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Abstract

The creeping flow of incompressible micropolar fluid past a porous sphere with
permeability & is studied assuming uniform flow far away from the body. The stream
function is determined by matching the solutions of Stokes equations for the flow outside
the sphere with that of the Brinkman equations inside the porous sphere. The drag force
experienced by the sphere is determined. The variation of drag and the streamline pattern
for different values of the permeability parameter (1), the coupling number (V) and the
micropolar parameter (m) is studied numerically. It is observed that the drag on the
porous sphere, when the fluid is micropolar is more than that of the Newtonian fluid case.
The flow pattern depends on the permeability 4 as in the case of Newtonian fluid and on
the coupling number () but not on the micropolar parameter (m).
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The study of uniform flow of fluids around porous bodies involving variety
of geometries has been considered by many researchers using various analytical
and numerical methods, in view of their applications in industry and engi-
neering. Several studies of the flow past and within porous bodies are limited
mainly to low Reynolds numbers. Joseph and Tao [1] examined the flow of an
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incompressible viscous fluid past a porous spherical particle by employing
Darcy’s law in the porous region and no-slip condition at the surface of the
sphere. They found that the drag on the porous sphere is same as that of a rigid
sphere with reduced radius. The flow past a porous circular cylinder using
Darcy’s law for the fluid inside the porous region with Saffman’s boundary
conditions at the surface of the cylinder was studied by Palaniappan et al. [2].
Recently, the flow past and within permeable spheroid was considered by
Vainshtein et al. [3] using Darcy’s law and the continuity of the tangential
velocity component at the boundary of the spheroid. They have examined the
flow past permeable circular disk and elongated rods as limiting cases. To
model the flows with high porosity and large shear rates, Brinkman [4] and
Debye and Beuche [5] independently suggested a modification to Darcy’s
model which is known as Brinkman model. Using this Brinkman model for the
flow inside the porous sphere, Qin and Kaloni [6] obtained a cartesian tensor
solution for the flow of incompressible viscous fluid past a porous sphere.
Hidgdon and Kojima [7] have studied Stokes flow past porous particles using
Brinkman’s equations for the flow inside. They derived some asymptotic results
for small and large permeability by using Green’s function formulation of the
Brinkman’s equation. Zlatonovski [8] has considered the axisymmetric Stokes
flow of an incompressible viscous fluid past a porous prolate spheroidal par-
ticle using the Brinkman model for the flow inside the spheroidal particle.
Srinivasacharya [9] has studied the flow of viscous fluid past and within a
porous approximate sphere and obtained the cases of flow past a porous sphere
and spheroid as special cases.

The model of micropolar fluid introduced by Eringen [10] represents fluids
consisting of rigid, randomly oriented bar like elements or dumbell shaped
molecules and each volume element has microrotation about its centroid, in
addition to its translatory motion in an average sense. Micropolar fluids exhibit
some microscopic effects arising from the local structure and micromotion of
the fluid elements and they can sustain couple stresses. The Stokes flow of
micropolar fluid past a rigid sphere, spheroid and approximate sphere were
considered by Lakshmana Rao and Bhujanga Rao [11], Lakshmana Rao and
Iyengar [12], and Iyengar and Srinivasacharya [13] respectively. Ramkissoon
[14] has studied the flow of micropolar fluid past a Newtonian sphere. The
mathematical theory of equations of Micropolar fluids and applications of
these fluids in the theory of lubrication and in the theory of porous media are
dealt in a recent book by Lukaszewicz [15].

In the present paper, we consider the creeping flow of an incompressible
micropolar fluid past a porous sphere. We have used the Brinkman’s equation
for the flow inside the porous region and Stokes equation for the free flow
region in their stream function formulation. As boundary conditions, conti-
nuity of the velocity, pressure and tangential stresses across the interface and
no spin condition for the microrotation components in both the regions are
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employed. The stream function and pressure, both for the flow inside and
outside the sphere are calculated. The drag force experienced by the sphere is
determined. The flow pattern for various values of micropolar parameters and
permeability parameter is studied.

2. Formulation of the problem

Let (r, 0, ¢) denote a spherical polar coordinate system with (é,, €, é,) as the
corresponding unit base vectors and 4, = 1, &, = r and h; = rsin 0 as the scale
factors. Consider a steady incompressible micropolar fluid flow past a porous
sphere of radius a with a uniform velocity U far away from the body along the
axis of symmetry 0 = 0. We assume that the flow outside the porous sphere to
be Stokesian and inside to be governed by Brinkman model.

The equations of motion for the region outside the sphere are the equations
governing the steady flow of an incompressible micropolar fluid under
Stokesian assumption with the absence of body force and body couple and are
given by

v-g" =0, (1)
—Vp +kV x @V — (u+ 1)V x V x gV =0, (2)
2k + kV x gV =9V x Vx @V + (a+ p+9)V(V-35V)=0. (3)

For the region inside the sphere the equations of the motion are the equa-
tions of motion of the fluid in steady state in the porous medium based on
Brinkman’s model and are given by

v.g?® =0, 4)
237 + VP =1V x B + (u+ 1)V x V x G =0, (%)

2k + kV x P =V x V x @ + (¢ + B+ p)V(V-a?) =0, (6)

where gV is the velocity vector, @" is the microrotation vector and p!) is the
fluid pressure outside the sphere, and k is the permeability of the porous me-
dium, g is the velocity vector of the flow, @' is the microrotation vector and
p'? is the pressure inside the sphere. Further, the material constants u, «, o, f3,
and y satisfy the following inequalities [10]

u+k=0, k=0, 3a+p+y=0 y=|p. (7)

Since the flow generated is axially symmetric, all the flow functions are in-
dependent of ¢. Hence, for this flow we choose the velocity and microrotation
vectors as
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g =u"(r, 008, + v (r, 008, & =v{(r,008,, i=1,2. (8)
Introducing the stream function through
(@) (@)
r2sinf 00 ’ rsinf or
the following nondimensional variables
_ . _ U _. U
— 7 O — yaty® i — HY ~i (0 _ Y= 10
r ar, l// a lp ) P a P v(p a v(p ( )

into the Egs. (1)-(6) and dropping the tildes, we get the equations for the
region outside the sphere as

ap(l) N 1 0 . (1)
" T (1—N>r2sin6@(”m9v¢)

_% agg) N ( 1 ]—VN> rsi1n0 % (rSin9v$)>
2 R B om0 0

and the equations for the region inside the sphere as

op? N 1 0 . )
o Tl rzsineﬁ(”m% )

1 10, 5,0y, 2 1 ¥
(l—N)rzsinﬂée(Elp ey R R (14)
1 op? N 1 © . (2)
"y o0 \1-N rsinoa(rsmgv*»)
1 10, 00 o 1 w®
+(1—N>rsin96r(EW )= rsin0 or =0 (15)
1 o 2-N 1
(2) 2.1.(2) 2 @ _
- Y - =0 16
% T rmoar BV [V rzsine}vd’ ! (16)

where

Ez_[az 1 & cotOG]

ﬁ—'_ﬂ 06> 2 00 (17)
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is the Stokes stream function operator, n*> = a?/k, N = x/(u+ k) is the cou-
pling number (0 <N < 1) and

m? = K(2u+K) 2
y(p+x)

is the micropolar parameter. As k — 0 and y — 0 (i.e. N — 0 and m — o0), the
Eqgs. (11)—(13) reduce to Navier—Stokes equations and the Eqgs. (14)—(16) reduce
to Brinkman equations.

The corresponding boundary conditions (dimensional) [6,7]

1. Continuity of velocity components i.e., uV(r,0)=u?(r,0) and
v (r,0) = v (r,0) on the boundary r = a.

2. Continuity of pressure i.e., p!''(r,0) = p(r,0) on the boundary » = a.

3. Continuity of tangential stresses components i.e., 7 (r, 0) = '3 (r, 0) on the
boundary » = a.

4. No-Spin condition on the microrotation i.e., vfl,l) =0 and v;z) =0 on the
boundary r = a.

Additionally, we have the regularity conditions at infinity and the condition
that velocity and pressure must be nonsingular everywhere in the flow field.

The equivalent nondimensional conditions on the boundary » = 1 in terms
of the stream functions are

Yy, 0) = w2 0), W (n0) =92, 0),

Py (r,0) 2y (r,0)
p(l)(r7 0) :p(z)(rﬂ 6)3 67’2 = arz )
W 0) =0, v 0)=0

together with ") — (1/2)r2sin? 0 as r — oo and y'? is finite at » = 0.

3. Solution of the problem
3.1. Solution for the region outside the sphere
Eliminating pressure from (11) and (12), we get
EyY — NE? (r sin evfb”) = 0. (19)
Substituting it in (13)

NUN. [Ezl//(l) L 2o NE4¢<1)} (20)

¢ " 2rsin0 Nm?
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From (19) and (20)
EYE* —m*)y) = 0. (21)

Using the separation of variables, the general solution of (21) is
y = Z { [A(l)rn 1 Bl o o()e2 | p(l) i
n=0

+ ENPK, 1 a(mr) + Bl (mr) [9,(0)
+ [A~(1)rn 4+ Byt et L B3

+ BN 1) + FOVl o) | (0}, (22)

where { = cos 0, K,,_y>(mr) and 1,_,»(mr) are modified Bessel functions of the
first and second kind and 4,({) and H,({) are Gegenbauer functions of the first
and second kinds.

If we retain the terms which are multiplied by ¥,({) and ¢, ({) in (22), then
the velocities will be irregular at the axis. Also, H,({) are irregular on the axis
for all n. Hence we ignore the terms which are multiplied by 9,((), 9 ({) and
H,(Q) for all n. Using the regularity condition at infinity, we notice that the
terms involving 7,1 »(mr) are to be dropped and the terms " and "2 must
also be absent with the exception of the term involving #*>. Hence the solution
for the region outside the sphere contain only the terms of order n = 2 of the
general solution (22). Therefore, the stream function is given by

WO = [P+ B 4 D+ B K )| 92(0). (23)
Substituting this in (20), we get the microroration component as
W= L pe —|—m—2E<l)\/;7K3/2(mr) 9,(0). (24)
¢ rsinf 2 N 2

Using the expressions for velocity and microrotation in (11) and (12), we get
the expression for the pressure as

m_ 2—-N

mpgwpl (), (25)

p
where P;({) is the Legendre polynomial.
3.2. Solution for the region inside the sphere
Eliminating pressure from (14) and (15), and substituting (16) in the re-

sulting equation, we get the microrotation component in terms of stream
function as
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1 2—-N
@ _ 2.1,(2) 42 201 2,1,(2)

" T 2rsin0 [E Ve Nm? (E 4 (1= N)EY )} (26)
From (16) and (26)

E*(E* — o) (E* = )y =0, (27)
where

2(1 =N
4+ =n(1=N)+m* and o = 7(2 — ) n'm*.

The general solution of (27) is

o0

00 = 3 {20 B 4 VR a(o)

n=0

+ DIl pp(or) + EPNK, 1 o (Br) + F2 VL1 2(Br)]9.(0)

+ [Ay)r " BY 4 COVIK p(or) + DL o (o)

o+ BNV p(Br) + E2 V2B | (O} (28)

Since the velocities are nonsingular everywhere in the flow region, we neglect
the terms which are multiplied by 9 ({), 91({) and H,({) for all n, as in the case
of solution for outside the sphere. Further, the modified Bessel functions
K,-1)2(or) and K, »(fr), for all n and the terms involving r"t1 for n > 2 are
irregular at = 0, hence we take C'? = 0 and £(2) = 0, for all n and B> = 0 for
n = 2. Therefore, the general solution (28) reduce only to the terms multiplied
by 9,(¢) and is given by

W = [A072 4 DY rlsp(ar) + F el (1) | 02(0). (29)

Hence, the microrotation component and pressure distribution inside the
sphere are given by

1
ngz) = 0 [D(;)Aa\/;[z/z(w) + Ff)A/;ﬁls/z(ﬁr)]ﬁz(C) (30)

and

2—-N o2f°
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where
L [Nm*> — (2= N)(1 = N)p*lo? + (2 — N)o*
” 2Nm? ' (32)
= 2= N1 NP+ - N
2 2Nm? '

4. Results and discussion

The drag force acting on the porous sphere can be obtained by integrating
the stresses on the surface of the sphere and is found to be
—4n(2u + x)UDY). (33)
Using the boundary conditions (18), we get linear system of equations in
Bg”, D(Zl), Eg”, A(zz), D(ZZ) and FZ(Z). To solve this system of equations, the com-
puter code was generated in MATHEMATICA and the expression for D(Zl) was
obtained as
DY) = —3ma B2K 5 (m) s o () Ly o (B) (224 — A,
[{(e? 4y — B*A,) [m(3m* + 202 B) K32 (m) — o B*NK 2 (m) | I 2 (o) 32 (B)
-+ mo? B2 (N = 2)Ks o (m) [BAuds p(0) 112 (B) — adgli 2 ()52 (B)] }. - (34)
Hence, the nondimensional drag Dy = D/(4nuU)is given by
Dy = —[3(m + 1)o? p*(x.cosh(a) — sinh()) (B cosh(p)
—sinh(B)) (?45 — B*A4,)] /[*{ ((3(m + 1)m?
+ (2m — n +2)e? %) cosh(er) — m(no? B> + 3m(m + 1)) sinh(a)) (B cosh(p)
—sinh(f))}4s — B*{(«cosh(a) — sinh(a))(B(3(m + 1)m*
+ (2m — n +2)o? %) cosh(B) — m(no? B + 3m(m + 1)) sinh()) }4,] .
(35)
As the micropolar parameter m — oo and N — 0, (then a> — 2, f* — oo,
A, — n?/2 and 45 — o00) this drag simplifies to
n*(sinhn — ncoshn)
n(3 + 25n?) coshn — 3sinhy

(36)

which agrees with the drag on the porous sphere derived by Qin and Kaloni [6],
when the fluid is Newtonian.

The variation of drag Dy with #? for m = 20 and for various values of N is
shown in Fig. 1. From Fig. 1 it can be observed that the drag is decreasing as
the permeability parameter (%) is increasing. Also, there is decrease in the drag
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Fig. 1. Variation of drag coefficient with #? for m = 20.

as the coupling number N is decreasing. It is interesting to note that the drag on
the sphere, when the fluid is micropolar, is more than that of the Newtonian
fluid case. Fig. 2 shows the variation of drag Dy with > for N = 0.5 and for
various values of m. It can be observed from this figure that the drag is de-
creasing as the permeability parameter (1) is increasing. Also, there is decrease
in the drag as the coupling number m is decreasing.

The stream line pattern has been plotted for different values of the perme-
ability parameter (1), the coupling number (N) and the micropolar parameter
(m). Fig. 3 illustrates the streamline pattern for different values of # with

0.2
— Newtonian ///
— - m=0.01 7
----m=2.0 ////
0.15 —- mM=10.0 /
s

0.05

0.2 0.4 0.6 0.8 1

Fig. 2. Variation of drag coefficient with > for N = 0.5.
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Fig. 3. Stream lines for m = 5.0 and N = 0.25.

(iv) n=50.0

—
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s
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i \, L |
; — — /
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(iii)) N =0.75 (iv) N=0.95

Fig. 4. Stream lines for m = 10 and n = 5.0.
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e
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Fig. 5. Stream lines for N = 0.25 and # = 5.0.

N =0.25 and m = 5.0. It is observed that increase of permeability k£ (i.e. de-
crease of permeability parameter 5) flattens the streamlines, as is to be ex-
pected. For large permeability k, the flow is almost uniform. However, for
smaller permeability (i.e. large #), the flow is greatly perturbated. The effect of
coupling number N on the flow for fixed values of m = 10 and n = 5.0 is shown
through the stream line pattern in Fig. 4. It can be seen from Fig. 4, that the
flow becomes almost uniform as the coupling number N is increasing. The
variation of stream line pattern with the micropolar parameter m for fixed
values of N = 0.75 and = 0.5 is shown in Fig. 5. It is interesting to note from
Fig. 5 that the flow pattern is almost independent of m.
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