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Abstract

A fuzzy system is developed using a linearized performance model of the gas turbine

engine for performing gas turbine fault isolation from noisy measurements. By using a

priori information about measurement uncertainties and through design variable link-

ing, the design of the fuzzy system is posed as an optimization problem with low number

of design variables which can be solved using the genetic algorithm in considerably low

amount of computer time. The faults modeled are module faults in five modules: fan,

low pressure compressor, high pressure compressor, high pressure turbine and low pres-

sure turbine. The measurements used are deviations in exhaust gas temperature, low

rotor speed, high rotor speed and fuel flow from a base line �good engine�. The genetic

fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and

measurement uncertainties change which happens for different engines and airlines. In

addition, the genetic fuzzy system reduces the human effort needed in the trial and error

process used to design the fuzzy system and makes the development of such a system

easier and faster. A radial basis function neural network (RBFNN) is also used to
0096-3003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2005.02.057

* Corresponding author.

E-mail address: ganguli@aero.iisc.ernet.in (R. Ganguli).

mailto:ganguli@aero.iisc.ernet.in


R. Verma et al. / Appl. Math. Comput. 172 (2006) 1342–1363 1343
preprocess the measurements before fault isolation. The RBFNN shows significant

noise reduction and when combined with the GFS leads to a diagnostic system that

is highly robust to the presence of noise in data. Showing the advantage of using a soft

computing approach for gas turbine diagnostics

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Several researchers have proposed model based engine condition monitoring

systems for gas turbine engines over the past few years. A recent review of some

of this work is given in [1]. These systems were initially developed for predicting
the long-term deterioration in gas turbine engines which occurs due to operat-

ing in a harsh aero-thermodynamic environment [2,3]. Because of the high lev-

els on uncertainty in gas path measurements [4], researchers have tried to

estimate the engine state from measurement deltas, which are deviations in

the measurement from a baseline good engine. Since many older engines which

are in service have limited instrumentation, with high levels of noise in the data,

the fault isolation problem is a hard inverse problem and is difficult to address.

While commercial software tools tend to use Kalman filter and weighed least
square type approaches [5–8], researchers have also focused on soft computing

based methods in recent years [9–12]. Soft computing encompasses genetic

algorithms, fuzzy logic, neural networks and Bayesian networks among others

and has emerged as a powerful approach in automated reasoning [13,14].

Recently, some work has also been directed at finding a fault in the engine

once a measurement change in the form of a trend shift has been identified.

This work is motivated by the realization that many engine faults are preceded

by a sharp change in the measurement deltas and occur because of a fault in
one module [15]. The isolation of these so-called ‘‘single faults’’ from gas path

measurement deltas has been studied by neural network [15,16], Kalman filter

[17] and fuzzy logic [18] based methods.

Fuzzy systems are also universal function approximations in a manner sim-

ilar to neural networks [19]. However, fuzzy systems have the added advantage

that they are expressed in linguistic terms that are easy to understand [20]. Sev-

eral researchers [14,21–23] have used fuzzy logic in their work. Fuzzy systems

also address the issue of uncertainty using a built in fuzzifier whereas a neural
network learns the noise characteristics of the data through training. It has

been shown that fuzzy systems provide accurate fault isolation results for

gas turbine diagnostics [18]. However, the neural and fuzzy methods for diag-

nostics are highly configuration dependent, meaning that if the underlying



Nomenclature

EGT exhaust gas temperature

FC flow capacity
FP4 high-pressure turbine area

FP45 low-pressure turbine area

m midpoint of fuzzy set

MAE mean absolute error

N1 low rotor speed

N2 high rotor speed

NR noise reduction

T set of terms
U universe of discourse of fuzzy set

WF fuel flow

x elements of fuzzy sets

x design variables for GA

y module faults

z measurement deltas

D change from baseline ‘‘good’’ engine

g efficiency
lA(x) degree of membership of x in fuzzy set A

r uncertainty as standard deviation

L length of universe of discourse

N number of fuzzy sets

N(max) maximum number of fuzzy sets

Ngen number of generations of GA

N ðmaxÞ
gen maximum number of generations of GA
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model used to obtain fault signatures or the measurement uncertainties of the

signal changed, the diagnostic systems have to be redeveloped. Since there are

many different engines operating with different airlines, there are likely to be

many possible combinations of fault signatures and measurement uncertainties

for the fault isolation systems which need to be developed. Very often the pro-

cess of redeveloping the underlying numerics or rules for the diagnostic system

is a trial and error process that can be very tedious and require considerable

human effort.
Another way to address uncertainty in diagnostics systems is to filter the

measurement deltas prior to fault isolation. Neural network [10,15] and median

filter [23] based methods have been suggested as alternatives to the moving

average and exponential average filters for gas path measurement deltas.
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In this paper, we propose a genetic fuzzy system [25–27] that allows for easy

development of the rule base for an engine given fault signature and measure-

ment uncertainties. Unlike conventional fuzzy logic applications, where rules

are generated based on operator�s experience or general knowledge of the sys-

tem in a heuristic way, in such a system, optimization techniques such as genet-

ic algorithms are used to tune the fuzzy membership functions and rules.
Typically, if Gaussian fuzzy sets are used, the number of fuzzy sets, their mid-

points and standard deviations can be used as design variables. Genetic algo-

rithms are used in the study to maximise the performance of a fuzzy system

through automatically selecting the number of fuzzy sets and membership

functions based on the fault signatures of the engine and measurement uncer-

tainties to achieve the goal of minimizing the number of design variables. The

genetic fuzzy system thus automates the creation of fuzzy system, greatly

reducing the human effort needed. Furthermore, a radial basis function neural
network (RBFNN) preprocessor is studied for denoising signals typical of path

measurements. The advantages of using such a signal processing algorithm

prior to fault isolation by a genetic fuzzy system is shown.
2. Gas turbine fault isolation

Consider a twin spool gas turbine with five modules: fan, low-pressure com-
pressor (LPC), high-pressure compressor (HPC), high-pressure turbine (HPT)

and low-pressure turbine (LPT). Most damages to the engine manifest them-

selves as changes in either the module efficiency or flow capacity/area. The

FAN, LPC and HPC modules have efficiencies and the flow capacities associ-

ated with them, while the HPT and LPT modules have efficiencies and areas

associated with them. The fingerprints or fault signatures relating a change

in measurements deltas for four basic parameters with the faulty module is

shown in Table 1 [18].
The four basic parameters are found in almost all engines and are exhaust

gas term (EGT), low rotor speed (N1), high rotor speed (N2) and fuel flow
Table 1

Signature for module faults

Module faults Measurement Deltas

DEGT (�C) DN1 (%) DN2 (%) DWF (%)

FAN �7.72 1.35 �0.59 �1.40

LPC 9.09 0.28 0.57 1.32

HPC 13.60 0.10 �0.11 1.60

HPT 21.77 0.15 �1.13 2.58

LPT 2.38 �1.96 1.27 �1.92
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(WF). They are also called cockpit parameters as they are displayed to the pilot

of a jet engine aircraft. The fault signatures in Table 1 assume the following

couplings between module efficiencies and flow capacities [17]:

1. FAN Coupled FAN (�2% �, �2.5 FC)

2. LPC Coupled LPC (�2% �, �2.2% FC)
3. HPC Coupled HPC (�2% �, �1.6 FC)

4. HPT Coupled HPT (�2% �, �1.5 FP4)

5. LPT Coupled LPT (�2% �, +3.3% FP45)

Each fault is modeled as a 2% decrease in efficiency from the baseline ‘‘good’’

engine. Since the fault signatures are derived from influence coefficients, they are

only approximately correct because they do not account for uncertainties in the

measurement process. Each gas path measurement is associated with an uncer-
tainty. One measure of this uncertainty is the standard deviations from revenue

service data. As given in [17,18], typical standard deviations for DEGT, DN1,

DN2, and DWF as 4.23 �C, 0.25%, 0.17% and 0.50%, respectively. These num-

bers are obtained from an analysis of airline monitoring data.
3. Neural signal processing

Since gas turbine measurements are often contaminated with noise and out-

liers, it is useful to perform a data cleaning function prior to fault isolation. In

this study, we use a radial basis function neural network (RBFNN) for remov-

ing noise from simulated signals. Radial basis networks are an alternative to

the more widely used multilayer perceptron networks trained using the back-

propagation algorithm and take much less computer time for training [28–30].

The RBFNN model consists of three layers: an input layer, a hidden (kernel)

layer and an output layer. The nodes within each layer are fully connected to
the previous layer. The input variables are each assigned to a node in an input

layer and pass directly to the hidden layer without weights. The hidden nodes

or units contain the RBF, also called transfer functions.

An RBF is symmetrical about a given mean or center point in a multidimen-

sional space. In the RBFN, a number of hidden nodes with RBF activation

functions are connected in a feed forward parallel architecture. The parameters

associated with the RBF�s are optimized during training. These parameter val-

ues are not necessarily the same throughout the network nor are they directly
related to or constrained by the actual training vectors. When the training vec-

tors are presumed to be accurate, i.e. non stochastic, and it is desirable to per-

form a smooth interpolation between them, then linear combinations of RBF�s
can be found which give no error at the training vectors. The methods of fitting

RBF�s to data, for function approximation, are closely related to distance



R. Verma et al. / Appl. Math. Comput. 172 (2006) 1342–1363 1347
weighted regression. The RBF expansion for one hidden layer and an arbitrary

RBF is represented by the equation

ykðxÞ ¼
XH
i¼1

wki expð�kci � xk=r2
i Þ;

where yk = kth output, wki = weight from the ith kernel node to the kth output
node, ci = centroid of the ith kernel node, ri = width of the ith kernel node and

H = number of kernel nodes. The parameters of the RBF wki, ci and ri are
commonly chosen by first selecting randomly or uniformly the ci and then

using singular value decomposition (SVD) to solve for wki and ri. This ap-

proach is not the most satisfactory. A better approach, suggested by Leonard

et al. [28], involves using K-means clustering to determine the ci, a K-nearest

heuristic to determine the ri and multiple linear regressions to determine the

wki. The K-means clustering algorithm finds a set of cluster centers and a par-
tition of the training data into subsets. Each cluster center is then associated

with one of the H kernels or centers in the hidden layer. After the centers

are established the width of each kernel is determined to cover the training

points to allow a smooth fit of the desired network outputs.
4. Fuzzy logic system

A fuzzy logic system (FLS) is a nonlinear mapping of an input feature vector

into a scalar output [18]. A typical FLS maps crisp inputs to crisp outputs using

four basic components: rules, fuzzifier, inference engine, and defuzzifier. Once

the rules driving the FLS have been fixed, the FLS can be expressed as a map-

ping of inputs to outputs. Rules can come from experts or can be obtained

from numerical data.

The fuzzifier maps crisp input numbers into fuzzy sets. An inference engine

of the FLS maps fuzzy sets to fuzzy sets and determines the way in which the
fuzzy sets are combined. In several applications, crisp numbers are needed as

an output of the FLS. In those cases, a defuzzifier is used to calculate crisp val-

ues from fuzzy values.

A fuzzy set generalizes the concept of an ordinary set whose membership

function only takes two values, zero and unity. The most commonly used

shapes for membership functions l(x) are triangular, trapezoidal, piecewise lin-
ear or Gaussian. Rules for the fuzzy system can be expressed as:

Ri : IF x1 is F 1 AND x2 is F 2 AND . . . xm is F m THEN y ¼ Ci;

i ¼ 1; 2; 3 . . . ;M ;

where m and M are the number of input variables and rules, xi and y are the

input and output variables, and Fi Æ Vi and Ci ÆW are fuzzy sets characterized
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by membership functions lFi(x) and lCi(x), respectively. Each rule can be

viewed as a fuzzy implication F1,2,3. . .m = F1 · F2 · � � � Fm Æ Ci, that is a fuzzy

set in V · W = V1 · V2 · V3 · � � � · Vm · W with membership function given by

lRiðx; yÞ ¼ lF 1ðx1Þ � lF 2ðx2Þ � � � � � lFmðxmÞ � lCiðyÞ;

where * is the product with x = [x1x2� � �xm] Æ V and y Æ W. In pattern recogni-

tion problem the outputs are often crisp sets, and lCi(y) = 1 is often used for

the product inference formula. Popular defuzzification methods include max-

imum matching and centroid defuzzification. In our study, we keep the out-

put as fuzzy sets as they are easier to interpret linguistically for diagnostic

and prognostic action. Rules for the fuzzy system are obtained by fuzzifica-

tion of the numerical values in the fingerprint charts using the following

procedure:

Algorithm 1

1. Each measurement delta is divided into N fuzzy sets whose geometry is

selected by the designer.

2. A set of four measurements delta corresponding to a given module fault is

input to the FLS and the degree of membership of the elements of the �EGT,
�WF, �N2 and �N1 are obtained.

3. Each measurement delta is then assigned to the fuzzy set with the maximum

degree of membership.

4. One rule is obtained for each module fault by relating the measurement del-

tas with maximum degree of membership to a module fault.

For any given input set of measurement deltas, the fuzzy rules are applied

using product implication. Once the fuzzy rules are applied for a given mea-

surement, we have degree of membership for FAN, LPC, HPC, HPT and

LPT. For fault isolation, we are interested in the most likely fault. The fault

with the highest degree of membership is selected as the most likely fault.

The main problem in Algorithm 1 is in the selection of the number and type

of fuzzy sets in Step 1. Typically, designers select the number and geometry of
the fuzzy sets based on knowledge of the problem. For example, the measure-

ments may be classified into five fuzzy sets named very low, low, medium, high

and very high. In case Gaussian functions are selected as membership func-

tions, the midpoints and standard deviations associated with each Gaussian

fuzzy set needs to be selected so that the entire measurement range is spanned

by the fuzzy sets and there is some intersection between the sets. Thus, the de-

signer must manually iterate over Algorithm 1 to obtain a fuzzy system which

has good performance. This is a trial and error process. Genetic algorithms are
one way of automating this process.
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5. Genetic algorithm

Genetic algorithms (GA) are a probabilistic search method. A brief introduc-

tion to GA is given below. Goldberg [31] and recent papers [32–35], give more

details about genetic algorithms. The genetic algorithm is motivated by the

hypothesized natural process of evolution in biological populations, where ge-
netic information stored in chromosomal strings evolve over generations to

adapt favorably to a static or changing environment. The algorithm is based

on elitist reproduction strategy, wheremembers of population, which are deemed

most fit, are selected for reproduction, and are given the opportunity to strength-

en the chromosomal makeup of progeny generation. This approach is facilitated

by defining a fitness function or a measure indicating the goodness of a member

of the population in the given generation during the evaluation process.

To represent designs as chromosome-like strings, the design variable is con-
verted to its binary equivalent and thereby mapped into a fixed length string of

0�s and 1�s. A number of such strings constitute a population of designs, with

each design having a corresponding fitness value. This fitness value could be

the objective function F(X) for a function maximization problem. Thus, the

GA can be used to solve optimization problems of the form,

Maximize F ðXÞ
Subject to X ðminÞ

i � X i � X ðmaxÞ
i .

The starting population is selected randomly in the domain lying between

the minimum and maximum values of X and then the following genetic oper-

ators applied to improve results:

1. Reproduction. Individuals are selected and the probability of selection is

based on their fitness value. The new population pool has higher average fit-
ness value than the previous pool.

2. Crossover. In the two-point crossover approach, two mating parents are

selected at random; the random number generator is invoked to identify

two sites on the strings, and the strings of 0�s and 1�s enclosed between

the chosen sites are swapped between the mating strings.

3. Mutation. A few members from the population pool are taken according to

probability of mutation pm, and a 0 to 1 or vice versa are switched at ran-

domly selected mutation site on the chosen string.

The process of reproduction, crossover and mutation constitute one genera-

tion of the GA. After several generations the GA is stopped and the best point

among the values taken as the optimal point. Being a probabilistic search meth-

od, GA�s are very good at finding global maxima. Furthermore, GA�s need only

function values and not gradient information, which makes them easy to use for
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real systems where accurate gradient information is difficult to obtain, and local

minima may occur. However, they are computationally expensive.
6. Genetic fuzzy system

There are two main problems in the generation of fuzzy systems [25]. The

first is that it is difficult to select the appropriate number of fuzzy sets. The sec-

ond is selection of the membership functions. For a given number of fuzzy sets

and type of membership functions the rules need to be created. However, if the

number of fuzzy sets or type of membership function changes, the rules can

change. Most fuzzy systems are designed using a trial and error process. There-

fore, any change in the membership functions or the number of fuzzy sets leads

to a change in the rule base; the process of designing a fuzzy system is iterative
and can become very cumbersome for a human designer. It is therefore desir-

able to create an automated procedure for the design of fuzzy systems.

A genetic algorithm is used to facilitate the design of the fuzzy system. The

approach is discussed below:

Algorithm 2

1. Define maximum and minimum values for a measurement delta �z by �z(max)

and �z(min) respectively.

2. Define the universe of discourse for Æz to be the set of real numbers between

the minimum and maximum values, U(�z) = [�z(min), �z(max)].

3. Define L(Dz) = �z(max) � �z(min) as the length of the universe of discourse.

4. Divide U into N Gaussian fuzzy sets F1,F2, . . . ,FN and define the midpoint

of fuzzy point F1 by
�z(min) and of fuzzy set FN by �z(max), respectively.These

fuzzy sets can be defined using the following equation:

lðxÞ ¼ e�0.5 x�m
rð Þ2 ;

where m is the midpoint of the fuzzy set and � is the uncertainty (standard

deviation) associated with the variable.

5. Assuming the fuzzy sets are equally spaced, calculate the mid points of fuzzy

set F2 as
�z(min) + �m, of set F3 as

�z(min) + 2*
�m and set Fi as

�z(min) + (i � 1) �m

where

Dm ¼ LðDzÞ
N � 1

.

6. Allow the fuzzy sets for the measurement delta Dz to move together along

the number line by an amount x. This allows the midpoints of the fuzzy sets

to change, along with the values �z(min) and �z(max). However, the distance

L(Dz) remains constant. With this definition, the midpoints of the fuzzy sets

are defined once N and x are selected.
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7. Select the standard deviation of the fuzzy set for measurement Dz as the

measurement uncertainty of Dz.
The above approach can now be applied to the four measurement deltas

considered in this study. This procedure is discussed in the algorithm below.
Algorithm 3

1. Define the maximum and minimum values for each measurement DEGT,
DN1, DN2 and DWF from the fault signatures shown in Table 1. Thus for

DEGT, the maximum and minimum values are 21.77 �C and �7.72 �C,
respectively.

2. Define the range spanned by each variable as L1 = L(DEGT), L2 = L(DN1),

L3 = L(DN2), and L4 = L(DWF).

3. Choose N fuzzy sets to partition each measurement. To start the algorithm,

use N = 2.

4. Let x1, x2, x3 and x4 define the tuning variables associated with DEGT, �N1,
�N2 and �WF respectively. To start the algorithm, select random values sat-

isfying �25%Li Æ xi Æ 25%Li, i = 1, 4. Choose r for DEGT, DN1, DN2 and

DWF as 4.23 �C, 0.25%, 0.17% and 0.50%, respectively.

5. Generate the fuzzy system from the numerical data using the conventional

procedure outlined before in Algorithm 1.

6. Using a sample of 100 noisy data points, calculate success rate as

S ¼ 100
NC

NT

;

where NC is the number of correct classifications and NT is the total number

of classifications.

7. Use GA to solve the optimization problem by taking the best solution from

N ðmaxÞ
gen generations:

Maximize Sðx1; x2; x3; x4Þ
Subject to � 25%Li � xi � 25%Li; i ¼ 1; 4.

8. Increase N by 1,
(a) if N < N(max)

(i) Go to 3,

(b) else

(i) Select N with highest success rate S (if highest S is obtained by more
than one value of N, select the lowest N that gives the highest S).

The only values, which need to be the input of the genetic fuzzy system

(GFS), are the values of measurement deltas corresponding to each fault,
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and the fault signature based on the linearized influence coefficients at the cur-

rent operating point. For the standard deviations of the Gaussian fuzzy sets,

we use the measurement uncertainty data that can be obtained by a statistical

analysis of engine data. If the measurement uncertainties change, the GFS can

be tuned to the different numerics. Thus we get an automatic system that

greatly reduces the need of manual manipulation.
7. Numerical results

In this study, a maximum of nine generation of the GA are used for each N

values of the fuzzy sets. The population size, crossover probability and muta-

tion probability are chosen as 20, 0.8 and 0.1, respectively. The maximum num-

ber of fuzzy sets is selected as 10.
Since genetic algorithms are computationally intensive, the issue about com-

putation time is important for practical implementation. As an example, the

code implementing the algorithm in this study takes about 3–5 min to run

on Matlab on a Pentium 4 PC with the full nine generations of GA. However,

in many cases, the convergences occur in 2–3 generations given that we use

only four design variables and have a starting population of 20 for each vari-

able. Each design variable is represented by a 10 bit string.

As mentioned earlier, a standard approach in the design of the optimal fuzzy
system is to consider the midpoints and standard deviations of each fuzzy set as

design variables. If there are N fuzzy sets and M measurements, the maximum

number of midpoint design variables is N * M and the maximum number of

standard deviation design variables is N * M. The total number of design vari-

ables is therefore 2 * N * M. For the case with N = 6 andM = 4, we would have

a total of 2 * 6 * 4 = 48 design variables, leading to high computer time

requirements.

The algorithm in this study uses some prior knowledge of the problem to
reduce the number of design variables dramatically. The standard deviations

are thus selected to be equal to the measurement uncertainties. In this manner,

the fuzzifier is able to act as a filter which addresses noise in the data in a direct

manner. By making the requirement that the universe of discourse only spans

the neighborhood of the measurements, the region where fuzzy set discretiza-

tion is needed is optimized. Using a uniform distribution of fuzzy sets leads

to so-called design variable linking in optimization and allows the midpoints

to be defined using only two variables for each measurement: the number of
fuzzy sets N and the translation variable x. For a given number of fuzzy sets,

the number of design variables is equal to the number of measurements which

is four in this case.

The fuzzy system is tested using simulated data developed from the fault sig-

natures shown in Table 1. For each module, 100 noisy data sets are generated
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for module faults with 2% deterioration in efficiency. Noise is added to the

simulated measurement deltas using the typical standard deviations for �EGT,
�N1, �N2, and �WF as 4.23 �C, 0.25%, 0.17% and 0.50%, respectively.

Fig. 1 shows the success rate for the optimal GFS as the number of fuzzy

sets is increased from 2 to 9. For each value of N in this figure, the optimal val-

ues of x are calculated using Algorithm 3. For only 2 fuzzy sets, the success rate
is about 80% and quickly rises as the number of sets increases. The number

N = 6 is selected by Algorithm 3 as the point where the GFS is optimal with

a minimum number of sets. Fig. 2 shows the success rate of the fuzzy system

with six sets as the GA generations� progress. In this case, only two generations
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Fig. 2. Evolution of success rate for fuzzy system with 6 sets with generations of genetic algorithm.
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were needed to achieve a success rate of 100% and the values of x correspond-

ing to the second generation of GA is selected by Algorithm 3 as the optimal

fuzzy system.

Tables 2–6 provide the midpoints of the fuzzy sets for the four measure-

ments as the number of fuzzy sets increases from two to six. The starting values

in Table 2 show two fuzzy sets with midpoints centered near the maximum and
minimum values of the measurements. The values in Table 6 correspond to the

case where N = 6 in Fig. 1 and Ngen = 2 in Fig. 2. Figs. 3–7 show the evolution

of the fuzzy system using the fuzzy sets for exhaust gas temperature as an

example. Fig. 3 shows the starting case with two fuzzy sets which is a crude
Table 2

Midpoints of two fuzzy sets

DEGT (�C) �7.69 21.80

DN1 (%) �1.93 1.38

DN2 (%) �1.10 1.30

DWF (%) �1.89 2.61

Table 3

Midpoints of three fuzzy sets

DEGT (�C) �8.16 6.58 21.33

DN1 (%) �2.40 �0.75 0.91

DN2 (%) �1.57 �0.37 0.83

DWF (%) �2.36 �0.11 2.14

Table 4

Midpoints of four fuzzy sets

DEGT (�C) �8.31 1.52 11.35 21.18

DN1 (%) �2.55 �1.45 �0.35 0.76

DN2 (%) �1.72 �0.92 �0.12 0.68

DWF (%) �2.51 �1.01 0.49 1.99

Table 5

Midpoints of five fuzzy sets

DEGT (�C) �7.82 �0.44 6.92 14.30 21.67

DN1 (%) �2.06 �1.23 �0.40 0.42 1.25

DN2 (%) �1.23 �0.63 �0.03 0.57 1.17

DWF (%) �2.02 �0.89 0.23 1.36 2.48
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Fig. 3. Discretization of universe of exhaust gas temperature using two fuzzy sets.

Table 6

Midpoints of six fuzzy sets

VL L ML MH H VH

DEGT (�C) �9.62 �3.72 2.17 8.07 13.97 19.87

DN1 (%) �2.23 �1.56 �0.90 �0.24 0.42 1.08

DN2 (%) �1.21 �0.72 �0.25 0.23 0.71 1.19

DWF (%) �2.25 �1.35 �0.45 0.45 1.35 2.25
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Fig. 4. Discretization of universe of exhaust gas temperature using three fuzzy sets.
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descretization. In Fig. 7, the optimal level of discretization with six fuzzy sets is

achieved.
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Fig. 5. Discretization of universe of exhaust gas temperature using four fuzzy sets.
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Fig. 6. Discretization of exhaust gas temperature using five fuzzy sets.
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In Table 6 each fuzzy set is assigned a linguistic value of very low (VL), low

(L), medium-low (ML), medium-high (MH), high (H) and very high (VH).

These ‘‘linguistic measures’’ are shown in Fig. 7 for the six DEGT fuzzy sets.

The fuzzy rule base for the case with six fuzzy sets is shown in Table 7. Table 7

is the result of fuzzification of the numerical data in Table 1. These rules can be

read as follows for the FAN module:

IF

�EGT is very low AND
�N1 is very high AND
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Fig. 7. Discretization of universe of exhaust gas temperature using six fuzzy sets.

Table 7

Rules for optimal fuzzy system with six fuzzy sets

DEGT DN1 DN2 DWF

FAN VL VH L VL

LPC ML MH H MH

HPC MH MH ML H

HPT VH MH VL VH

LPT L VL VH VL
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�N2 is low AND
�WF is very low

THEN

Problem in FAN module

The rules for the other modules can be similarly interpreted. These rules

provide a knowledge base and represent how a human engineer would interpret

data to isolate an engine fault using fingerprint charts.
Table 8 shows the success rate of the fuzzy set with 100 noisy data points.

The noisy data points for testing are different from data used for developing

the rule base of the fuzzy system. The average success rate is 100%, compared

to 98.2% for the manually designed fuzzy system in Ref. [18]. The manually

designed fuzzy system showed some problems in differentiating between faults

in the LPC and those in the HPC. It is clear that GFS is able to identify the

correct fault despite the presence of considerable uncertainty in measurements.

The effect of noise on the GFS is shown in Fig. 8 and the results are com-
pared with data from the fuzzy system from Ref. [18]. Here the noise ratio is



Table 8

Results for optimal fuzzy system and manually designed system

Module Success rate (%) Success rate (%)a

HPC 100 94

HPT 100 100

LPC 100 97

FAN 100 100

LPT 100 100

Average success rate 100 98.2

a From [18].
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Fig. 8. Success rate in fault isolation with increasing noise levels in data.
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defined as r/r0 where r0 is the baseline noise level used for developing the GFS

and r is the noise level in the simulated data used for testing. It is clear that

both the systems show a decline in the average fault isolation success rate with

increasing noise levels in the data. However, the GFS appear to show a some-

what better performance as the noise level increases. This is due to the ‘‘opti-

mal’’ nature of the fuzzy system developed and the use of formal optimization

methods rather than a trial and error process in maximizing the success rate.

The result of applying a neural network preprocessor to the GFS is discussed
below.

To study the signal processor, we assume time series of 100 discrete points.

From k = 0 to k = 50, the signal changes linearly from 0 to sign(Dz)r0/2. From
k = 50 to 51, the signal changes by Dz. From k = 51 to 100 the signal changes

from Dz to Dz + sign(Dz)r0/2. This simulates a ‘‘single fault’’ situation, where a

step jump equal to the measurement deltas corresponding to the module faults
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is added to a linearly varying signal. As an example, the DEGT variation for an

HPC fault is simulated using a linear variation from 0 �C at k = 1 to 4.23/

2 = 2.115 �C at k = 50, followed by a change to 13.6 + 4.23/2 = 15.715 �C at

k = 51, and a linear variation thereafter to 13.6 + 4.23 = 17.83 �C. Fig. 9 shows

the noisy signal and RBF filtered signal.

For determining the RBF unit centers, we use a �K-means� clustering algo-
rithm. The �K-means� clustering algorithm finds a set of clusters each with cen-

ters from the given training data. The cluster centers become the centers of the

RBF units. The number of clusters is a design parameter and determines the

number of RBF units, i.e. nodes, in the hidden layer. We have used H = 20.

When the RBF centers have been established, the widths of each RBF can

be calculated. The width of any RBF distance to the nearest p RBF units,

where p is a design parameter for the RBFN, for unit t is given by

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

j¼1

Xr

k¼1

ðxk̂i � xk̂jÞ
2

" #vuut ;

where xbki and xbkj are the kth entries of the centers of the ith and jth hidden

units. We have used p = 5. When the centers and widths of the RBF units have

been chosen, then the N = 100 training samples are processed through the hid-

den nodes to generate an H · N matrix, called A. Let T be the M · N desired

output matrix for the training patterns and M = 100 is the number of output

nodes. The objective is to find the weights that minimize the error between
the actual output and the desired output of the network. Essentially, we are try-

ing to minimize the objective (cost) function
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Fig. 9. Noisy and filtered DEGT signal simulating HPC fault.
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kT � WAk;
whereW is theM · Hmatrix of weights on the connections between the hidden

and output nodes of the network. We train the RBF network with added
Gaussian noise at r0 = 4.23 �C, 0.25%, 0.17% and 0.50%, respectively for

DEGT, DN1, DN2, DWF.

Noise is added to the ideal signal using a baseline value r0 of typical stan-
dard deviations for �EGT, �N1, �N2, and �WF as 4.23 �C, 0.25%, 0.17% and

0.50%, respectively. The filtered signal in Figs. 9 and 10 show considerable

noise reduction while preserving the nature of the step edge. This data repre-

sents one noisy signal for each measurement. The visual quality of the data

is considerably improved. Similar results are obtained for all the signals corre-
sponding to the faults in Table 1. To summarize these results concisely, the fol-

lowing noise reduction measure is defined based on the mean absolute error

(MAE) criteria.

MAEðnoisyÞ ¼
XN
i¼1

1

N
DzðnoisyÞi � DzðidealÞi

��� ���;
MAEðfilteredÞ ¼

XN
i¼1

1

N
DzðfilteredÞi � DzðidealÞi

��� ���;
NR ¼ 100

MAEðnoisyÞ �MAEðfilteredÞ

MAEðnoisyÞ
.
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Fig. 10. Noisy and filtered DWF signal simulating LPT fault.



Table 9

Noise reduction using radial basis neural network

DEGT (�C) DN1 (%) DN2 (%) DWF (%)

HPC 78.84 67.03 67.38 81.87

HPT 84.24 72.07 83.38 83.71

LPC 77.50 74.34 78.48 77.95

FAN 74.80 82.43 79.04 80.62

LPT 68.76 83.83 84.68 82.95

Average 76.83 75.94 78.59 81.42
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For each signal, 100 samples of noisy test data are created and the noise

reduction calculated. These values are summarized in Table 9 and show a noise

reduction averaging between 75% and 81%. Results in this paper clearly dem-

onstrate the power of the soft computing framework for automated decision

making under uncertainty. The approach uses the concept of ‘‘hybridization

in soft computing’’ where using different techniques such as neural networks,

genetic algorithms and fuzzy logic together gives better results than if each
method is used individually [36]. The ‘‘hybridization’’ process uses the

strengths of each different approach to attack the problem.
8. Conclusions

A novel genetic fuzzy system (GFS) is developed in this study for fault iso-

lation in gas turbine engines. The GFS has better performance than a manually
designed fuzzy system because GA�s automatically selects the number of fuzzy

sets and membership functions based on the fault signatures of the engine and

measurement uncertainties. The GA searches for the optimum solution given a

comparatively small number of rules compared to all possible. This minimizes

the computational demand of the model generation and allows problems with

realistic dimensions to be considered. The fault signatures are derived from

influence coefficients. A radial basis function neural network (RFBNN) is also

studied for data cleaning prior to fault isolation. RBFNN share the universal
approximation capability, and take much less training time and offer much bet-

ter performance than the traditional linear filter.

The following conclusions can be drawn from this study:

1. For simulated faults considered in this study, the GFS achieved a success

rate of 100% for the five module faults (HPC, LPC, FAN, HPT, and

LPT) and four measurements (�EGT, �N1, �N2, �WF). In contrast, a manu-

ally developed fuzzy system achieved a success rate of 98% with some con-
founding between the LPC and HPC module faults.
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2. The trial and error process used to design a fuzzy system leads to consider-

able human labor and is often sub optimal. Different aircraft engines oper-

ated by different airlines can have different numerics such as influence

coefficients and measurement uncertainties and it is a tedious process to

develop a fuzzy system for each case. The GFS automates the process of

design of the fuzzy system.
3. As noise levels in data increase, the GFS retains its edge over the manually

designed fuzzy system, giving 2–5% higher success rate with the same

numerics.

4. A radial basis neural network prefilter achieved 75–81% noise reduction for

simulated signals with linear deterioration and step changes. When the neu-

ral network is used to prefilter signals prior to fault isolation, the accuracy of

the GFS is further improved for lower quality data by 2–4%.
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