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In this paper, we have proposed a novel use of data mining algorithms for the extraction of knowledge

from a large set of flow shop schedules. The purposes of this work is to apply data mining

methodologies to explore the patterns in data generated by an ant colony algorithm performing a

scheduling operation and to develop a rule set scheduler which approximates the ant colony algorithm’s

scheduler. Ant colony optimization (ACO) is a paradigm for designing metaheuristic algorithms for

combinatorial optimization problems. The natural metaphor on which ant algorithms are based is that

of ant colonies. Fascinated by the ability of the almost blind ants to establish the shortest route from

their nests to the food source and back, researchers found out that these ants secrete a substance called

‘pheromone’ and use its trails as a medium for communicating information among each other. The ant

algorithm is simple to implement and results of the case studies show its ability to provide speedy and

accurate solutions. Further, we employed the genetic algorithm operators such as crossover and

mutation to generate the new regions of solution. The data mining tool we have used is Decision Tree,

which is produced by the See5 software after the instances are classified. The data mining is for mining

the knowledge of job scheduling about the objective of minimization of makespan in a flow shop

environment. Data mining systems typically uses conditional relationships represented by IF-THEN

rules and allowing the production managers to easily take the decisions regarding the flow shop

scheduling based on various objective functions and the constraints.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we propose an approximate method to resolve a
multi-product batch flow shop schedule. Our paper is based on
the Koonce’s work [1] that uses data mining techniques to extract
forms from genetic algorithm solution, but we propose an ant
colony algorithm that is fast and easy to implement for generating
a learning population. Further we propose another method of
knowledge extraction that will generate decision rules finding the
affection order of operation on all machines. We studied an 8�4
benchmark problem of Taillard [2] to compare our results.

This paper is divided into two sections. The first section
describes the ant colony algorithm (AC) and the method to
generate a population of the optimal sequences. The second
section deals with mining the solutions given by AC to extract
from them the decision rules. These rules are based on several
attributes like processing time (PT), position in the job, remaining
time of the job, machine loading (ML), etc. to find the affection
order of operation on every machine.
ll rights reserved.

. Kumar).
2. Ant colony optimization (ACO)

Ants are social insects. They live in colonies and all their
actions are towards the survival of the colony as a whole, rather
than the benefit of a single individual of the society. The
individual ants have no special abilities. They communicate
between each other using chemical substances, the pheromones.
This indirect communication allows the entire colony to perform
complex tasks, such as establishing the shortest route paths from
their nests to feeding sources. An optimization algorithm was
proposed that tries to mimic the foraging behavior of real ants, i.e.
the behavior of wandering in the search for food [3]. This
algorithm has already been successfully used to solve the TSP
and other NP hard optimization problems (Fig. 1).

When an ant is searching for the nearest food source and
comes across with several possible trails, it tends to choose the
trail with the largest concentration of pheromone t, with a certain
probability r. After choosing the trail, it deposits a certain
quantity of pheromone, increasing the concentration of phero-
mones in this trail. The ants return to the nest using always the
same path, depositing other portion of pheromone in the way
back. Imagine then, that two ants at the same location choose two
different trails at the same time. The pheromone concentration on

www.sciencedirect.com/science/journal/rcm
www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2009.04.015
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Fig. 1. How real ants find a shortest path. (A) Ants arrive at a decision point. (B) Some ants choose the upper path and some the lower path. The choice is random. (C) Since

ants move at approximately constant speed, the ants which choose the lower, shorter, path reach the opposite decision point faster than those which choose the upper,

longer, path. (D) Pheromone accumulates at a higher rate on the shorter path. The number of dashed lines is approximately proportional to the amount of pheromone

deposited by ants.
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the shortest way will increase faster than the other: the ant that
chooses this way, will deposit more pheromones in a smaller
period, because it returns earlier. If a whole colony of thousands of
ants follows this behavior, soon the concentration of pheromone
in the shortest path will be much higher than the concentration in
other paths. Then the probability of choosing any other way will
be very small, and only very few ants among the colony will fail to
follow the shortest path. There is another phenomenon related
with the pheromone concentration. Since it is a chemical
substance, it tends to evaporate in the air, so the concentration
of pheromones vanishes along the time. In this way, the
concentration of the less used paths will be much lower than
that on the most used ones, not only because the concentration
increases in the other paths, but also because their own
concentration decreases.
3. Batch processing flow line

The problem of scheduling flow shops with three or more
stages has been considered to be NP-complete in strong sense [4].
Niem [5] provide overviews of the role of scheduling by defining
what the scheduling problem involves and the various network
structures, i.e., the layout of machines and flow of material that
are prevalent to the batch production industry. The batch
processing flow line is a kind of popularly implemented produc-
tion lines in the metalworking and semiconductor industries. In
some stages of a batch processing flow line, a limited number of
jobs with the same production demand can be processed
simultaneously as a batch by a set of the batch processing
machines, examples include diffusion and thermal annealing
operations in semiconductor wafer fabrication, burn-in operations
in semiconductor testing, heat treatment in metalworking and the
printed circuit board (PCB) SMT flow line [6]. Further batch
process manufacturing finds its usefulness in the pharmaceutical,
polymer, food and especially chemical industries, because it
provides the necessary flexibility to accommodate various
production requirements using the same processing facility.

The makespan minimization of the serial multi-product batch
problem comprises of two tasks: (1) determination of completion
times dealing with the details of operation schedule for a given
sequence, and (2) determination of the optimal sequence. This
batch scheduling problem comprises of several different sub-
categories depending on the way of handling the intermediate
products between successive stages. In this paper, we specifically
consider that each of N (i ¼ 1,y, N) jobs follow the same job order
on M (j ¼ 1,y, M) machines (flow shop scheduling) and further
make the following assumptions:
a.
 Processing time Tij for each job on each machine is known a
priori.
b.
 Use of suitable intermediate policy.

c.
 Each job can be processed on one machine at a time.

d.
 Jobs are not preemptable.

For batch processes, different intermediate storage policies are
considered in literature, namely, the unlimited intermediate
storage, finite intermediate storage, no intermediate storage and
zero-wait processing (ZW). Heuristic and MILP formulations for
makespan minimization for all different storage policies are
available in literature [7–11]. Here, we have considered the ZW
policy, which is widely followed in industries.

3.1. ZW policy

In batch processing, some products cannot be stored at all
between some stages in the processing sequence like in chemical
or heat treatment processes. These batches of products are usually
unstable reaction intermediates that must be processed by the
next processing unit immediately upon completion of the current
processing unit. For such product stages, zero-wait policy must be
adopted [12]. The completion time of product i at unit j, Cij for ZW
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 Initialization:
   Set for every pair (i, j): τij  = τ 0 
    Set N = 1 and define a Nmax  

Place the qants 
     While N <= Nmax 
       Build a complete tour 
       For i = 1 to n 
          For k = 1 to q 
          Choose the next node using pij  = (3)   k

       Update locally τij  (t) using (4)  
            Update the tabu list Γ 

           Analyze solutions 
              For k = 1 to q 

Compute performance index z  
Update globally τij  (t + n) using (5)  

Fig. 2. Ant colonies optimization algorithm.

Table 1
Process data for example.

Products Units

U1 U2 U3 U4

P1 10 20 5 30

P2 15 8 12 10

P3 20 7 9 5

P4 14 6 15 10

P5 6 11 5 15

P6 13 7 17 10
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policy can be given by

Cij ¼ CiM �
XM

k¼jþ1

tik (1)

CiM ¼ max½ðCði�1ÞM þ tiMÞ; . . . ; ðCði�2Þ2 þ tiM þ tiðM�1Þ þ � � � þ ti2Þ,

ðCði�1Þ1 þ tiM þ tiðM�1Þ þ � � � þ ti1Þ�

¼ max Cði�1Þ1 þ
XM
k¼1

tik; Cði�1Þ2 þ
XM
k¼2

tik; . . . ; Cði�1ÞM þ
XM
k¼M

tik

 !

4. ACO algorithm for flow shop scheduling problem

In general, the ant colony behavior can be described formally
using the following mathematical framework. Let the nest and the
food source be connected by several different paths, connecting n

intermediate nodes. The ant k in node i chooses one of the
possible trails (i, j) connecting the actual node to one of other
possible positions jA{1,y, n} with probability

pk
ij ¼ f ðtijÞ (2)

where tij is the pheromone concentration on the path connecting i

to j, in the way to the food source. The pheromone in this trail will
vary in time according to

tijðt þ 1Þ ¼ tijðtÞ � rþ dk
ij (3)

where dij
k is the pheromone released by the ant k on the trail (i, j)

and rA[0, 1] is the evaporation coefficient. The system is
continuous, so the time acts as the performance index, since the
shortest paths will have the pheromone concentration increased
in a shorter period. This is the mathematical description of a real
colony of ants. However, the artificial ants that mimic this
behavior, can be uploaded with more characteristics, e.g. memory
and ability to see. If the pheromone expresses the experience of the
colony in the job of finding the shortest path, memory and ability
to see, express useful knowledge about the problem the ants are
solving. In this way, (2) can be extended to

pk
ijðtÞ ¼

taijZ
b
ijPn

reGtairZ
b
ir

if jeG

0 otherwise

8>><
>>: (4)

where Zij is a visibility function and G is a tabu list. In this case, the
visibility expresses the capability of seeing which is the nearest
node j to travel towards the food source. G is a list that contains all
the trails that the ant has already passed and must not be chosen
again (artificial ants can go back before achieving the food source).
This acts as the memory of an ant. The parameters a and b express
the relative weight between the importance’s of pheromone
concentration and the visibility Z. Finally, each ant deposits a
pheromone dij

k on the chosen trail

dk
ij ¼ tc (5)

where tc is a constant.
In the artificial ant’s framework, Eq. (3) is not sufficient to

mimic the increasing pheromone concentration in the shortest
path. With real ants, time acts as a performance index, but the
artificial ants use all the same time to perform the task, whether
they choose a short path or not. For the artificial ants, the length l

of the paths they have passed will determine if the solution is
good or not. Thus, the best solution should increase even more the
pheromone concentration on the shortest trail. To do so, (3) is
changed to

tijðt þ 1Þ ¼ tijðtÞ � rþDtij (6)
where Dtij are pheromones deposited in the trails (i, j) followed by
all the q ants,

qDtij ¼
X
K¼1

dk
ij � f ð1=zkÞ (7)

zk is the performance index. The paths followed by the ants that
achieved the shortest paths have their pheromone concentration
increased. Notice that the time interval taken by the q ants to do a
complete tour is t+n iterations. A tour is a complete route between
the nest and the food source and an iteration is a step from i to j

done by all the ants. The algorithm runs Nmax times, where in
every Nth tour, a new ant colony is released. The total number of
iterations is Nmax x n. The general algorithm for the ant colonies is
described in Fig. 2

4.1. Ant colony algorithm with genetic algorithm operators for flow

shop

Let us now illustrate the ant algorithm for optimal scheduling
of batch production with N ¼ 6 products each being processed on
M ¼ 4 machines using processing times tij given in Table 1.

For this problem, A ¼ 5 software ants (agents) are deployed to
find an optimal schedule that minimizes the makespan given by
Eq. (2). The ants decide the position of product number in the
schedule by either one of the following processes:
(a)
 Chooses the site with maximum pheromone trail using
certain probability q0 (q0 is a priori defined number in the
range (0, 1), we used q0 ¼ 0.75 for illustrative example).
(b)
 Chooses one of the N sites using a stochastic distribution with
a probability (1�q0), denoted as, pij.
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Table 2
Sequence generated.

Product P1 P2 P3 P4 P5 P6

Position 4 1 6 3 2 5

Table 3
Process data.

Products Units

U1 U2 U3 U4

P1 10 20 5 30

P2 15 8 12 10

P3 20 7 9 5

P4 13 7 17 10

P5 8 3 16 7

P6 6 9 22 7

P7 7 5 15 12

P8 14 13 6 4
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The first process is known as exploitation whereas the latter is
termed as biased exploration. To decide one of the above
mechanisms a random number between zero and one must be
drawn. Let the chosen random number be 0.69. As this value is
less than q0 ¼ 0.75, the first process will be chosen to decide
position of product number. From the pheromone matrix, which
product number has the highest affinity towards position number
one (i.e. a position chosen with highest pheromone concentration)
is decided. Let the ant choose element one next for deciding its
position in the schedule. The algorithm generates a random
number say, r ¼ 0.86. The random number generated is greater
than q0 hence; the algorithm uses the mechanism (b) for
positioning element one in the current partial schedule. The ant
chooses position j for placing element i by exploitation using
Eq. (4). In this way, the ant develops its complete schedule. As soon
as an ant constructs the solution, the pheromone trail tij is updated
locally using the following Eq. (5). Where, r is the evaporation rate
generally lies in the range (0, 0.1) and (1�r) is the persistence of
trail. Thus, higher value of evaporation rate results into greater loss
of information gathered in the past. Thus, the complete schedule
generated by the first ant is given in Table 2.

The remaining four ants construct their solutions and modify
the pheromone trail matrix using local updating rule employing
the above-mentioned procedure. The fitness of solutions gener-
ated by different ants is now computed using Eq. (2). The solution
with highest fitness value is allowed to update the pheromone
trail, which is called global trail updating. The global pheromone
trail updating is intended to strengthen the edges belonging to the
solution having minimum makespan value in the current itera-
tion. The global updating is done by Eq. (6)

Thus, the algorithm essentially works as follows: A number of
ants start with empty solution strings. Each ant builds a solution
by repeatedly applying a stochastic greedy rule (process (a)) and/
or random probabilistic rule (process (b)). While constructing its
solution, an ant also modifies the amount of pheromone on the
chosen edges by applying the local updating rule. Once all the ants
have build their solution, the amount of pheromone on edges is
modified again by applying global updating rule.

4.2. Use of genetic operators

The algorithm continuously develops new solutions in order to
find an optimal/near-optimal sequence of jobs with minimum
makespan. In order to generate new region for ant tour, we had
used the crossover and mutation genetic operators. We had
performed corresponding GA using PMX and OX operators as
advocated by Jung et al. The crossover operation is done as
follows. Select a parent randomly and set the first variable of the
child’s position vector (which for the present problem is the vessel
size for the first stage) same as that of the first element of the
parent’s positions vector. The subsequent values of the variables
of the child are set to the corresponding values of a randomly
chosen parent with a probability equal to the crossover prob-
ability (CP). A cross over probability of one means that each
element of the child’s position vector has a different parent. A CP
of zero means that the child region has all the elements same as
the chosen single parent. After the crossover step, mutation is
carried out by randomly adding or subtracting a value to each and
every variable of the newly created region with a probability equal
to a suitably defined mutation probability. The mutation step size
is reduced as per the relation:

DðT;RÞ ¼ Rð1� Uð1�TÞb
Þ (8)

where U is a random number from [0, 1], R is the maximum step
size, T is the ratio of the current iteration number to that of the
total number of iterations and b is a positive parameter controlling
the degree of nonlinearity. The nonlinear reduction in mutation
span reflects the decreased need for global search as the iteration
proceeds and enhances the probability of locating maximum by
concentrated search around a reduced search radius. In trail
diffusion, which is another element in global search carried out by
the ant algorithm, two parents are selected at random from the
parent regions. The variables of the child’s position vector can
have either (1) the value of the corresponding variable from first
parent; (2) the corresponding value of the variable from second
parent, or (3) a combination arrived from a weighted average of
the above

xðchildÞ ¼ ðaÞxiðparent 1Þ þ ð1� aÞxiðparent 2Þ (9)

where a is a uniform random number in the range [0, 1]. The
probability of selecting third option is set equal to the mutation
probability while allotting equal probability of selecting the first
two steps. Thus, if mutation probability is 0.6 the probability of
selecting third option is 0.6 while the probability of selecting
option 1 or 2 is 0.2 each. The trail value of the newly created child
regions is assigned a trail value lying between the values of the
original parent regions. The pheromone values are decreased after
each iteration by

tiðt þ 1Þ ¼ rtiðtÞ (10)

The ant colony was run for the problem N ¼ 8 and M ¼ 4 with
the process time as shown in Table 3 for 150 iterations and we got
different sequences which satisfy the criterion. The Gantt chart for
one of the solution which gives the optimal completion time 142
with the sequence 5, 4, 1, 6, 3, 7, 2, 8 is shown in Fig. 3.

Table 4 shows the pheromone matrix for the sequence
generated by ants for the solution shown in Fig. 4. The bold
numbers in Table 4 shows the affection of a job towards a position
in the sequence. More the concentration of pheromone value
more the possibility of passing the ants through that position.
5. Data mining

The different sequences obtained from the ant colony algo-
rithm for 8�4 flow shop problem should be properly structured
in order to mine. The classification of the data was done on some
attributes. These attributes contribute mainly in the scheduling
operation. For this we use the characteristics processing time,
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Fig. 3. Gantt chart for ZW policy for problem shown in Table 3.

Table 4
Pheromone matrix for solution for the 8�4 flow shop scheduling problem for the sequence shown in the Gantt chart shown in Fig. 3.

Job no. Pheromone value for each position

P1 P2 P3 P4 P5 P6 P7 P8

J1 0.00566385 0.0337077 0.171359 0.00515377 0.0113062 0.00580029 0.00832053 0.00515377

J2 0.00582081 0.00588679 0.00572423 0.00823283 0.00566385 0.0404619 0.16911 0.00556427

J3 0.00691272 0.00768597 0.0143749 0.0401588 0.354684 0.00734112 0.00588679 0.128636

J4 0.00515377 0.126699 0.00515377 0.00515377 0.0058497 0.0516028 0.0416981 0.00515377

J5 0.199369 0.00515377 0.00515377 0.00549667 0.00515377 0.00778495 0.00515377 0.0131995

J6 0.00515377 0.016125 0.0337077 0.169428 0.00618129 0.00515377 0.00515377 0.00556164

J7 0.0128565 0.0460527 0.00553477 0.00768729 0.0410516 0.121881 0.00515377 0.00624755

J8 0.00553477 0.00515377 0.00545694 0.00515377 0.0013579 0.00643934 0.00598799 0.0769481
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Fig. 4. Machine loading for 8�4 problem.
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remaining process time (RPT), position of operation in its job
(POJ), time length of a job (TLJ) and machine loading. Data mining
is an automated process of extracting structured knowledge from
databases, which is often referred to as a particular step in the
overall process of discovering useful knowledge from data, called
knowledge discovery from database (KDD) [13]. Data mining is a
step of a long process chain of data analyzing that involves the
evaluation and interpretation of pattern to determine what
constitutes knowledge. Data mining is an interdisciplinary field,
whose core is at the intersection of machine learning, statistics
and database. There are several data mining tasks, including
classification, regression, clustering, dependence modeling, etc.
Among these tasks, the goal of classification is to assign each case
(object, record, or instance) to one class, out of a set of predefined
classes, based on the values of some attributes (called predictor
attributes) for the case. In the classification task, the discovered
knowledge is often expressed in the form of IF-THEN rules, which
have the advantage of being a high-level and symbolic knowledge
representation contributing towards the comprehensibility of the
discovered knowledge (Fig. 5).

The main purpose of applying the data mining in this paper is
to predict for each operation of the multi-product batch proces-
sing flow shop its affection order on its machine according to the
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Table 5
Different sequences from ant system.

No. Optimal sequence of jobs Completion time

1 5,4,1,6,3,7,2,8 142

2 5,2,4,1,6,3,7,8 142

3 7,1,5,6,4,2,8,3 142

4 7,5,6,4,2,8,1,3 142

Table 6
Discretization attributes with Chi2 algorithm.

Attributes Short Mean Long

PT [1,8] [9,18] [19,30]

RPT [0,18] [19,37] [38,56]

UPT [32,40] [41,52] [53,65]

ML [30,87] – [88,110]
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various characteristics. We use in this paper the supervised
learning process called also concept learning from example,
consists in characterizing pre-classified objects by a supervisor
in one or several classes under some attributes. The process of
classification amounts in three stages and these are creation of a
classifier from data set, the classification of the new instances via
the classifier and evaluation of the performance of this last one.
The ant colony was run for the problem N ¼ 8 and M ¼ 4 with the
process time as shown in Table 3 for 150 iterations and 16 distinct
sequences are found which satisfy the criterion. Out of these some
are shown in Table 5.

The properly structured attributes are transferred from con-
tinue attribute to discreet attribute in order to obtain a general
model which will be applicable to a vast set of scheduling flow
shop problems. For discretization the chi2 algorithm [14–16] was
used. The chi2 algorithm is based on the X2 statistic and consists
of two phases. In the first phase it begins with a high significance
level say 0.5 (sigLevel) for all numeric attributes for discretization.
Each attribute is sorted according to its value. Then X2 value is
calculated by Eq. (11) given below for every pair of adjacent
intervals and the merging is done with the pair of adjacent
interval with lowest X2 value. This merging continues until all pair
of adjacent intervals has X2 values exceeding the parameter
determined by sigLevel.

w2 ¼
Xm
i¼1

Xk

j¼1

ðAij � EijÞ
2

Eij
(11)

where k is the number of classes; m ¼ 2 (the intervals being
compared); Aij is the no. of patterns in the ith interval, jth class; Ri

is the no. of patterns in the ith interval; Cj is the no. of patterns in
the jth class; N is the total no. of patterns; Eij is the expected
frequency of Aij ¼ Ri�Cj/N.

Tables 6 and 7 show the discretization results obtained by chi2
algorithm. Further with chi2 algorithm the four classes of
operation position are classified as
�
 First: the first position of affection order in the machines.

�
 Middle: the second and the third position of affection order in

the machine.

�
 Last: the fourth position of affection order in the machine.
This structured data was manipulated by See5 classifier system,
which produced a decision tree or a decision rule. The induced
decision rules are all of the same if-then structure and will be
background of a new metaheuristic of flow shop scheduling. We
give here the obtained rules given by See5 software [17] when the
rate given in the end of each rule is the rate of good classification.

5.1. Rule induction

The data mining was performed for the problem 8�4 which
has optimum completion time 142. The rules generated from the
See5 data mining tool are given below. The program was run with
50 boosting trials and 90% of the training data was used. Further
the in each trial cross validating was done with 90 folds. The
winnow attribute option was used and thresholds probability
selected with total 374 training cases. See5 has taken total 8.5 s to
generate rules. The rules inducted were,
Rule 01: (93/7, lift 3.7)
Unit process time ( long
Remain process time( long
Machine load( short

Job43
Job(5
-Class first [0.916]

Rule 02: (48, lift 3.8)
Unit process time( long
Remain process time(mean
Machine load( short

Job(1
-Class middle [0.980]

Rule 03: (45, lift 4.0)
Unit process time( short
Remain process time( Long
Machine load4short

Job47
-Class last [0.979]

Rule 04: (44, lift 3.9)
Unit process time( short
Remain process time(mean
Machine load4short

Job42
Job(3
-Class later [0.978]

Rule 05: (47/7, lift 3.4)
Unit process time(mean
Remain process time(mean
Machine load4short

Job46
Job(7
-class later [0.837]

Rule 06: (48/8, lift 3.2)
Unit process time( long
Remain process time(mean
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Table 7
Detailed classification of attributes with Chi2 algorithm.

Job Operation Machine Process time Remaining process time Operation’ Process time’ Remaining process time’ Machine loading

1 1 1 10 55 First Mean Long Long

1 2 2 20 35 Middle Long Mean Short

1 3 3 5 30 Middle Short Mean Long

1 4 4 30 0 Last Long Short Short

2 1 1 15 30 First Mean Mean Long

2 2 2 8 22 Middle Short Mean Short

2 3 3 12 10 Middle Mean Short Long

2 4 4 10 0 Last Mean Short Short

3 1 1 20 21 First Long Mean Long

3 2 2 7 14 Middle Short Short Short

3 3 3 9 5 Middle Mean Short Long

3 4 4 5 0 Last Short Short Short

4 1 1 13 34 First Mean Mean Long

4 2 2 7 27 Middle Short Mean Short

4 3 3 17 10 Middle Mean Short Long

4 4 4 10 0 Last Mean Short Short

5 1 1 8 26 First Short Mean Long

5 2 2 3 23 Middle Short Mean Short

5 3 3 16 7 Middle Mean Short Long

5 4 4 7 0 Last Short Short Short

6 1 1 6 38 First Short Long Long

6 2 2 9 29 Middle Mean Mean Short

6 3 3 22 7 Middle Long Short Long

6 4 4 7 0 Last Short Short Short

7 1 1 7 32 First Short Mean Long

7 2 2 5 27 Middle Short Mean Short

7 3 3 15 12 Middle Mean Short Long

7 4 4 12 0 Last Mean Short Short

8 1 1 19 23 First Long Mean Long

8 2 2 13 10 Middle Mean Short Short

8 3 3 6 4 Middle Short Short Long

8 4 4 4 0 Last Short Short Short

Table 8
Completion time of the schedules generated by ant colony and discovered rules.

Case no. Ant colony Rule based

Completion time Optimal sequence Completion time Sequence

1 138 5,6,1,2,4,3,7,8 144 5,4,1,6,3,7,2,8

2 155 2,3,8,6,5,1,4,7 166 2,3,8,5,1,4,6,7

3 183 4,2,3,1,8,7,5,6 189 4,2,3,7,5,8,1,6

4 188 7,4,2,5,1,8,6,3 194 8,7,4,2,5,1,6,3

5 140 5,4,3,8,6,1,2,7 140 5,4,1,2,7,3,8,6
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Machine load 4short
Job45
Job(6
-Class middle [0.820]

Rule 07: (45/6, lift 3.5)
Unit process time( long
Remain process time( short
Machine load4short

Job41
Job(2
-Class last [0.851]
These rules inducted were having error percentage 7.75 as
shown in above. This is due to misclassification of the 29
attributes in the training cases. For the decision tree, total 10
boosting trails were performed without the global pruning. The
result of the rule is that if a job having unit process time is long,
remain process time is long, and the machine load is short then
classifies that job as first.
5.2. Application to other cases

The applicability of these rules was tested using five 8�4 flow
shop test cases generated at random. The process time for these
cases is shown in Table 7. These cases were all scheduled using the
ant colony algorithm. Table 8 shows that in 3 out of 5 cases, the
learned rules were able to produce approximately optimal
completion time nearer to the optimal.
6. Conclusions

In this paper, we propose an approximate method to resolve a
multi-product batch flow shop schedule. We propose an ant
colony algorithm that is fast and easy to implement to generating
a learning population. Further we propose another method of
knowledge extraction that will generate decision rules finding the
affection order of operation on all machines. We studied several
benchmark problems of Taillard [2] and we got very encouraging
results. The results have shown that data mining can be used to
learn from flow shop schedules produced by ant colony algo-
rithms. Data mining requires an understanding of the problem
domain, knowledge of mining algorithms, and an insight into
which attributes might be significant. In this project, when
compared to problems with the same structure (8�4 flow shop)
and different operation times and sequences, the rules were able
to consistently perform the heuristic rules. However, the learned
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rules were unable to match the performance of the ant colony
algorithm on these problems. We obtained an approach solution
with a distance of 7.04% percent from the optimal. This study
envisages the application of DM tool for extraction of knowledge
patterns of scheduling in a job shop or flow shop. The results of
this study indicate that production managers should develop a
rule that depends upon the characteristics of their own produc-
tion system by using a data mining tool (rule induction or decision
tree). By analyzing the historical production, data the scheduling
knowledge can be extracted and then be expressed in IF-THEN
rules. This form of representing Knowledge provides clear
indications as to which factors are most influential in predicting
the scheduling and how various levels of critical factors affect the
scheduling. At the same time, the scheduling knowledge can
significantly improve.
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