.

1. Introduction

The study of micropolar fluids initiated by Eringen [1] is a general microcontinuum approach in
which microrotational effects are present and surface and body couples are permitted. The theory
involves two basic and independent kinematical vector fields viz., the velocity vector representing
the translational velocity of the fluid particles and the microrotation vector representing the
angular velocity of the particles. Rigid particles contained in a small volume element can rotate
about the centroid of the volume element and the microrotation vector describes this rotation in
an average sence. This is a local rotation of the particles and is an addition to the usual rigid body
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motion of the entire volume element. This theory of micropolar fluids is a special case of the
theory of simple microfluids [2] introduced by Eringen himself.

Ever since the theory of micropolar fluids appeared, several workers attempted diverse fluid
flow problems concerning these fluids. One interesting class of problems that attracted the
attention of researchers is constituted by the axisymmetric flow problems in micropolar fluids.
Lakshmana Rao et al. [3,4], Lakshmana Rao and Bhujanga Rao [5], have dealt with axisymmetric
micropolar fluids in sphere geometry. Lakshmana Rao and Iyengar discussed the micropolar fluid
flow problems concerning spheroids [6-9]. Iyengar and Srinivasacharya have discussed the flow
problems involving near sphere [10,11]. Ramkissoon and Majumdar derived an elegant formula
for the drag on an axially symmetric body in the Stokes flow of a micropolar fluid [12]. While
Ramkissoon derived a formula for the couple on an axially symmetric body slowly rotating about
its axis of symmetry [13], recently Srinivasa charya and Iyengar derived a formula for the drag on
an axisymmetric body performing rectilinear oscillations along its axis of symmetry in an
incompressible micropolar fluid medium [14]. These authors have also discussed the rotary
oscillations of an approximate sphere in an incompressible micropolar fluid [15]. In all these
problems, the thrust of investigation has been to obtain the drag or couple (as the case may be) on
the body under consideration.

In this paper we consider an incompressible micropolar fluid present in the region between two
concentric spheres (r = a, r = b, a < b). Let the inner sphere and outer sphere perform rotary
oscillations with the same frequency, but with different angular speeds 2, and €2, about a common
diameter. We assume Q; and 2, to be small so that the nonlinear terms and gyroinertial terms can
be neglected from the equations governing the flow under the usual Stokesian approximation. The
expressions for the velocity component and the two microrotation components are obtained
under the hyperstick conditions on the boundary. The stress and couple stress components are
calculated on the inner and outer sphere and these are expressed in terms of two parameters K and
K'. The numerical variation of these parameters is studied for diverse values of the micropolarity,
gyrorotation and frequency parameters through figures.

2. Basic equations and formulation of the problem
The field equations governing an incompressible micropolar fluid flow are [1],

op

2+ div(pg) = 0 (1)
dg - _ _ o

P = pf —grad p+k curl v — (p+ k) curl curl g + (4 +2u + k) grad (div q) (2)
do - _ _ _ o

Pig = pl —2kv+ k curl g — vy curl curl v+ («+ f +y) grad (div v) (3)

in which g, v are velocity and microrotation vectors, f, / are body force per unit mass, body couple
per unit mass respectively and p is the fluid pressure at any point. p and ;j are the density of the
fluid and gyration parameters respectively and are assumed to be constants. The material con-
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stants (4, i, k) are viscosity coefficients and («, f3, y) are gyroviscosity coefficients. These constants
confirm to the inequalities,

k=20, 2u+k=0, 34, +2u+k=0 )
y=0, |Bl<y, 30+p+y=0

The stress tensor ¢; and the couple stress tensor m;; are given by
t[j - (_p + ;Ll + le @5,, + (2/1 + k)eij + kgijm(wm - Dm) (5)
mi; = OC(diV 6)5,']‘ + ﬂl),',j + VUi (6)

in which the symbols p, ¢;;, e;;, w,, v, and v;; have their usual meanings.

Consider the concentric spheres with radii ‘a’ and ‘b’ (a < b). Let (r, 0, ¢) be a spherical polar
coordinate system with the common centre of the spheres as the origin. Let the region a <r < b
be filled by an incompressible micropolar fluid and the spheres » = @ and r = b perform rotary
oscillations with small angular speeds 2, and 2, about the common diameter (0 = 0) with the
same amplitude of oscillation ¢. The fluid flow generated is axially symmetric and the field
variables will be independent of ¢. We choose the field vectors g, v in the form

g =V(r,0)eze" (7)
b= (/(r,0)e + B(r,0)eg) e (8)

Assuming that the flow is Stokesian, we neglect the nonlinear terms in the equations of motion
and hence the field equations (1)—(3) simplify to

divg=0 9)
og _ _

Pa = —grad p+k curl b — (u+ k) curl curl g (10)
0D _ _ _ .

Pig, = —2kv + k curl g — y curl curl o+ (¢ + f + y)grad div v (11)

Defining the functions f(r, 0) and g(r, 0) through

div v = f(r, 0) (12)

iot

curl v = g(r,0)e""e, (13)

Egs. (7)—(13) lead to

dp p
&_65_0 (14)
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- _ (Ltk) o
lpO'V(V, 0) = kg+mE (rSln HV) (15)
(2k +ipjo) (L (r,0)e,B(r,0)ey) = L © [rsinO(kV — yg)e,] — —— ° [rsin O(kV — yg)eg]
PR r2sin 0 00 " rsinf or
of _ l1of_
where
% coth 0 1 &
2 _ Y 22 17
E or? 2 00 +r2 00> (17)
Further we note that
(V2 =p))f =0 (18)
where
2 s
2 _ a2k +ipjo) (19)

o+ p+y
and

*? 20 1 2 cotf 0
2 O 29, O 09 20
v 6r2+r6r+r2 602+ 2 00 (20)

From (16) we get

.. kQu+k) —ipo Yoo, .
_ v E2(rsin OV 21
[W” p+k ]g G0 Frsingt rsin0”) 1)

Eliminating ‘g’ from (15) and (21) we get

y(u+K)E(rsin OV) — [k(2u+ k) +ipa(y + j(u + k)] E*(rsin 0V)
+ipa(2k +ipjo)(rsin0V) =0 (22)

As in [4], this can be rewritten in the form

(E* — o?)(E* — B*)(rsin0¥) =0 (23)

2, g kCut k) +ipo(y +j(n+ k)]
©rh= P+ k)



T.K. V. Iyengar, V. Geetha Vani | International Journal of Engineering Science 42 (2004) 1035-1059 1039

O(Zﬁz — lpO'(Zk + lpJO') a4 (24)
(i + k)

Egs. (18) and (23) enable us to determine f and V' respectively. We can determine the microro-
tation components o7, # through the equations

. 1 9 k ) I . 0
(2k +ipjo)od = S50 [V(M;’ )E2(rsln ov) + (k — m%) (rsin BV)] + (a+ [H—y)a'—{
(25)
. -1 0 k ) i . 0
(2k +1ipjo) B = il o [y(u: )Ez(rsmGV) + <k_1/070’7)>( sm(JV)] +w a_/;
(26)

which are together equivalent to (16). The arbitrary constants that arise in the solutions obtained
can be determined through the hyperstick boundary conditions, which mean that

V(r,0) = Qrsinf on r=a
=Qrsinfonr==~ (27)

and

_ 1 _
(D)Boundary = icurl (QBoundary) (28)

A(r,0) =Q,cosOonr=a
=Qcosonr=>b (29)

B(r,0) =—-Q;sinlonr=a
=—sinfonr=> (30)

3. Solution of the problem
Using the method of separation of variables, the solution of (18) is seen to be
f(}", 9) = [A}"il/zlg/z(p}") + BV71/2K3/2(pI")] cos 0 (31)

The solution of Eq. (23) can be obtained by superposing the solutions of

(E* — o*)(rsin0V) = 0

(E* — B*)(rsin0V) =0 (32)
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and hence using again the method of separation of variables, we see that
V(r,0) = r'*[CL(ar) + DK3)p(ar) 4+ EL o (Br) + FK32(Br)] sin 0 (33)

The constants 4, B, C, D, E, F that appear in (31) and (33) are arbitrary constants to be determined
using the boundary conditions (27), (29), (30). Using the expressions of ‘f/” and ‘7 of (31) and (33)
in (25) and (26), we get

(2k + lp‘]O')J?/ = {(OC + ﬁ + '))){A [ — 2]"_3/2]3/2(]71") + pr_l/zll/z(pr)} + B[ — 2r_3/2K3/2(pr)

- pr_l/zKl/z(pr)]} + 2{A“ [Cr_3/213/2(ocr) + Dr_3/2K3/2(ocr)}

+ Alg [El"_3/213/2(ﬁ}") + FV_3/2K3/2(ﬂI")] }} cosf (34)
Qkﬁm@@:{w+ﬁ+nufw%ﬂ@q+&ﬁﬂmmyﬂ+A{cyw%ﬂ()

— ril/zocll/z(ocr)] + D[r*3/2K3/2(ocr) + ril/zocKl/z ocr)} } +Aﬁ{ 3/2[3/2(ﬁr)

= VB ()] + F K (Br) + 2 BK ()] } } sin 6 (33)
where
Mt ke + 1 —ipoy
* a*k(2k +ipjo) (36)
et + k) + Kk —ipoy
p= a’k(2k + ipjo)

4. Determination of arbitrary constants

Before proceeding to determine the arbitrary constants, let us introduce the nondimensional-
ization scheme, r = a7, V =aQ\V, of = Q.o/, # = Q% and later drop the tildes. The boundary
conditions (27), (29), (30) take the nondimensional formv

V(r,0) =rsinf on r =1 (37)
V(r,0) =Qrsinf onr=n (38)
A(r,0) =cosf on r =1 (39)
A(r,0) = Qcosf onr=n (40)
B(r,0) = —sinf on r =1 (41)

B(r,0) = -Q sin9 onr=y (42)

where n =2and Q =

The expressmns for V(r 0), /(r,0) and %(r,0) are given by

V(l"7 0) = V_l/z [CI3/2(OC}") + DK3/2(OCF) -+ E[3/2(ﬁl") + FK3/2(ﬂV)] sin 0 (43)
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1
= { —; {A [ — 2}’73/213/2077‘) + pl"il/zll/z(pl")] + B[ — 27‘73/21{3/2@}”)
— p}"il/zKl/z(pV)] } + 2{Aa [C?‘73/2]3/2(OC}") + D}"73/2K3/2(OCV>] + Aﬂ [EF73/213/2(ﬁV)

+ Fr K (Br)] }} cos 0 (44)

1
B = { —? (A}"73/2]3/2(p7‘) + 37‘73/2]{3/2([71")) —|—A1{C(7‘73/2]3/2(OU’) — 1”71/20([1/2(061"))
+ D(F73/2K3/2(OCF) + I"il/ZOCKl/z(OC}"))} + A/j{E(7’73/213/2(ﬁ1") — Vﬁl/zﬁll/z(ﬁ}"))

"‘F(l"73/2K3/2(ﬁ7‘) +rl/2ﬁK1/2(ﬁr))}}sin0 (45)

Hence the conditions (37)—(42) on (43)-(45) give rise to the following 6x6 system of linear
equations for the determination of the arbitrary constants 4,B,C, D, E, F.

MX =N (46)

where the elements of the matrix M are given below:

My =My =My =My =0

My =0 PLp(om), Moy =~ Ksp(am)

Mos =P Lp(Bn),  Mas = 1Kz ()
(M3, Mya, Mys, M) = (Ma3, Moy, Ms, Mys) with n = 1.

1 _ _
My, = > [ = 207255 (pn) + pn "1 2 (pn)]

1
My = —; [— 27773/21{3/2(]7’7) - P’fl/zKl/Z(P")]
My = 2Aa’773/213/2(0”7)5 My = 2Aa;773/2K3/2(OU7)
Mys =240 L (Bn),  Mas = 245m K3 2(Bn)
(M31, M3y, M33, M4, M35, M) = (May, May, Maz, Mg, Mys, Mys) with n = 1.
1, 1. _
; [’7 3/213/2([7’7)], Ms, = —? [Vl 3/2K3/2(P’7)}
Mgy = Ay [P Ly (om) — o™ 21 (o)
M64 = [ 3/ Ko (o) + o~ ]/2K1/2(°"7)]

Mg = —

s[5 (Bn) — B~ 1/211/2(ﬁﬂ)]

g [ 7Kz 0 (Bn) — B 2K 2 (Bn)]
(MSI7M527M537M547M557M56) = (Mg1, Me>, M3, Mo, Mos, Mgs) With n = 1.
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Further

= [4,B,C,D,E,F]"

=[1,0,1,2,-1,-9]".

The constants A,B,C,D,E,F can be readily determined. The expressions for these are not
explicitly written as they can be obtained in a straight forward manner, of course, through cal-

culation.
5. Stress and couple stress components
The components of the stress tensor #; are given by
Ly = tgg = lpp = —P
trﬁ == tﬁr == O

oV 4
tr¢=M§—(u+k);+k%’

o= DS ik (49)
,
Vot
BTN
k) oV Vcotf
l¢9:(ﬂ+ )——,U €0 + kot
r 00 r

and the components of couple stress tensor are seen to be

0./
my = of +(B+7) 7
mgg—OCf+ ﬁ+ <_a—‘@+%>

to
m¢¢—ocf+ ﬁ+ < +&,@>
(1o 2y,
o = r 00 7 V@r

Q2 (107 2
or = or l r 00 r

M.y = My, = Mgy = mgyg = 0

(49)



T.K. V. Iyengar, V. Geetha Vani | International Journal of Engineering Science 42 (2004) 1035-1059 1043

5 -

Fig. 1. Variation of K w.r.t. Pl (inner sphere) for Pa=3.5, Pt=0.8, Pg=0.3.

Fig. 2. Variation of K’ w.r.t. Pl (inner sphere) for Pa = 3.5, Pt = 0.8, Pg=0.3.

These can be put in nondimensional form using
Ly = ,UQerd» tyy = MQIZ()(b etc.

V- Vo
my, = Ql ;mrra myy = Ql ;mr() etc

where 7,4, tyg, - . ., My, Mg, . . . are nondimensional quantities (We shall drop the tildes later).
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Pi=15
K24 /7 X e Pi=25
Pj=35
15
1]
0.5 ]
O T T T

Fig. 3. Variation of K w.r.t. Pl (inner sphere) for Pa=2.5, Pt=0.8, Pg=0.5.

Fig. 4. Variation of K’ w.r.t. Pl (inner sphere) for Pa=2.5, Pt=0.8, Pg=0.5.
6. Calculation of the couple acting on the spheres
The couple acting on the inner sphere/outer sphere has contributions both from the surface

stress tensor and couple stress tensor.
The contribution of the surface stress tensor to the couple is given by

Ns:/rx(n:t)'zds (50)

where

7 = de,, (ﬁ : t) =t + tyey + tzq&%
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Pj=15

-——-Pj=35

———- Pj=15

Fig. 6. Variation of K’ w.r.t. Pl (inner sphere) for Pa=1.5, Pt=0.8, Pg=0.5.

and K is the unit vector in the direction of the axis of rotation and the integral is taken over the
surface of the boundary.
We find that

Ns = 2’ / (1) sin’ 00 (51)
0

in dimensional form where the integrand is calculated on » = a or » = b as the case may be. The
contribution of the couple stress tensor to the couple is given by

NC:/(ﬁ:m)-Eds (52)
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3.5 4

Fig. 7. Variation of K w.r.t. Pl (inner sphere) for Pa=3.5, Pt=0.8, Pg=0.5.

Fig. 8. Variation of K’ w.r.t. Pl (inner sphere) for Pa=3.5 Pt=0.8, Pg=0.5.

where
(ﬁ : m) = mye, + myeg + mr(b%

and this is seen to be
2na’ / (m,, cos 0 — m,gsin 0) sin 0d0
0

where the integrand is calculated on » = a or » = b as the case may be.
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Pj=15

———-Pj=35

P=15

———- Pj=35

Fig. 10. Variation of K’ w.r.t. Pl (inner sphere) for Pa=1.5, Pt=0.8, Pg=0.3.

It is interesting to see that, in nondimensional form

(x+B+7)

My = 7f("7 0)

Y

onr=1and r=n.
Further

(%
o = or

1047

(53)



1048 T.K V. Iyengar, V. Geetha Vani | International Journal of Engineering Science 42 (2004) 1035-1059

5

Fig. 11. Variation of K w.r.t. P1 (inner sphere) for Pa=2.5, Pt=0.8, Pg=0.3.

Pi=15

------- Pj=25

———-Pj=35

0.5

Fig. 12. Variation of K" w.r.t. Pl (inner sphere) for Pa=2.5, Pt=0.8, Pg=0.3.

and on » = 1 and on r = 1, it takes the delightfully simple form
m,y = g(r,0).
6.1. Couple acting on the inner sphere

The nondimensional Ng on the inner sphere » = 1 is seen to be

4 (3u+2k iot
M= =3 { [P | = alcnnton - D] - BlERA(S) ~ 1a(8)] fe

(56)
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34
25 = LTI — DI
24
----- Pa=15
— - —.Pa=25
K 1.5
Pa=35
— Newtonian
14
0.5
0 T T T 1
0 1 2 3 4

Fig. 13. Variation of K w.r.t. Pt (inner sphere) for P1=0.2, Pg=0.3, Pj=1.5.

Newtonian

Fig. 14. Variation of K’ w.r.t. Pt (inner sphere) for P1=0.2, Pg=0.3, Pj=1.5.

The nondimensional Nc on the inner sphere » = 1 is seen to be

Ne = % (%ﬁﬂ) [AL2(p) + BK32(p)] —g (ipza2> +g (’%ﬂc) {2[Cls ()

+ DK (2)] + B*[EL 2 (B) + FK30(B)] }e' (57)
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4_
3.5 \
3_
2.5—1 ------- Pa=15
—-—--Pa=25
K 24
________ - . _ Pa=35
L ——. Newtonian
1_
0.5 o
0 T T T 1
0 1 2 3 4

Fig. 15. Variation of K w.r.t. Pt (inner sphere) for PI=0.2, Pg=0.3, Pj=2.5.

6_
5_
4 L. -
D LR Pa=15
.- .-
LT /./ —-—--Pa=25
K' 3 .7 -
T P Pa=35
s -
- .- Newtonian
2 -
-
-
-
-
1"
0 T T T 1
0 1 2 3 4
Pt

Fig. 16. Variation of K’ w.r.t. Pt (inner sphere) for P1=0.2, Pg=0.3, Pj=2.5.

Hence the total couple on the inner sphere is seen to be

N - NS +NC
__ % { [3“ : 2k ] — &[Cl>(2) — DKy j2(2)] — BED2(B) — FK1 2 ()] }

+§ <HTM> [ALy2(p) + BK3)2(p)] —g (ipza2> +g (uTJrk> {2 [Cly2(a)

+ DKy ()] + B [ELjp(B) + FK32(B)] be' (58)
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35

30 4

25

20 Pi=15
K | et e Pi=25
57 ———-Pj=35

Fig. 1*. Variation of K w.r.t. Pl (outer sphere) for Pa=3.5, Pt=0.8, Pg=0.3.

Fig. 2*. Variation of K’ w.r.t. Pl (outer sphere) for Pa=3.5, Pt=0.8, Pg=0.3.

6.2. Couple acting on the outer sphere

The nondimensional Ns on the outer sphere » = 5 is seen to be

v = { =3 |22 04 S nlcnato) - DKa)] - BlERA(B) — FRB)] b

(59)
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45
40
35

30 4

25

Fig. 3*. Variation of K w.r.t. Pl (outer sphere) for Pa=2.5, Pt=0.8, Pg=0.5.

Fig. 4*. Variation of K’ w.r.t. Pl (outer sphere) for Pa = 2.5 Pt = 0.8 Pg = 0.5.

The nondimensional Nc on the outer sphere » = # is seen to be

4 (ipea* — (u+ k)o? 4 o+ pf+ _ _
Nc:__( et >Q+—<#>W VL2 (pn) + B 2Ky a(pn))

3 k 3

+g <#T+k> {(ﬂz — o) [57’/71/213/2(/377) + FK30(fn)] e

Hence the total couple on the outer sphere is seen to be

N = Ng + N¢

(60)

(61)

and this can be simplified as in the earlier case. As # — oo and Q = 0, the above expression re-
duces to the expression for the couple on a single sphere performing rotary oscillations as seen in
[4] by Lakshmana Rao and Bhujanga Rao with the present hyperstick boundary conditions.
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457
40
35

307

—-——-Pj=15
25

20

Fig. 6*. Variation of K’ w.r.t. Pl (outer sphere) for Pa=1.5, Pt=0.8, Pg=0.5.
6.3. Newtonian fluid

If the fluid is Newtonian, the velocity component /' can be determined from the equation

U
7sin 0

ipaV(r,0) = E*(rsin V) (62)

which is Eq. corresponding to (15) with £ = 0. Eq. (16) does not obviously arise in this case. The
above Eq. (62) can be written as

<E2 - 1'076>( sinfV) =0 (63)

This can be obtained from (22) by taking y = 0 and allowing & tend to zero.
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45 -

40 -

35+

30

25— ———-Pj=15

20

Fig. 7*. Variation of K w.r.t. Pl (outer sphere) for Pa=3.5, Pt=0.8, Pg=0.5.

Fig. 8*. Variation of K’ w.r.t. Pl (outer sphere) for Pa=3.5, Pt=0.8, Pg=0.5.

Defining
V = al I~/, r=ar
and dropping tildes later we have the nondimensional equation
(E* — ¢*)(rsin0¥) =0
where V' is to satisfy the boundary conditions (37) and (38). Solving (65) we get

V(}’, 9) = }"71/2 [CIg/z((]l") + DK}/Q((]I")] sin 0

(64)

(65)

(66)
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30

25

——=—-Pj=15

------- Pj=25

Pj=35

Fig. 9*. Variation of K w.r.t. Pl (outer sphere) for Pa=1.5, Pt=0.8, Pg=0.5.

Fig. 10*. Variation of K’ w.r.t. Pl (outer sphere) for Pa=1.5, Pt=0.8, Pg=0.3.

where
C— [n172Ks2(qn) — QK3)2(q)]
Den
D= [QL2(q) — 0 La(qn)]
Den

Den = ’773/2 [13/2(‘])1{3/2(‘]71) - K3/2(4)13/2(‘]’7)]

1055

(67)

(68)

(69)
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Fig. 11*. Variation of K w.r.t. Pl (outer sphere) for Pa=2.5, Pt=0.8, Pg=0.3.

Fig. 12*. Variation of K’ w.r.t. Pl (outer sphere) for Pa=2.5, Pt=0.8, Pg=0.3.

and

g = ipoa®
u

Proceeding as before, the couple on the inner sphere is seen to be

4 .
]Vinner =—4 + g‘][CIl/Z(‘]) - DKI/Z(q)] ewt
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Fig. 13*. Variation of K w.r.t. Pt (outer sphere) for P1=0.2, Pg=0.3, Pj=1.5.
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Fig. 14*. Variation of K’ w.r.t. Pt (outer sphere) for P1=0.2, Pg=0.3, Pj=1.5.

and the couple on the outer sphere is seen to be

4 4
Novter = —4Q + 577_1/261 [Cll/z(ﬂl’?) - DK1/2(q'/I)] el (72)

6.4. Numerical work

The expressions for the couple on the inner and outer spheres (given in (58) and (61) for the
micropolar case and (70) and (71) for the Newtonian case) are all expressed in the form

(—K +iK')e” (73)
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Fig. 16*. Variation of K’ w.r.t. Pt (outer sphere) for P1=0.2, Pg=0.3, Pj=2.5.

The couple parameters K and K’ are evaluated for diverse values of

f_paaz _k
Pk T ik (74)
. Jjutk) o, kQutk)d y
A2 E I o N7 - A
Y P(u+ k) (x+B+7)

Pt, Pl, Pg, Pj, Pa in Figs. 1-16 and (1*)—(16*) respectively stand for f,, 2°, Pg, Pj and (1/m,). The
values of the parameters considered are indicated on the figures. Figs. 1, 3, 5, 7, 9, 11 indicate the
variation of K on the inner sphere with respect to Pl and for a fixed set of values of Pa, Pt, Pg with
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Pj varying. Figs. 2, 4, 6, 8, 10, 12 depict the variation of K’ on the inner sphere. Figs. 13-16
indicate the variation of K and K’ on the inner sphere with respect to the frequency parameter Pt
and a fixed set of values of Pl, Pg and Pj with Pa varying.Figs. (1¥)-(16*) concern the couple
parameters K and K’ on the outer sphere.

For a fixed Pa, Pg, Pt and Pj as /4 increases, the parameter K increases initially but decreases
subsequently. Irrespective of other parameters, for large /1 the difference in K’s seems to be
decreasing. The couple parameter K’ decreases as 4 increases for fixed values of other parameters.
This trend is seen even with respect to the couple parameters K and K’ on the outer sphere. As the
gyration parameter Pj increases the parameters K and K’ are both increasing. As k tends to zero,
i.e. as Pa — oo, the fluid tends to be Newtonian. The graphs 13-16 indicate that, as £ tends to
zero, i.e. as the fluid tends to become Newtonian, the parameter K increases while the parameter
K’ steadily decreases.
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