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Abstract

Exploiting Computation-Communication Overlap is a well-
known requirement to speed up distributed applications.
However, efforts till now use programmer expertise, rather
than any automatic tool to do this. In our work we propose
the use of an aggressive optimizing compiler (IBM’s xI se-
ries) to automatically extract opportunities for computation
communication overlap. We depend on aggressive inlining,
dominator trees and SSA based use-def analyses provided
by the compiler framework for exploiting such overlap.
Our target is MPI applications. In such applications, we
try to automatically move mpi_waits as well as split block-
ing mpi_send/recv to create more opportunities for over-
lap. Our objective is two-fold: firstly, our tool should re-
lieve the programmer from the burden of hunting for over-
lap manually as much as possible, and secondly, it should
aid in converging on parallel applications which benefit
from such overlap quickly. These are necessary as MPI ap-
plications are quickly becoming complex and huge and
manual overlap extraction is becoming cumbersome. Our
early experience shows that it is not necessary that exploit-
ing an overlap always leads to performance improvement.
This corroborates with the fact that if we have an automat-
ic tool, then, we can quickly discard such applications (or
certain configurations of such applications) without spend-
ing person-hours to manually rewrite MPI applications for
introducing non-blocking calls. Our initial experiments
with the industry-standard NAS Parallel benchmarks show
that we can get small-to-moderate improvements by utiliz-
ing overlap even in such highly tuned benchmarks. This
augurs well for real-world applications that do not exploit
overlap optimally.

Categories and Subject Descriptors [MPI, Opti-
mizing Compilers]

General Terms: Parallel Applications, MPI, Algo-
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1. Introduction

For better computation-communication overlap, MPI [7]
provides non-blocking versions of mpi_send and mpi_recv,
called mpi_isend and mpi_irecv. The intention is that the
programmer will intelligently invoke computation in be-
tween an mpi_isend or mpi irecv and its matching
mpi_wait. However, such a job is easier said than done.
While programmers may (or do) try to exploit this overlap,
it may not be possible to do this in many circumstances as
this is non-trivial. This results in missed chances or oppor-
tunities resulting in poor computation-communication over-
lap (CCO) and higher run time for the programs executed in
many cases. In our work we propose compiler-driven tech-
niques that target sub-optimally positioned mpi_ wait(s).
These are mpi_wait(s) which can (probably) be moved fur-
ther ahead (temporally) in the computation resulting in bet-
ter CCO. We term this mpi_wait sinking. We also target
blocking mpi_send/mpi_recv which can be converted to a
pair of mpi_isend/mpi_wait (or mpi_irecv and mpi_wait).
Subsequently, techniques that are applicable to mpi wait
sinking can be applied to the newly created mpi_wait part
of the non-blocking calls.

The compiler framework of the IBM xI series of compil-
ers [11] is used in our work. The compiler provides ad-
vanced analyses and optimization, including aggressive and
cross-file inlining (which is necessary for our work), SSA-
based use-def analyses and region-based optimizations. Us-
ing the compiler framework, we devise two algorithms in
our paper, one that conservatively sinks waits within an in-
terval (or a loop), while the more aggressive analysis sinks
waits across intervals. We show how these techniques can
be used even for highly-tuned NAS parallel benchmarks
(NPB) [10]. Our initial experiments using NAS benchmarks
reveal that we can get potential benefit by automatically ex-
ploiting CCO in several cases. However, this is not true
across the board. For the same benchmark, under differing
configurations (NPB classes A, B, C), we may see differing
results. While for some we may gain in performance, for
others there may not be any perceptible improvement, while
some may even show small losses.

Our paper is organized as follows. Section 2 deals with
several motivating examples from the NAS parallel bench-
mark suite for MPI. Section 3 discusses our algorithms for
wait sinking. Section 4 is about our early experiences with
some of the NAS parallel benchmarks according to the al-
gorithms of Section 3. In Section 5 we provide related
work. We end with conclusions and future work in Section
6.
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do stage = 1, ncells
c = slice(1,stage)
isize = ... jsize = ksize =

if ( stage .eq. ncells ) then last = 1 else last = 0 endif
if ( stage .eq. 1) then

first = 1

call Ihsx( c) /l'lhs = ...

call x_solve_cell ( first, last, c ) /l'lhs = ...rhs = ...
else

first=0

/l calls mpi_irecv ( out_buffer...)

call x_receive_solve_info(recv_id,c )
call lhsx( c) /l'lhs = ...
/I wait for the prev iterations’ mpi_isend

(1) call mpi_wait ( send_id, ... )

call mpi_wait (recv_id, ... )

/I lhs = out buffer, rhs = out_buffer

call x_unpack_solve_info (c)

call x_solve_cell ( first, last, ¢ )
endif
(2) move wait here
if (last .eq. 0)

/I calls mpi_isend(in_buffer...)

call x_send_solve_info( send_id, c)

end do
Fig 1 : An example from BT

2. Motivating Examples

In this section, we look at two cases from the NAS Parallel
Benchmarks that show the necessity of mpi wait sinking
for improved CCO.

In the example from BT/SP (Fig. 1) the mpi_wait for an
mpi_isend (marked as 1 in Fig. 1 ) crosses an iteration i.e.
the mpi wait in a particular iteration corresponds to
mpi_isend issued in the previous iteration(marked as 2 in
Fig. 1) through the call to x_send solve info(). The code
can be found in x/y/z_solve.f.

It can be observed that the mpi_wait in question at point
(1) has been placed suboptimally much ahead of the subse-
quent mpi isend call in x send solve info which over-
writes the in_buffer. The mpi_wait can be pushed all the
way down to the point before x_send_solve_info is invoked
(but it has to be invoked under the proper condition). The
final position is shown in Fig. 1 (using an arrow). Such
movement allows the mpi_wait to be delayed as much as
possible leading to x unpack solve info and x_solve cell
to be computed in between. The new call to wait at point
(2) is semantically safe when invoked conditionally. We
will see how this is done in Sec 3.2. using boolean flags that
capture the condition under which the original send is in-
voked.

In MG/mg.f (Fig. 2) there are cases of blocking send. In
mg.f the function give3 updates a buffer named buff and in-
vokes several blocking mpi sends. In another function
comm?3 there is a call to give3. The call is followed by two
instances of take3 which read buff but do not modify it. In
such a scenario the latter mpi_send in give3 can be convert-
ed to mpi_isend and mpi_wait pairs and the mpi_wait from
the mpi_isend call in give3 can be sunk below the take3
pairs as shown in Fig. 2. The wait movement in this case al-
lows two calls to take3 to be spliced in between the isend
and wait leading to higher overlap.

subroutine give3 subroutine take3

if(...)

do ... if (...)
buff(..) = ... do ...
end do = buff(..)
mpi_send(buff,...) end do
end if
if(...) end if
do ... if(...)
buff(..) = ... do ...
end do = buff(..)
/I split send and move wait end do
/I beyond take3
»mpi_send(buff,...) end if
end if
., end do
end do
T
1
,' subroutine comm3
[ ]
: do ...
b if(...)
1 In give3 ready(...) // has mpi_irecv
.' convert send ready(...) // has mpi_irecv
1 to isend/wait
' and place give3(...)
" wait
~ after take3
e take3(...)
R take3(...)
end if
end do

Fig 2: An example from MG
3. Algorithm for mpi_wait Sinking

The algorithm for mpi-wait sinking is divided into three
sub-parts.

The first sub-part of the algorithm is known as mpi_wait
matching. The algorithm pairs an mpi_wait/waitall with an
mpi_isend/irecv. Several mpi_isends or irecvs can pair up
with the same mpi_wait/waitall. We handle mpi_waitany or
mpi_waitsome calls in a similar manner in which we pair up
all possible isends/irecvs with these calls. The mpi_wait
matching algorithm works in both the intra-procedural as
well as the inter-procedural sense. In Fig. 1, the mpi waits
pair up with an mpi_isend or irecv embedded in
x_send solve info and x_receive_solve info calls. Howev-
er, in our implementation, by applying the wait sinking al-
gorithm after aggressive inlining has been applied, we
avoid inter-procedural analyses. The matching algorithm
finds the buffers that are associated with a particular
mpi_wait and inserts these matching nodes in a graph
termed the WaitGraph (WG). The second sub-part of the al-
gorithm is the construction of the mpi wait dependence
web. This involves capturing the dependences between the
matched mpi-waits and the following (temporally) instruc-
tions that use/define the buffer that has been used in the
non-blocking isend/irecv. The final sub-part of the algo-
rithm involves mpi wait sinking (ConservativeWait-
SinkGenerate). It moves the mpi_wait call to a suitable po-
sition beyond (temporally) its current position, honouring
the dependences captured in the previous step.
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3.1 The WaitGraph

The WaitGraph(WG) is a directed graph G=(V,E) whose
vertices consist of either mpi call nodes (ex:
mpi_wait/isend/...) or other expression nodes that read/write
buffers that are used in the matching mpi calls. The edges
represent dependences between the nodes. An edge be-
tween an mpi_isend node and an mpi_wait node represents
a data dependence(technically) between the two while an
edge between an mpi_wait and an expression node (that
reads/writes the buffer), represents a real WAR or RAW
dependence. To give a simple example consider this code:

mpi_isend W2

w1 |mpi_isend - -------T- -~ _

— ~ \

~ /

~ ’

mpi_wait(...,r) v
Pl v mpi-wait W3
_ T
= WaitGraph Node |
() CFG Node v
CFG Edge
N } WaitGraph Edge

Fig 3: CFG and its WaitGraph

In this example, two calls to mpi_isend use buffer b and
the request identifier denoted by r. The mpi_wait call waits
on the request identifier r. The buffer b is updated subse-
quent to the mpi wait call. The WaitGraph(WG) we con-
struct for this snippet consists of four vertices. These are
WI1,W2,W3 and W4 - three for the mpi isend and
mpi_wait calls and one for the write to buffer b. There are
directed edges from W1 and W2 to W3. These two edges
are technical dependence edges representing the isends that
match the wait in W3. There is also a data dependence edge
( WAR ) from W3 to W4 representing the fact that the
buffer b is updated at W4 after W3.

3.2 Conservative Algorithm for mpi_wait sinking
( Algorithm 1)

Our algorithm works on a per-function basis. All the steps
outlined earlier, matching, dependence computation and
sinking are carried out intra-procedurally and marked as
(1), (2) and (3) respectively in the ConservativeMpiWait-
Sinking function of Algorithm 1. To make the method ef-
fective we invoke this pass after the compiler has carried
out inlining. This enables cross-dependences and other
complexities to bubble up to a single function level. All
cross-interval dependences are satisfied because mpi_waits
never move from the original interval where the
mpi_sends/recvs are invoked. We will relax this constraint

in a later aggressive algorithm (Algorithm 2). For blocking
calls like mpi_send/mpi_recv, the matching part is trivial as
there is no mpi_wait for such calls. We can view a blocking
call as a combination of a non-blocking call immediately
followed by a wait call. Our algorithm can then proceed to
work on the matched isend/irecv and wait pairs.

The first section of Algorithm 1 captures all the
mpi_isends/irecvs/waits/waitalls that appear in a particular
function and stores them in a set for later use. We need
several analyses to be used before Algorithm 1 can be ap-
plied. These include the computation of the dominator tree,
SSA use-def information as well as the interval information.

Part 1 of the algorithm deals with mpi_wait matching. It
involves extracting an mpi_wait/waitall from the set created
earlier(TS in Algorithm 1) and then using the request iden-
tifier of the mpi_wait call to find out the set of isend/irecv
calls that update the same request identifier. The matching
pairs up all the mpi_waits with their corresponding depen-
dent mpi_isend/mpi_irecvs. This happens using the SSA
use-def information. Once the matched set of calls are
known, the wait graph WG can be populated with the nodes
that represent the wait and its matched calls ( note that a
single wait may have several matched calls depending on
how the application is written ). We consider the matched
calls in the same interval as the wait/waitall call as well as
those that may occur outside the interval.

Part 2 of the algorithm is used to extract the dependences
on the buffer for which the wait is blocked. From the wait
call and its matched set we are able to find the “buffer” that
the wait call “waits” for. In general the the wait may be de-
pendent on multiple buffers, which we term the BUFFSET
in Algorithm 1. It is also necessary to find out where each
buffer belonging to BUFFSET is read/written again follow-
ing the wait. It allows us to find the points in the code
where the wait call can be moved for increased overlap and
hence better performance. Using SSA use-def we find any
statement following the wait ( lying in the same interval )
that accesses each buffer in the BUFFSET ( or its aliases ).
All such dependence nodes are inserted into the WG with a
dependence edge connecting the wait call and the statement
that accesses the set of buffers on which wait is dependent.
In case of the original statement being an isend we consider
only statements that update/write into one of the designated
buffers, while in the case of the original statement being an
irecv, we track those expression statements where the buffer
is being read.

Part 3 of the algorithm carries out the actual code genera-
tion, where the wait call is moved around (sunk) to expose
higher CCO. This is outlined in the ConservativeWait-
SinkGenerate. In this part, each wait/waitall call is visited in
the WG graph. If no statement is found in the same interval
that has a dependence ( due to the buffer read or write )
then, the wait for the interval can be sunk to the last lexico-
graphic block of the interval as seen  in the SinkCode-
Generate(LastBlock(L),...). LastBlock(L) is the last lexico-
graphic block of a loop, before it jumps back to the start
block. For bottom-tested loops, it is just the block which
tests for the loop condition. Loop-back dependences are ig-
nored as waits can be sunk to the bottom of the loop in the
best case. SinkCodeGenerate emits the new “wait” call and
deletes the old wait call. In case where dependences exist
within the interval, the wait can be sunk only to a “safe”
point such that all the dependences can be satisfied. We use
dominator/post-dominator information for ensuring safety.
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ConservativeMpiWaitSinking(func f)
{

Capture all isend/irecv/wait/waitall and store
all these expression nodes in the set TS

Compute Dominator Tree, DT, of function f
WaitGraph = ®

(1) // wait matching phase

for ( every T1= wait/waitall in TS) do {
Find using SSA use-def chain,
the set of all mpi_isend/irecv(T2set) that
define the requests which wait consumes

Create WaitGraph node for T1

for (every T2 in T2set )
Create WaitGraph node for T2 and add a
technical dependence edge between T1-T2

(2) // wait dependence web building
for ( every wait/waitall node W in WaitGraph ) do {

Let BUFFSET be the set of buffers waited for
for ( every buffer in BUFFSET or its aliases ) do {

Let T be an expression node that reads/writes
to buffer
Add a dependence edge between T and W

}

(3) ConservativeWaitSinkGenerate( //actual sinking
WaitGraph, IntervalTree(f))
}

ConservativeWaitSinkGenerate(
WaitGraph WG, IntervalTree ITree)

while ( more wait/waitall are to be processed in WG ) do {

W = wait/waitall node in the WaitGraph
Let L be the interval in which W appears

if ( OutDegree(W) == 0 ) // no dependence
SinkCode(LastBlock(L), f, W) // SinkCode not shown

else {
DBSet = Set of nodes that are children of W in WG
sinkBlock = Ica(DBSet)

(1) while (! done ) {
if ( sinkBlock postdominates W ) {

SinkCode(sinkBlock, f, W)
done = true;

}

else
sinkBlock = Immediate Dominator of sinkBlock

Algorithm 1

ConservativeWaitSinkGenerate function collects all the
dependences in a set termed the DBSet, and computes the
“least common ancestor(Ica)” [13] of all the elements in
the DBSet. The Ica computation uses the dominator tree. If
the wait statement is moved to the least common ancestor
block (from its original position) it is guaranteed to be
“safe” as far as dependences are concerned, as it dominates
all the blocks containing the dependent statements ( that
read or write the buffer ). However, when the wait is moved
to the least common ancestor block it is not guaranteed to
be safe with respect to the original position of wait. The
reason for this is the existence of paths leading from
isend/irecvs that do not pass through the least common an-
cestor block. In order to guarantee this, we must find a
block that not only dominates the set of blocks in DBSet,
but also post-dominates the block containing the original
“wait” call. This is done in the while loop of the Conserva-
tiveWaitSinkGenerate function (marked as 1), where we
move up from the least common ancestor block in the dom-
inator tree, checking to see whether the current block post-
dominates the block containing the original wait call. Once
we locate such a block it becomes the designated “sink”
block i.e. it is the new block where the wait call can be
moved from its original position.

When ConservativeWaitSinkGenerate terminates it would
have generated new wait calls at sink points via the
SinkCode calls. It also deletes the occurrences of the old
wait calls. There is a point to note for the new wait calls
that are emitted. It is possible that the original waits are
called conditionally. In such cases, the new wait calls must
also be emitted such that they are invoked only under the
original condition(s). This is true for the case in Fig. 1
where the original wait is called conditionally. In order to
honour conditional execution, we use the concept of a
boolean flag f per wait/waitall call. This boolean flag f'is set
to true at all those program points where the original
wait/waitall is called. At the new position where the wait
call is to be invoked, code is generated to test for the value
of /. The new wait call is invoked conditionally only for a
true value of f. Subsequently, code is generated to reset the
value of f'to false. This can be seen in the code generated
for MG shown later in Fig. 4.

When implemented on the MG code (Fig. 2), the final
code generated after mpi wait sinking looks as shown in
Fig. 4. Inserted code is shown in bold. The
ready/take3/give3 functions have been inlined in the code.
b <1>, b <2> ... are the boolean flags described earlier. In
this code the wait matching is trivial as the calls are block-
ing mpi_sends. As mentioned earlier, we interpret a block-
ing mpi_send as a couple of adjacent calls comprising of an
mpi_isend and an mpi_wait following immediately. The de-
pendence graph computation phase finds one dependence
of the buffer used in mpi send. The two split mpi wait
calls from those created in (1) and (3) are moved to the
points (2) and (4). The sink generation phase, creates the if
(...) mpi_wait sequence at (2) and (4).The mpi_wait se-
quences are conditionally executed as the original split
mpi_wait calls are also conditionally executed. We may
have incorrect results if the matching semantics is not main-
tained. This semantic matching is achieved through the use
of a couple of boolean flags that are set and reset at the ap-
propriate points. The movement of the wait(s) to the posi-
tions shown in Fig. 4, can be derived easily if we construct
the WaitGraph of the code.
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subroutine comm3

b_<1>=Db_<2> = FALSE;
Loop:
/l'inlined ready

// start of inlined give3
if(...)

buff(..) = ...

(1) mpi_isend(buff,...) ; b_<1> = TRUE;
Move wait of (1) to (2)
endif
(2) if (b_<1>) mpi_wait(...); b_<1> = FALSE
if (...)

buff(.) = ...
(3) mpi_isend(buff,...) ; b_<2> = TRUE;

end |f

/I end of inlined give3 Move/ wait of (3) to (4)

/I start of inlined calls to take3
.. = buff( ...) // uses of buff

. = buff(..) // use of buff

/I end of inlined calls to take3
/I mpi_wait has been moved across the inlined calls to
/I take3 as there are only useg of buff but no definitions

(4) if (b_<2>) mpi_wait(...
End of Loop:
}

: b_<2> = FALSE

Fig 4: MG example after wait movement

The WaitGraph of Fig. 4 along with some of the CFG
nodes and edges are shown in Fig. 5. The figure is simpli-
fied to show the important and interesting details. There are
three WaitGraph nodes created for the code snippet in Fig.
4. Two of these nodes correspond to the two mpi send
which have been split into two adjacent calls of
mpi_isend/mpi_wait. We have shown the WaitGraph nodes
corresponding to the two mpi_isend and mpi_wait nodes
merged for simplicity. The third WaitGraph node comes
into existence during the creation of the dependence web.
This node corresponds to the write of the buff.

There is only one true dependence edge between the
nodes of the WaitGraph. This is shown by the dotted edge
between nodes W1 and W2. The dependence edge signifies
that the wait call in the W1 cannot be sunk beyond W2 as
there is an update of buff at W2. But for the wait call in W3
there is no data dependence that hinders its movement.
Hence, this wait call can be sunk all the way to the end of
the loop ( shown by the bold edge ) which is the enclosing
interval of the wait call.

This is also highlighted in Fig. 4 where the wait is moved
from point (3) to (4) just before the end of the loop. For the
wait call in W1, we find that C4 is not safe as far as sinking
the call is concerned because C4 does not post-dominate
C2. Using the post-dominator tree we find that the safe
point for sinking the wait call in W1 is C3. This is shown
by the bold line in Fig. 5 and also highlighted in Fig. 4
where the wait call is seen to move from (1) to (2). Both of

the wait calls are conditionally executed based on the val-
ues of b_<1> and b_<2> which are set to true/false at the
original and new wait invocation points.

C1

\A c2

mpi_send(buff...)

Q CFG Node

|:| WaitGraph Node

mpi_isend
. mpi_wait wi

data dep/éndence

—» CFG Edge
- Data Dep Edge

mpi_send(buff...)

mpi_isend
mpi_wait

W3

—@ Wait Sink Edge

Cé6

End of Loop

Fig 5: CFG and WaitGraph of Fig 4

Cc7

3.3 Aggressive Algorithm for mpi_wait sinking
using an Inter-Interval(Loop) Approach
(Algorithm 2)

The aggressive algorithm for mpi-wait sinking sinks
mpi_waits to the points just before the buffers involved are
used or defined - instead of sinking to a node which domi-
nates all the use or define points. This allows for sinking
waits across intervals and loops in an aggressive manner
leading to greater CCO exploitation.

The crux of the algorithm is to locate all the intervals out-
side of L (assuming wait is in interval L) where the buffers
for which mpi_wait/waitall is stalled is being used or de-
fined. Then we find a suitable node where the wait code
(called in interval L) can be sunk. To find a node that domi-
nates all use/defs in other intervals for the buffer in ques-
tion, we first extract the set of all the intervals where the de-
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pendences exist (LDSet). Next we compute L'= Ica(L,LD-
set) and find the ancestor A of L in the interval tree that is
a direct child of L' that contains L. The exit node of this an-
cestor A, is the point where the sink code is generated. For
the example shown below (Fig. 6) if there is a wait call in
interval L1 and there is an usage of the buffer in interval
L1', denoted by the dotted arrow dependence edge, then the
sink code is generated at the exit point of interval L2. This
follows from the algorithm as LDSet={L1'}, lca(L1,LDSet)
= L3 and the predecessor of L1 that is a direct child of L3 is
L2 and L2 contains L1.

L1 Insert sink code here

er

L2 exits
L3

Fig 6: Inter-Interval Wait Sinking Approach

The aggressive algorithm - AggressiveWaitSinkGenerate
is used when some of the dependences lie outside the inter-
val L. Algorithm 1 would push the wait(s) to the bottom of
the interval (corresponding to L) in such cases conserva-
tively. The aggressive version can sink the wait(s) beyond
the interval(s). In the aggressive algorithm, all the depen-
dence generating intervals (that are not the same as L) are
collected in LDSet. The block where the wait/waitall can fi-
nally be moved is determined by the process described
above and denoted as SinkNode.

AggressiveSinkCodeGenerate is invoked to generate the
wait(s) at the SinkNode. This sinking may involve a group
of waits rather than a single wait we have assumed till now.
As we plan to move a wait called in a loop(L), outside it we
may need to compensate for all the possible wait(s) that
could have been called in the loop. AggressiveSinkCode-
Generate creates an array of resource ids, Rid[ | and two
additional variables denoted as w_cnt and i cnt for each
wait. These variables are used to keep track of the next re-
source id to be used and the resource id already consumed.
Code needs to be inserted both at the original wait call
point, at the non-blocking call points as well as the SinkN-
ode. At the isend/irecv calls we need to increment i_cnt to
keep track of outstanding requests. At each of the depen-
dence point we need to insert an if-check to find out
whether at this point we really need to wait or not. This is
done by checking the difference of the i cnt and w_cnt val-
ues. If the result of the comparison is positive it implies that
there is/are outstanding request(s) for which a wait needs to
be called. w_cnt is also incremented at each dependence
point. At the SinkNode, we need to generate (i_cnt—
w_cnt+1) number of wait calls (or preferably a single wait-
all), as these are all outstanding requests for which waits
have not been emitted yet.

AggressiveWaitSinkGenerate(

{

}

WaitGraph WG, IntervalTree |Tree)

while ( more mpi_wait/waitall to be processed in WG ) do {
Let W = mpi_wait/waitall node in the WaitGraph WG
if (some dependences of W are outside L ) {
Let LDSet = { set of all intervals ,different from L,

where dependences exist }

/l Find least common ancestor of the dependent
/Il set as well as the interval where wait appears

Find Sinkinterval = Ica(LDSet,L) in ITree

/I compute the sinking interval
Lpred = pred(L) // predecessor of L in the ITree

while ( Lpred != SinkInterval )
Lpred = pred(Lpred) ;

Let SinkNode = Exit Node of Lpred

AggressiveSinkCodeGenerate( SinkNode, W, WG)

}
}

AggressiveSinkCodeGenerate(

Node SinkNode, Node WaitNode, WaitGraph WG)

L = Interval in which Waitnode is present

Create three variables :

w_cnt_<num>, i_cnt_<num>, Rid_<num>[ ]

/I num is a compiler generated global that is incremented
/I every time this function is called

Let M = matched mpi_isend/irecv node

Insert (after M) the code :
i_cnt_<num>++

Replace the request id of mpi_isend/irecv to create:
mpi_isend(buff,...,Rid_<num>[i_cnt_<num>],...) ;

for ( every dependence point in L) do {
Insert an if-conditional to check:
if (w_cnt_<num> > i_cnt_<num>){
mpi_wait(...,Rid_<num>[w_cnt_<num>])

w_cnt_<num>++

}
}
At SinkNode do the following:

Insert code to create a waitall:

mpi_waitall(...,Rid_<num>,...,
i_cnt_<num> - w_cnt_<num> + 1);
}

num-++;

Algorithm 2
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Fig. 7 employs the inter-interval aggressive wait sinking
algorithm for the MG example to arrive at the new code. As
there are two mpi_wait points in the loop we employ two
w_cnt, i_cnt and Rid arrays. w_cnt keeps track of how
many waits have been issued and matched, while i cnt
keeps track of how many isends/irecvs have been issued.
This is done for each matched pair of isend and wait. For
any intra-loop dependence that exists, conditional code is
employed to generate waits to check whether they are really
required at runtime.

subroutine comm3
{
integer w_cnt_<1>=w_cnt_<2> =0
integer i_cnt_<1>=i_cnt_<2>=0;
integer Rid_<1>[loop_cnt], Rid_<2>[loop_cnt];
Loop:
it(..0)
if (i_cnt_<1>-w_cnt_<1> .gt.0)
mpi_wait(...,Rid_<1>[w_cnt_<1>]);
w_cnt_<1>++;
endif
if (i_cnt_<2>-w_cnt_<2> .gt. 0)
mpi_wait(..., Rid_<2>[w_cnt_<2>]);
w_cnt_<2>++;
endif
buff(.) = ...
mpi_isend(buff,...,Rid_<1>[i_cnt_<1>],...) ;
i_cnt_<1>++;
endif
if(...)
if (i_cnt_<1>-w_cnt_<1> .gt. 0)
mpi_wait(...,Rid_<1>[w_cnt_<1>]);
w_cnt_<1>++;
endif
if (i_cnt_<2>-w_cnt_<2> .gt. 0)
mpi_wait(..., Rid_<2>[w_cnt_<2>]);
w_cnt_<2>++;
endif
buff(..) = ...
mpi_isend(buff,...,Rid_<2>[i_cnt_<2>],...) ;
i_cnt_<2>++;
end"i.f
/I End of Loop
/I Groups of waits for isends that did not get
/I consumed in the Loop
mpi_waitall(...,Rid_<1>,...,i_cnt_<1>-w_cnt_<1>+1);
mpi_waitall(...,Rid_<2>,...,i_cnt_<2>-w_cnt_<2>+1);
}
Fig 7: MG example after aggressive wait movement

4. Current Status and Experiments

We have currently implemented only the conservative algo-
rithm in the IBM’s xlc/c++/fortran compiler series [11] as
a proof-of-concept. The compiler identifies all the mpi calls
that need to be moved/split and the final positions where
the mpi_waits need to be placed. The actual splitting and
placement is done by hand from the report. For our experi-
ments we have taken the NAS Parallel Benchmarks. Here,
we mainly concentrate on three benchmarks : MG, LU and
SP.

The hardware configuration used consists of IBM Pow-
er5+ CPUs, connected by a High Performance Federation
Switch. IBM’s Parallel Operating Environment (POE) [8] is
used to launch the MPI applications on these systems. The
POE runs were carried out by setting the environment vari-
able MP_CSS_INTERRUPT=0ON which allows for inde-
pendent progress. Without this variable being set, asyn-
chronous and independent progress of communication and
computation does not happen and we may actually lose sig-
nificant performance for rendezvous messages. The run-
time reported here are for an average of five runs.

41 MG

In this subsection we show the results obtained from MG
according to the conservative wait-sinking algorithm. The
MG benchmark can only be run for a number of processors
whose power is 2. We have run MG for classes B and C
and for two configurations of processors, 32 and 64. We
observed that class B had a greater impact (up to 20% im-
provement) when our algorithm was applied, compared to
class C, where the improvement is very small (Table 1)

42 LU

LU has blocking calls which can be converted to non-
blocking calls ( as in MG ) and then moving the corre-
sponding waits. The LU benchmark can only be run for a
number of processors whose power is 2. We have run LU
for classes B and C for 32 processors only. This is because
we saw high runtime both for the unoptimized as well as
optimized codes when 64 processors are used. We are in-
vestigating the reasons for it. When 32 processors are used,
we saw a modest speedup for class C while for class B the
speedup is really high(26%) (Table 2).

43 SP

This NAS benchmark already uses some form of overlap.
Overlap is exploited by using isend/irecv and waits. Hence,
the only optimization that could be applied was to sink the
waits so that we could create a higher computation-commu-
nication overlap. There was no scope for replacing blocking
sends/recvs. SP can be run only for a square number of pro-
cessors. We ran SP using 16, 25 and 36 processors for
classes B and C. We saw a significant improvement for
class B when 25 processors are used. For others, the im-
provement is marginal or flat. We saw a small slowdown
with a B class run using 36 processors. The slowdown was
higher at 4% for class C with 36 processors(Table 3). This
is probably due to the overhead of thread switching (a spe-
cial thread is required for independent progress when inter-
rupt mode is on) overshadowing the benefit of overlap
when such benefit is small.
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Table 1: MG

Class #processors | Unopti- Optimized %improve-
mized run | (split sends | ment
time (in and move
secs ) waits) run-
time
B 32 1.53 1.22 20.3
B 64 1.12 1.02 9.0
C 32 7.85 7.82 0.4
C 64 4.32 4.31 0.25
Table 2: LU
Class #processors | Unopti- Optimized %improve-
mized run | (split sends | ment
time (in and move
secs ) waits) run-
time
B 32 37.9 27.8 26
C 32 122.1 114.9 5
Table 3: SP
Class #processors | Unopti- Optimized %improve-
mized run | (split sends | ment
time (in and move
secs ) waits) run-
time
B 16 59.5 58.8 1.1
B 25 69.8 60.2 13.8
B 36 61.7 62.2 -0.8
C 16 152.5 151.3 0.8
C 25 106.6 106.3 0.3
C 36 77.3 80.4 -4.0

5. Related Work

Previous work in the area of CCO also termed as split-
phase communication, have targeted various languages like
UPC, Parallel C and HPF [1,5,6]. However none of them
have have tackled explicit message passing applications
like MPI. In [1] Chakrabarti et al. deal with HPF and the
main purpose of the work is message coalescing rather than
CCO. The work [5] by Iancu et al for UPC comes closest to
ours. They try to build an automated tool for UPC [9] that
tries to exploit overlap as well as message coalescing. How-
ever, it uses a very simplistic algorithm to expose CCO for
UPC code. Their technique is inadequate for non-trivial ap-
plications. We have devised both conservative as well as
aggressive algorithms for CCO exploitation with which we
can tackle complicated MPI applications and non-trivial
send/recv sequences. This is specifically true when such se-
quences are invoked in loops and have intervening function
calls, for which [5] does not do anything. The aggressive al-
gorithm is able to introduce groups of mpi_waits at the end
of loops for mpi_isends/mpi_irecvs which have not been
waited for inside a loop, as part of wait sinking.

6. Conclusion and Future Work

Our work outlines how mpi_waits can be moved/sunk to al-
low better opportunities for overlap of computation with
communication. We have developed a conservative and an

aggressive strategy to effect this movement. In the first
case, the mpi waits can move only within the interval
where they are originally invoked. In the aggressive algo-
rithm, we loosen this restriction, thereby allowing
mpi_waits originating in one interval to be finally sunk to a
parent interval. On experimenting with some of the NAS
benchmarks according to the algorithms we devised, we
noted moderate to good speedups for certain classes and
configurations. We also saw small drops in performance for
some benchmarks. For other configurations, the perfor-
mance was flat. From these we can conclude that exploit-
ing CCO may lead to good-to-moderate performance im-
provements in some cases while for others it may not yield
anything. However, we are also exploring the reasons of
lower/negative speedups for the bigger classes of NAS
benchmarks as well as for those which use a larger number
of processors. We would also like to apply our analyses to
real-world applications as well as the specmpi2007[12]
benchmark suite, where gains may be much higher, as many
of them may not be optimized for overlap. Future work also
involves supporting the aggressive algorithm via the com-
piler.
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