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Abstract

The creeping flow of incompressible micropolar fluid past a porous sphere with

permeability k is studied assuming uniform flow far away from the body. The stream

function is determined by matching the solutions of Stokes equations for the flow outside

the sphere with that of the Brinkman equations inside the porous sphere. The drag force

experienced by the sphere is determined. The variation of drag and the streamline pattern

for different values of the permeability parameter (g), the coupling number (N ) and the

micropolar parameter (m) is studied numerically. It is observed that the drag on the

porous sphere, when the fluid is micropolar is more than that of the Newtonian fluid case.

The flow pattern depends on the permeability k as in the case of Newtonian fluid and on

the coupling number (N ) but not on the micropolar parameter (m).
� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The study of uniform flow of fluids around porous bodies involving variety

of geometries has been considered by many researchers using various analytical

and numerical methods, in view of their applications in industry and engi-

neering. Several studies of the flow past and within porous bodies are limited
mainly to low Reynolds numbers. Joseph and Tao [1] examined the flow of an
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incompressible viscous fluid past a porous spherical particle by employing

Darcy�s law in the porous region and no-slip condition at the surface of the
sphere. They found that the drag on the porous sphere is same as that of a rigid

sphere with reduced radius. The flow past a porous circular cylinder using

Darcy�s law for the fluid inside the porous region with Saffman�s boundary

conditions at the surface of the cylinder was studied by Palaniappan et al. [2].

Recently, the flow past and within permeable spheroid was considered by

Vainshtein et al. [3] using Darcy�s law and the continuity of the tangential

velocity component at the boundary of the spheroid. They have examined the

flow past permeable circular disk and elongated rods as limiting cases. To
model the flows with high porosity and large shear rates, Brinkman [4] and

Debye and Beuche [5] independently suggested a modification to Darcy�s
model which is known as Brinkman model. Using this Brinkman model for the

flow inside the porous sphere, Qin and Kaloni [6] obtained a cartesian tensor

solution for the flow of incompressible viscous fluid past a porous sphere.

Hidgdon and Kojima [7] have studied Stokes flow past porous particles using

Brinkman�s equations for the flow inside. They derived some asymptotic results

for small and large permeability by using Green�s function formulation of the
Brinkman�s equation. Zlatonovski [8] has considered the axisymmetric Stokes

flow of an incompressible viscous fluid past a porous prolate spheroidal par-

ticle using the Brinkman model for the flow inside the spheroidal particle.

Srinivasacharya [9] has studied the flow of viscous fluid past and within a

porous approximate sphere and obtained the cases of flow past a porous sphere

and spheroid as special cases.

The model of micropolar fluid introduced by Eringen [10] represents fluids

consisting of rigid, randomly oriented bar like elements or dumbell shaped
molecules and each volume element has microrotation about its centroid, in

addition to its translatory motion in an average sense. Micropolar fluids exhibit

some microscopic effects arising from the local structure and micromotion of

the fluid elements and they can sustain couple stresses. The Stokes flow of

micropolar fluid past a rigid sphere, spheroid and approximate sphere were

considered by Lakshmana Rao and Bhujanga Rao [11], Lakshmana Rao and

Iyengar [12], and Iyengar and Srinivasacharya [13] respectively. Ramkissoon

[14] has studied the flow of micropolar fluid past a Newtonian sphere. The
mathematical theory of equations of Micropolar fluids and applications of

these fluids in the theory of lubrication and in the theory of porous media are

dealt in a recent book by Lukaszewicz [15].

In the present paper, we consider the creeping flow of an incompressible

micropolar fluid past a porous sphere. We have used the Brinkman�s equation
for the flow inside the porous region and Stokes equation for the free flow

region in their stream function formulation. As boundary conditions, conti-

nuity of the velocity, pressure and tangential stresses across the interface and
no spin condition for the microrotation components in both the regions are
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employed. The stream function and pressure, both for the flow inside and

outside the sphere are calculated. The drag force experienced by the sphere is
determined. The flow pattern for various values of micropolar parameters and

permeability parameter is studied.
2. Formulation of the problem

Let ðr; h;/Þ denote a spherical polar coordinate system with ð~er;~eh;~e/Þ as the
corresponding unit base vectors and h1 ¼ 1, h2 ¼ r and h3 ¼ r sin h as the scale

factors. Consider a steady incompressible micropolar fluid flow past a porous

sphere of radius a with a uniform velocity U far away from the body along the

axis of symmetry h ¼ 0. We assume that the flow outside the porous sphere to

be Stokesian and inside to be governed by Brinkman model.

The equations of motion for the region outside the sphere are the equations

governing the steady flow of an incompressible micropolar fluid under
Stokesian assumption with the absence of body force and body couple and are

given by
r �~qð1Þ ¼ 0; ð1Þ

�rpð1Þ þ jr� ~xð1Þ � ðlþ jÞr �r�~qð1Þ ¼ 0; ð2Þ

�2j~xð1Þ þ jr�~qð1Þ � cr�r� ~xð1Þ þ ðaþ bþ cÞrðr � ~xð1ÞÞ ¼ 0: ð3Þ
For the region inside the sphere the equations of the motion are the equa-
tions of motion of the fluid in steady state in the porous medium based on

Brinkman�s model and are given by
r �~qð2Þ ¼ 0; ð4Þ
l
k
~qð2Þ þ rpð2Þ � jr� ~xð2Þ þ ðlþ jÞr �r�~qð2Þ ¼ 0; ð5Þ

�2j~xð2Þ þ jr�~qð2Þ � cr�r� ~xð2Þ þ ðaþ bþ cÞrðr � ~xð2ÞÞ ¼ 0; ð6Þ
where~qð1Þ is the velocity vector, ~xð1Þ is the microrotation vector and pð1Þ is the
fluid pressure outside the sphere, and k is the permeability of the porous me-

dium,~qð2Þ is the velocity vector of the flow, ~xð2Þ is the microrotation vector and

pð2Þ is the pressure inside the sphere. Further, the material constants l, j, a, b,
and c satisfy the following inequalities [10]
2lþ jP 0; jP 0; 3aþ bþ cP 0 cP jbj: ð7Þ
Since the flow generated is axially symmetric, all the flow functions are in-

dependent of /. Hence, for this flow we choose the velocity and microrotation

vectors as
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~qðiÞ ¼ uðiÞðr; hÞ~er þ vðiÞðr; hÞ~eh; ~xðiÞ ¼ mðiÞ/ ðr; hÞ~e/; i ¼ 1; 2: ð8Þ
Introducing the stream function through
uðiÞ ¼ � 1

r2 sin h
owðiÞ

oh
; vðiÞ ¼ 1

r sin h
owðiÞ

or
ð9Þ
the following nondimensional variables
r ¼ a~r; wðiÞ ¼ Ua2wðiÞ; pðiÞ ¼ lU
a

~pðiÞ; mðiÞ/ ¼ U
a
~mðiÞ/ ð10Þ
into the Eqs. (1)–(6) and dropping the tildes, we get the equations for the

region outside the sphere as
� opð1Þ

or
þ N

1� N

� �
1

r2 sin h
o

oh
r sin hmð1Þ/

� �

� 1

1� N

� �
1

r2 sin h
o

oh
ðE2wð1ÞÞ ¼ 0; ð11Þ

� 1

r
opð1Þ

oh
� N

1� N

� �
1

r sin h
o

or
r sin hmð1Þ/

� �

þ 1

1� N

� �
1

r sin h
o

or
ðE2wð1ÞÞ ¼ 0; ð12Þ

�2mð1Þ/ þ 1

r sin h
o

or
ðE2wð1ÞÞ þ 2� N

m2
r2

�
� 1

r2 sin h

�
mð1Þ/ ¼ 0 ð13Þ
and the equations for the region inside the sphere as
� opð2Þ

or
þ N

1� N

� �
1

r2 sin h
o

oh
r sin hmð2Þ/

� �

� 1

1� N

� �
1

r2 sin h
o

oh
ðE2wð2ÞÞ þ g2

1

r2 sin h
owð2Þ

oh
¼ 0; ð14Þ

� 1

r
opð2Þ

oh
� N

1� N

� �
1

r sin h
o

or
r sin hmð2Þ/

� �

þ 1

1� N

� �
1

r sin h
o

or
ðE2wð2ÞÞ � g2

1

r sin h
owð2Þ

or
¼ 0; ð15Þ

�2mð2Þ/ þ 1

r sin h
o

or
ðE2wð2ÞÞ þ 2� N

m2
r2

�
� 1

r2 sin h

�
mð2Þ/ ¼ 0; ð16Þ
where
E2 ¼ o2

or2

�
þ 1

r2
o2

oh2
� cot h

r2
o

oh

�
ð17Þ
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is the Stokes stream function operator, g2 ¼ a2=k, N ¼ j=ðlþ jÞ is the cou-

pling number (06N < 1) and
m2 ¼ jð2lþ jÞ
cðlþ jÞ a2
is the micropolar parameter. As j ! 0 and c ! 0 (i.e. N ! 0 and m ! 1), the
Eqs. (11)–(13) reduce to Navier–Stokes equations and the Eqs. (14)–(16) reduce

to Brinkman equations.

The corresponding boundary conditions (dimensional) [6,7]

1. Continuity of velocity components i.e., uð1Þðr; hÞ ¼ uð2Þðr; hÞ and

vð1Þðr; hÞ ¼ vð2Þðr; hÞ on the boundary r ¼ a.
2. Continuity of pressure i.e., pð1Þðr; hÞ ¼ pð2Þðr; hÞ on the boundary r ¼ a.
3. Continuity of tangential stresses components i.e., sð1Þrh ðr; hÞ ¼ sð2Þrh ðr; hÞ on the

boundary r ¼ a.
4. No-Spin condition on the microrotation i.e., mð1Þ/ ¼ 0 and mð2Þ/ ¼ 0 on the

boundary r ¼ a.

Additionally, we have the regularity conditions at infinity and the condition

that velocity and pressure must be nonsingular everywhere in the flow field.

The equivalent nondimensional conditions on the boundary r ¼ 1 in terms

of the stream functions are
wð1Þðr; hÞ ¼ wð2Þðr; hÞ; wð1Þ
r ðr; hÞ ¼ wð2Þ

r ðr; hÞ;

pð1Þðr; hÞ ¼ pð2Þðr; hÞ; o2wð1Þðr; hÞ
or2

¼ o2wð2Þðr; hÞ
or2

;

mð1Þ/ ðr; hÞ ¼ 0; mð2Þ/ ðr; hÞ ¼ 0

ð18Þ
together with wð1Þ ! ð1=2Þr2 sin2 h as r ! 1 and wð2Þ is finite at r ¼ 0.
3. Solution of the problem

3.1. Solution for the region outside the sphere

Eliminating pressure from (11) and (12), we get
E4wð1Þ � NE2 r sin hmð1Þ/

� �
¼ 0: ð19Þ
Substituting it in (13)
mð1Þ/ ¼ 1

2r sin h
E2wð1Þ

�
þ 2� N

Nm2
E4wð1Þ

�
: ð20Þ



848 D. Srinivasacharya, I. Rajyalakshmi / Appl. Math. Comput. 153 (2004) 843–854
From (19) and (20)
E4 E2
�

� m2
�
wð1Þ ¼ 0: ð21Þ
Using the separation of variables, the general solution of (21) is
wð1Þ ¼
X1
n¼0

Að1Þ
n rn

	n
þ Bð1Þ

n r�nþ1 þ Cð1Þ
n rnþ2 þ Dð1Þ

n r�nþ3

þ Eð1Þ
n

ffiffi
r

p
Kn�1=2ðmrÞ þ F ð1Þ

n

ffiffi
r

p
In�1=2ðmrÞ

�
#nðfÞ

þ ~Að1Þ
n rn

h
þ ~Bð1Þ

n r�nþ1 þ eC ð1Þ
n rnþ2 þ eDð1Þ

n r�nþ3

þ eEð1Þ
n

ffiffi
r

p
Kn�1=2ðmrÞ þ eF ð1Þ

n

ffiffi
r

p
In�1=2ðmrÞ

i
HnðfÞ

o
; ð22Þ
where f ¼ cos h, Kn�1=2ðmrÞ and In�1=2ðmrÞ are modified Bessel functions of the

first and second kind and #nðfÞ and HnðfÞ are Gegenbauer functions of the first
and second kinds.

If we retain the terms which are multiplied by #0ðfÞ and #1ðfÞ in (22), then

the velocities will be irregular at the axis. Also, HnðfÞ are irregular on the axis

for all n. Hence we ignore the terms which are multiplied by #0ðfÞ, #1ðfÞ and
HnðfÞ for all n. Using the regularity condition at infinity, we notice that the

terms involving In�1=2ðmrÞ are to be dropped and the terms rn and rnþ2 must

also be absent with the exception of the term involving r2. Hence the solution

for the region outside the sphere contain only the terms of order n ¼ 2 of the
general solution (22). Therefore, the stream function is given by
wð1Þ ¼ r2
h

þ Bð1Þ
2 r�1 þ Dð1Þ

2 r þ Eð1Þ
2

ffiffi
r

p
K3=2ðmrÞ

i
#2ðfÞ: ð23Þ
Substituting this in (20), we get the microroration component as
mð1Þ/ ¼ 1

r sin h

�
� Dð1Þ

2 r�1 þ m2

N
Eð1Þ
2

ffiffi
r

p
K3=2ðmrÞ

�
#2ðfÞ: ð24Þ
Using the expressions for velocity and microrotation in (11) and (12), we get

the expression for the pressure as
pð1Þ ¼ � 2� N
2ð1� NÞD

ð1Þ
2 r�2P1ðfÞ; ð25Þ
where P1ðfÞ is the Legendre polynomial.

3.2. Solution for the region inside the sphere

Eliminating pressure from (14) and (15), and substituting (16) in the re-

sulting equation, we get the microrotation component in terms of stream

function as
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mð2Þ/ ¼ 1

2r sin h
E2wð2Þ

�
þ 2� N

Nm2
E4wð2Þ

�
� g2ð1� NÞE2wð2Þ

��
: ð26Þ
From (16) and (26)
E2 E2
�

� a2
�
E2
�

� b2
�
wð2Þ ¼ 0; ð27Þ
where
a2 þ b2 ¼ g2ð1� NÞ þ m2 and a2b2 ¼ 2ð1� NÞ
2� N

g2m2:
The general solution of (27) is
wð2Þ ¼
X1
n¼0

Að2Þ
n rn

	n
þ Bð2Þ

n r�nþ1 þ Cð2Þ
n

ffiffi
r

p
Kn�1=2ðarÞ

þ Dð2Þ
n

ffiffi
r

p
In�1=2ðarÞ þ Eð2Þ

n

ffiffi
r

p
Kn�1=2ðbrÞ þ F ð2Þ

n

ffiffi
r

p
In�1=2ðbrÞ

�
#nðfÞ

þ ~Að2Þ
n rn

h
þ ~Bð2Þ

n r�nþ1 þ eC ð2Þ
n

ffiffi
r

p
Kn�1=2ðarÞ þ eDð2Þ

n

ffiffi
r

p
In�1=2ðarÞ

þ eEð2Þ
n

ffiffi
r

p
Kn�1=2ðbrÞ þ eF ð2Þ

n

ffiffi
r

p
In�1=2ðbrÞ

i
HnðfÞ

o
: ð28Þ
Since the velocities are nonsingular everywhere in the flow region, we neglect

the terms which are multiplied by #0ðfÞ, #1ðfÞ and HnðfÞ for all n, as in the case

of solution for outside the sphere. Further, the modified Bessel functions
Kn�1=2ðarÞ and Kn�1=2ðbrÞ, for all n and the terms involving r�nþ1, for nP 2 are

irregular at r ¼ 0, hence we take Cð2Þ
n ¼ 0 and Eð2Þ

n ¼ 0, for all n and Bð2Þ
n ¼ 0 for

nP 2. Therefore, the general solution (28) reduce only to the terms multiplied

by #2ðfÞ and is given by
wð2Þ ¼ Að2Þ
2 r2

h
þ Dð2Þ

2

ffiffi
r

p
I3=2ðarÞ þ F ð2Þ

2

ffiffi
r

p
I3=2ðbrÞ

i
#2ðfÞ: ð29Þ
Hence, the microrotation component and pressure distribution inside the

sphere are given by
mð2Þ/ ¼ 1

r sin h
Dð2Þ

2 Aa

ffiffi
r

p
I3=2ðarÞ

h
þ F ð2Þ

2 Ab

ffiffi
r

p
I3=2ðbrÞ

i
#2ðfÞ ð30Þ
and
pð1Þ ¼ 2� N
ð1� NÞ

a2b2

2m2
Að2Þ
2 rP1ðfÞ; ð31Þ
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where
Aa ¼
Nm2 � ð2� NÞð1� NÞg2½ �a2 þ ð2� NÞa4

2Nm2
;

Ab ¼
Nm2 � ð2� NÞð1� NÞg2½ �b2 þ ð2� NÞb4

2Nm2
:

ð32Þ
4. Results and discussion

The drag force acting on the porous sphere can be obtained by integrating

the stresses on the surface of the sphere and is found to be
�4pð2lþ jÞUDð1Þ
2 : ð33Þ
Using the boundary conditions (18), we get linear system of equations in

Bð1Þ
2 , Dð1Þ

2 , Eð1Þ
2 , Að2Þ

2 , Dð2Þ
2 and F ð2Þ

2 . To solve this system of equations, the com-

puter code was generated in MATHEMATICA and the expression for Dð1Þ
2 was

obtained as
Dð1Þ
2 ¼�3ma2b2K3=2ðmÞI3=2ðaÞI3=2ðbÞða2Ab�b2AaÞ

= a2Ab

��
�b2Aa

�
m 3m2
�	

þ 2a2b2
�
K3=2ðmÞ� a2b2NK1=2ðmÞ

�
I3=2ðaÞI3=2ðbÞ

þma2b2ðN � 2ÞK3=2ðmÞ bAaI3=2ðaÞI1=2ðbÞ
	

� aAbI1=2ðaÞI3=2ðbÞ
�

: ð34Þ
Hence, the nondimensional drag DN ¼ D=ð4plUÞis given by
DN ¼� 3ðm
	

þ 1Þa2b2ða coshðaÞ � sinhðaÞÞðb coshðbÞ
� sinhðbÞÞ a2Ab

�
� b2Aa

��
= a2 a 3ðmððf
	

þ 1Þm2

þ ð2m� nþ 2Þa2b2
�
coshðaÞ �m na2b2

�
þ 3mðmþ 1ÞÞ sinhðaÞÞðb coshðbÞ

� sinhðbÞÞgAb � b2 ða coshðaÞf � sinhðaÞÞ b 3ðmðð þ 1Þm2

þ ð2m� nþ 2Þa2b2
�
coshðbÞ �m na2b2

�
þ 3mðmþ 1ÞÞ sinhðbÞÞgAa

�
:

ð35Þ
As the micropolar parameter m ! 1 and N ! 0, (then a2 ! g2, b2 ! 1,

Aa ! g2=2 and Ab ! 1) this drag simplifies to
g2ðsinh g� g cosh gÞ
gð3þ 2g2Þ cosh g� 3 sinh g

ð36Þ
which agrees with the drag on the porous sphere derived by Qin and Kaloni [6],

when the fluid is Newtonian.
The variation of drag DN with g2 for m ¼ 20 and for various values of N is

shown in Fig. 1. From Fig. 1 it can be observed that the drag is decreasing as

the permeability parameter (g2) is increasing. Also, there is decrease in the drag
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as the coupling number N is decreasing. It is interesting to note that the drag on

the sphere, when the fluid is micropolar, is more than that of the Newtonian

fluid case. Fig. 2 shows the variation of drag DN with g2 for N ¼ 0:5 and for

various values of m. It can be observed from this figure that the drag is de-

creasing as the permeability parameter (g2) is increasing. Also, there is decrease
in the drag as the coupling number m is decreasing.

The stream line pattern has been plotted for different values of the perme-

ability parameter (g), the coupling number (N ) and the micropolar parameter

(m). Fig. 3 illustrates the streamline pattern for different values of g with
Fig. 2. Variation of drag coefficient with g2 for N ¼ 0:5.
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N ¼ 0:25 and m ¼ 5:0. It is observed that increase of permeability k (i.e. de-

crease of permeability parameter g) flattens the streamlines, as is to be ex-

pected. For large permeability k, the flow is almost uniform. However, for

smaller permeability (i.e. large g), the flow is greatly perturbated. The effect of

coupling number N on the flow for fixed values of m ¼ 10 and g ¼ 5:0 is shown

through the stream line pattern in Fig. 4. It can be seen from Fig. 4, that the
flow becomes almost uniform as the coupling number N is increasing. The

variation of stream line pattern with the micropolar parameter m for fixed

values of N ¼ 0:75 and g ¼ 0:5 is shown in Fig. 5. It is interesting to note from

Fig. 5 that the flow pattern is almost independent of m.
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