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Abstract The problem of viscous fluid past an axisymmetric body embedded in a fluid saturated
porous medium is studied using the Brinkman's extension. A genera formula for the
drag on the body is derived in the form of alimit of an expression involving the stream
function characterizing the flow. The flow past an axisymmetric approximate sphereis also
considered. The stream function in this case is obtained in terms of Bessel functions and
Gegenbauer’s functions. The drag acting on the body is evaluated by using the formula
derived. Itsvariation is studied with respect to geometric and permeability parameters. The
special cases of flow past a sphere and a spheroid are obtained from the present analysis. To
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Ecoulement derriére un corps a symétrie axiale plongé dans un milieu
poreux saturé

Résumé Nous étudions le probléme d’ écoulement derriére un corps axisymeétrique plongé dans un
milieu poreux saturé en utilisant I’extension de Brinkman. Nous donnons une formule
générale pour laforce de trainée exercée sur ce corps, sous forme delimited’ une expression
contenant lafonction de courant caractéristique de |’ écoulement. L’ écoulement derriére une
sphére axisymétrique approchée est également considéré. Dans ce cas précis, lafonction de
courant s exprime al’aide des fonctions de Bessel et de Gegenbauer. Cette formule permet
d’ évaluer latrainée exercée sur le corps. Nous étudions également la variation de cette force
en fonction des parameétres géométriques et de la perméabilité. La présente analyse permet
d'obtenir les résultats concrets dans les cas d une sphére et d'un corps sphéroidal. Pour
citer cet article: D. Srinivasa Charya, J.V. Ramana Murthy, C. R. Mecanique 330 (2002)
417-423. O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS
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1. Introduction

The study of flow of fluids through porous medium is very important in ground water recharge, acquifiers
and oil technology. Several authors have considered the flow past a body embedded in a porous medium
using Darcy’s model. However, the Darcy law appears to be inadequate for the flows with high porosity
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and large shear rates and for flows near the surface of the bounded porous medium. To model such flows
Brinkman [1] has suggested a modification to Darcy’s law. The validity of this equation was theoretically
justified by Tam [2] and Lundgren [3].

The study of uniform flow past an axisymmetric body has been considered both analytically and
experimentally by many researchers for Newtonian as well as different types of non-Newtonian fluids.
The Stokes flow past a class of axisymmetric bodies with uniform stream at infinity parallel to the axis of
symmetry was studied by Payne and Pell [4] and ageneral formulafor the drag experienced by the body was
obtained in terms of the stream function. Padmavathi et al. [5] studied the general non-axisymmetric Stokes
flow past a porous sphere of Brinkman’s model and derived a formula for the drag and couple. Bhupen
Barman [6] studied the flow of viscous liquid past a sphere embedded in Brinkman's porous medium.
Ganapathy [7] considered the flow past a sphere and studied the heat transfer due to forced convection.

In the present paper, we consider the flow of viscous fluid past an impermeable axisymmteric body
embedded in a saturated porous medium with Brinkman's model. The fluid assumes a uniform vel ocity far
away from the body. We derive a general formula for the drag on the body and obtain the expression for
the drag on an approximate sphere. We recover from this the expression for the drag on a sphere and obtain
that on a spheroid as special cases.

2. Formulation of the problem

Consider an axisymmetric body submerged in an infinite expanse of fluid saturated porous medium of
uniform porosity, assuming that the fluid is at rest at infinity. Let (n, s, ¢) be intrinsic coordinate system
with scalefactors h1 = 1, hp = 1 and h3 = 1/ (w isthe distance from the point of consideration to axis
of symmetry) and #, s, ?'d, be corresponding unit base vectors. The flow generated is axially symmetric and
all the flow functions are independent of ¢.

The equations of motion of the fluid in steady state in the porous medium based on Brinkman's model
are

V.G=0 1)
o
Za=V.II 2
4 2
where
M=—PI+u(V§+ (Vi) 3)

isthe stresstensor at any point of the fluid, u isthe viscosity of the fluid, & isthe permeability of the porous
medium, P isthe pressure and g isthe velocity vector of the flow.
Introducing the stream function , the above equation can be written as

-1
%VX {id,gy/} —v.n (4)
Eliminating pressure from the above eguation, we get
E*(E*—o®)y =0 (5)
where
a /19 a /129
El=w|—(=——)+—(==— 6
w[&n(ar 8n) + 8s<w 8s>} ©)

is the Stokes stream function operator and «? = 1/k. Thus, our goal isto find the solution of (5) subject to
the following boundary conditions:
(i) Far away from the body, thereis practically no flow and hence the stream function v tendsto zero as
r — 00,
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(i) Atthe boundary of the body, the velocity g of the fluid element on the body is equal to the velocity g
of the body. Since the body is stationary, i.e. g = 0 and hence g = 0 on the boundary.
The general solution of (5) in terms of spherical harmonicsis

y=y" +y? @)
with
YP=>" A, () ®
n=0
YP=>" B, R (r)9,(0) ©)
n=0
where
n—1
R,gl) r)y=r" (} E) 1 e (10)
r dr r

and ¥, (¢) is Gegenbauer function of thefirst kind with ¢ = cos6.

3. Drag on an axisymmetric body

We shall integrate Eq. (4) over the volume V bounded by the axisymmetric body B and alarge concentric
sphere S of radius R. We convert the volume integrals to surface integrals using the Gauss divergence
theorem and we retain only the z-component of the vector equation:

—//i;~HndA—//i;~HndA+ua2//i;o[fixi¢,£}dA
S B S w

+;La2//i;-[r_ixi¢£]dA=0 (11)
B w

where i, is the unit vector along z-axis, 7 is the local outward normal, I1,, = IT - # and dA is the surface
element. In the above, the second integral is simply the force exerted by the body on the fluid. In view
of the condition g = 0 on the boundary, the fourth integral vanishes. The first integral can be evaluated
individually as below:

From the congtitutive equations of viscousfluid, IT1,, is

- 10
I, = —pn—2uV [__W] +ﬁEZI/f (12
w IS w
Substituting I1,, in the first integral of (11), it can be put in the form
- ad ad
//iz.n,,dA=ny,/ [w—(Ez—az)w—Z—szw ds (13)
s e on as

where dA = 27w ds and C is the cross section of the large sphere S in the meridian plane. If there are no
sources, then Ag is zero. R,(,l)(r) is exponentially small at large r, and hence we neglect it in (7), if R is
large enough. Then (13) reduceto

- 2
/ / i;-T,dA = E/LJT(XZAZ (14)
S

Similarly thethird integral in Eq. (11) is evaluated using the procedurethat is similar to that just outlined
for thefirst integral, and its value is determined to be (4/3) A2. Using Egs. (7)—(10), we may express Az
intheform

3
Ap=2 lim ¥ (15)

r—00 o2
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Hence the force on the body is given by
2 Y
F=4rpa® lim — (16)
r—00 w
Thisisanalogousto the result of Payne and Pell [4].

If the fluid is not rest at infinity the above formulais not applicable. If, however v, denotes the stream
function corresponding to the fluid motion at infinity then the stream function v — ¥+, givesa state of rest
at infinity. Hence the drag is given by

3 —
F =47 pe? lim szm)

r—00 w

17

4. Drag on an approximate sphere

-

Let (r, 6, ¢) denote a spherical polar coordinate system with (¢, ég, é4) as the corresponding unit base
vectors and hy = 1, hp = r and h3 = r Sind as the scale factors. Consider the body » = a[1 + f(6)]
where f () isafunction of 6 which can beexpressed as f(¢) = B0 (¢) Where 9, (¢) = {Pn—2(¢) —
Pn($)}/(2m — 1), ¢ =cosh, inwhich P, (¢) is Legendre function of the first kind. For small g8,, we refer
to this body as an approximate sphere.

Consider a steady incompressible viscousfluid flow past an approximate sphere embedded in a saturated
porous medium of uniform porosity with a uniform velocity U far away from the body along the axis
of symmetry 6 = 0. Since the flow generated is in the meridian plane and is axially symmetric, al the
quantities are independent of ¢.

The solution of (5) in spherical polar coordinate system, using the regularity condition at infinity (i.e.
Y — 3Ur2sin?0 asr — o0) is

o
¥ = [Ur? + Bor ™t + Cov/r K3 a(ar) | 92(¢) + Z [Bur ™+ Cp /T K—12(ar)] 92 (8) (18)
n=3
where K3/2(ar) and K,—1/2(ar) are modified Bessel functions.
Let usintroduce the following non-dimensionalization scheme before proceeding to the implementation
of the boundary conditionsto determine the arbitrary constantsin the expression of v:
r = a?, I// = U(lzl/;, Bn - Uan+lgn’ Cn = Ua3/26n (19)
Introducing these in (18) and then dropping the tildes the expression for ¢ in nondimensional form is
seen to be

Y = [r?+ Bor ™' + C2v/r K3j2(aor) | 92(0) + Z [Bur ™" + Cun/rKn—1y2(aar) | 9a(2) (20)

n=3
The boundary conditions at the surface of the approximate sphere become
¥ =0, Y =0 (21

We first propose to devel op the solutions corresponding to the boundary r = [1 4 8,9, (¢)]. Assuming
that the coefficient g, is sufficiently small, so that squares and higher powers of 8, may be neglected, we
replace r* by 1+ kB,,9,,(¢) where k is positive or negative

If the body is the sphere, then the expression for ¢ is given by

¥ = [r? + Bor =t + Cov/rK3po(aar) | 92(¢) (22)

Comparing (20) with the above expression, we note that the termsinvolving B, and C,, for n > 2 in (20)

are extraterms herewhich are not present in s for the case of sphere. The body in the present problemisan

approximate sphere and the motion is expected not to be far different from that which occurswhen the body
isasphere. All the coefficients B, and C,, for n > 2 will be of order ,,. Thereforein these termsinvolving
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B, and C,, for n > 2, we disregard the departure from a spherical form and set » = 1 (r isnon-dimensional)
while implementing the boundary conditions asin [8,9]. Hence the boundary conditions (21) imply

(14 B2+ C2K3/2(a)|92(¢) + [2 — B2l B (£)92(0) + Z [Bn + CnKn-1/2(a)|9,(£) =0 (23)
(2 — B2 — C2{ K3/2(aqr) + aaK1j2(ac) }|92(¢) + [2+ 2B2 + C2K3/2(a) | B P¥m (£)92(2)

+ Z [(1 —n)B, — Cn{(” - 1)Kn—1/2(aa) + ao‘Kn—3/2(aOl)}] Un()=0 (24)
Equating the leading coefficientsto zero in (23) and (24), we get
3K 3
Bz=—1—ﬂ, 2= ————— (25)
aaKyp(aa) aaK3zp(aa)

Using the values B, and C» in (23) and (24) and making use of the following identity

o 9 _ —(m=2)(m—=3) 9 m(m — 1) 9
(m+1D(m+2)

- 2(2m —1)(2m — 3) 0m+2(€) (26)

we get
B,=C,=0 forn#m—2, m, m+2 27)

andfor n =m — 2, m, m + 2 we get the following system of equations

B, + ChKy—1/2(ac) = byex (28)
(1=n)By — Cu{(n — DK,_1/2(ac) + aaK,—3/2(act) } = bpe2 (29)

where
I —(m —2)(m —3) o m@m —1) bonsa = —(m+1D(m+2) (30)

22m — 1)(2m — 3)’ T 2m+1)@2m-3) 22m — 1)(2m + 1)

75 T T T T T T T T T

Figure 1. Variation of drag
coefficient (Dp) with aa e
(approximate sphere with

B2=pa=3). §=005
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and
3K3/2(a) o — 3K3/2(a)

aaKyp(aa) aaKyp(aa)

&1 =—3—
Solving these equations we get the expressionsfor B, and C,,.
In case the equation of approximate sphereisr = a[l+ Y BnPn ()], we employ the same technique
as above and determine the corresponding arbitrary constants in the expansion for v» and superimpose the

expressions thus obtained.
The drag (D) experienced by an approximate sphere, using the formula (17), is given by
3 1
D=-2ruUa|{3+ 3ac + (ac)?} + §{2+ 2ac + (a)?} (2/32 — ?/34)} (32)

It is interesting to note that though the boundary surfaceisr = a[1+ Y "5 B ¥m(£)], the coefficients
B2 and B4 only contribute to the drag. This implies that the drag on the approximate sphere is relatively
insensitive to the details of the surface geometry. Thisisin tune with the observations made by lyengar and
Srinivasacharya[8,9] in case of micropolar fluids.

The variation of the drag coefficient Dy = —D /(27 uUa) with respect to the permeability constant is
shown in Fig. 1 for various values of 82 = B4 = §. It is observed that as the permeability constant ao
increases the drag coefficient on an approximate sphere increases. AIso Dy increases as § increases.

5. Special cases

5.1. Sphere

If B, =0form > 2, we get the case of the sphere. In this case the drag simplifies to
D=—27nuUa{3+ 3(aa) + (aa)?} (33)
It can be observed that this drag is less than the drag on an approximate sphere and also the drag given in

Eqg. (32) ismore than that of the drag on the spherein aviscousfluid. Ask — oo, i.e. as (a) — 0, thedrag
in (33) givesthe Stokesian drag —6r uUa.

Figure 2. Variation of drag
coefficient (D) with aa (oblate
spheroid).
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5.2. Oblate spheroid

Consider the oblate spheroid given by
X242 22
a? a?(l—¢)? -
whose equatorial radiusis*‘a’ inwhich ¢ isso small that £2 and higher powers may be neglected. Following
Happel and Brenner [10] its polar equation can be put in the form r = ¢[1 4 2e92(¢)] wherec = a(1 — ¢)
([10], p. 144).
Using (20), the expression for v (r, §) can be determined. Using the formula (17), the drag is seen to be

(34)

D=-2nuUa {3+ 3(aa) + (aot)z} - 3—58{7+ T(ax) + (aot)z} (35)

The variation of the drag coefficient Dy = —D/ (27 uUa) on the spheroid with permeablility parameter
isshownin Fig. 2. Inthis case also thereis an increase in the drag coefficient as the permeability parameter
increases.The drag on the spheroid is less than that of the approximate sphere and sphere.
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