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Abstract
Exploiting Computation-Communication Overlap is a well-
known requirement  to  speed  up  distributed  applications.  
However, efforts till now use programmer expertise, rather  
than any automatic tool to do this. In our work we propose  
the use of an aggressive optimizing compiler (IBM’s xl se­
ries) to automatically extract opportunities for computation  
communication overlap. We depend on aggressive inlining,  
dominator trees and SSA based use-def analyses provided  
by  the  compiler  framework  for  exploiting  such  overlap.  
Our target is MPI applications.  In such applications,  we  
try to automatically move mpi_waits as well as split block­
ing mpi_send/recv to create more opportunities for over­
lap. Our objective is two-fold: firstly, our tool should re­
lieve the programmer from the burden of hunting for over­
lap manually as much as possible, and secondly, it should  
aid  in converging on parallel  applications  which benefit  
from such overlap quickly. These are necessary as MPI ap­
plications  are  quickly  becoming  complex  and  huge  and  
manual overlap extraction is becoming cumbersome. Our  
early experience shows that it is not necessary that exploit­
ing an overlap always leads to performance improvement.  
This corroborates with the fact that if we have an automat­
ic tool, then, we can quickly discard such applications (or 
certain configurations of such applications) without spend­
ing person-hours to manually rewrite MPI applications for  
introducing  non-blocking  calls.  Our  initial  experiments  
with the industry-standard NAS Parallel benchmarks show 
that we can get small-to-moderate improvements by utiliz­
ing overlap even in such highly  tuned  benchmarks.  This  
augurs well for real-world applications that do not exploit  
overlap optimally. 

Categories  and  Subject  Descriptors [MPI,  Opti­
mizing Compilers]
General  Terms: Parallel  Applications,  MPI,  Algo­
rithms, Performance, Compiler
Keywords Computation-Communication  Overlap,  
Compiler Optimization

1. Introduction
For  better  computation-communication  overlap,  MPI  [7] 
provides non-blocking versions of mpi_send and mpi_recv, 
called mpi_isend and mpi_irecv. The intention is that the 
programmer  will  intelligently  invoke  computation  in  be­
tween  an  mpi_isend  or  mpi_irecv  and  its  matching 
mpi_wait.  However,  such a  job  is  easier  said  than done. 
While programmers may (or do) try to exploit this overlap, 
it may not be possible to do this in many circumstances as 
this is non-trivial. This results in missed chances or oppor­
tunities resulting in poor computation-communication over­
lap (CCO) and higher run time for the programs executed in 
many cases. In our work we propose compiler-driven tech­
niques  that  target  sub-optimally  positioned  mpi_wait(s). 
These are mpi_wait(s) which can (probably) be moved fur­
ther ahead (temporally) in the computation resulting in bet­
ter CCO. We term this  mpi_wait sinking. We also target 
blocking mpi_send/mpi_recv which can be converted to a 
pair of mpi_isend/mpi_wait (or  mpi_irecv and mpi_wait). 
Subsequently,  techniques that  are  applicable  to  mpi_wait 
sinking can be applied to the newly created mpi_wait part 
of the non-blocking calls. 
    The compiler framework of the IBM xl series of compil­
ers  [11]  is  used in our  work.  The compiler  provides ad­
vanced analyses and optimization, including aggressive and 
cross-file inlining (which is necessary for our work), SSA-
based use-def analyses and region-based optimizations. Us­
ing the compiler framework, we devise two algorithms in 
our paper, one that conservatively sinks waits within an in­
terval (or a loop), while the more aggressive analysis sinks 
waits across intervals. We show how these techniques can 
be  used  even  for  highly-tuned NAS parallel  benchmarks 
(NPB) [10]. Our initial experiments using NAS benchmarks 
reveal that we can get potential benefit by automatically ex­
ploiting CCO in several  cases.  However,  this  is  not  true 
across the board. For the same benchmark, under differing 
configurations (NPB classes A, B, C), we may see differing 
results.  While for some we may gain in performance, for 
others there may not be any perceptible improvement, while 
some may even show small losses.
    Our paper is organized as follows. Section 2 deals with 
several motivating examples from the NAS parallel bench­
mark suite for MPI. Section 3 discusses our algorithms for 
wait sinking. Section 4 is about our early experiences with 
some of the NAS parallel benchmarks according to the al­
gorithms  of  Section  3.  In  Section  5  we  provide  related 
work. We end with conclusions and future work in Section 
6.
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2. Motivating Examples
In this section, we  look at two cases from the NAS Parallel 
Benchmarks that  show the necessity of mpi_wait sinking 
for improved CCO. 
    In the example from BT/SP (Fig. 1) the mpi_wait for an 
mpi_isend (marked as 1 in Fig. 1 ) crosses an iteration i.e. 
the  mpi_wait  in  a  particular  iteration  corresponds  to 
mpi_isend issued in the previous iteration(marked as 2 in 
Fig. 1) through the call to  x_send_solve_info(). The code 
can be found in x/y/z_solve.f.
    It can be observed that the mpi_wait in question at point 
(1) has been placed suboptimally much ahead of the subse­
quent  mpi_isend  call  in  x_send_solve_info which  over­
writes the  in_buffer. The mpi_wait can be pushed all the 
way down to the point before x_send_solve_info is invoked 
(but it has to be invoked under the proper condition). The 
final  position is  shown in Fig. 1  (using an arrow).  Such 
movement allows the mpi_wait to be delayed as much as 
possible leading to  x_unpack_solve_info and  x_solve_cell 
to be computed in between. The new call to wait at point 
(2)  is  semantically safe  when invoked conditionally.  We 
will see how this is done in Sec 3.2. using boolean flags that 
capture the condition under which the original send is in­
voked.
    In MG/mg.f (Fig. 2) there are cases of blocking send. In 
mg.f the function give3 updates a buffer named buff and in­
vokes  several  blocking  mpi_sends.  In  another  function 
comm3 there is a call to give3. The call is followed by two 
instances of take3 which read buff but do not modify it. In 
such a scenario the latter mpi_send in give3 can be convert­
ed to mpi_isend and mpi_wait pairs and the mpi_wait from 
the  mpi_isend call in  give3 can be sunk below the  take3 
pairs as shown in Fig. 2. The wait movement in this case al­
lows two calls to take3 to be spliced in between the isend 
and wait leading to higher overlap.

     In give3
    convert send
    to isend/wait

and place 
wait
after take3

                       

                          Fig 2: An example from MG

3. Algorithm for mpi_wait Sinking
The  algorithm for  mpi-wait  sinking is  divided  into  three 
sub-parts. 
    The first sub-part of the algorithm is known as mpi_wait 
matching. The algorithm pairs an mpi_wait/waitall with an 
mpi_isend/irecv. Several mpi_isends or irecvs can pair up 
with the same mpi_wait/waitall. We handle mpi_waitany or 
mpi_waitsome calls in a similar manner in which we pair up 
all  possible  isends/irecvs  with  these  calls.  The  mpi_wait 
matching algorithm works in both the intra-procedural  as 
well as the inter-procedural sense. In Fig. 1, the mpi_waits 
pair  up  with  an  mpi_isend  or  irecv  embedded  in 
x_send_solve_info and x_receive_solve_info calls. Howev­
er, in our implementation, by applying the wait sinking al­
gorithm  after  aggressive  inlining  has  been  applied,  we 
avoid  inter-procedural  analyses. The  matching algorithm 
finds  the  buffers  that  are  associated  with  a  particular 
mpi_wait  and  inserts  these  matching  nodes  in  a  graph 
termed the WaitGraph (WG). The second sub-part of the al­
gorithm is  the  construction  of  the  mpi_wait  dependence 
web. This involves capturing the dependences between the 
matched mpi-waits and the following (temporally) instruc­
tions that  use/define the buffer that  has been used in the 
non-blocking  isend/irecv.  The  final  sub-part  of  the  algo­
rithm  involves  mpi_wait  sinking  (ConservativeWait­
SinkGenerate). It moves the mpi_wait call to a suitable po­
sition beyond (temporally)  its  current position,  honouring 
the dependences captured in the previous step.

subroutine comm3

 do …
    if ( … ) 
        ready(…) // has mpi_irecv
        ready(…) // has mpi_irecv
  
        give3(…)
        ...
    
        take3(…)
        take3(…)
    end if
end do

subroutine take3
...
 if ( … ) 
    do …
         = buff(..)
    end do
        …
 end if
if ( … ) 
    do …
         = buff(..) 
    end do
    …
 end if
…
end do

do stage = 1, ncells
    c = slice(1,stage)
     isize =  …  jsize =   ksize = 

     if ( stage .eq. ncells ) then last = 1 else last = 0 endif
     if ( stage .eq. 1 ) then
         first = 1
         call lhsx( c )                                        // lhs = …
         call x_solve_cell ( first, last, c )           // lhs = … rhs = …
     else
          first = 0
          // calls mpi_irecv ( out_buffer…)
          call x_receive_solve_info(recv_id,c )          
          call lhsx(  c )                                      // lhs = …
        
          // wait for the  prev iterations’ mpi_isend
          (1) call mpi_wait ( send_id, … )                         
          call mpi_wait ( recv_id, … )               
       
          // lhs = out_buffer, rhs = out_buffer
          call x_unpack_solve_info ( c )                      
          call x_solve_cell ( first, last, c )          
     endif   
     (2)  move wait here
      if ( last .eq. 0 )
          // calls mpi_isend(in_buffer…)
          call x_send_solve_info( send_id, c ) 
  end do                  
                        Fig 1 : An example from BT
 

subroutine give3
 if ( … ) 
    do …
         buff(..) = …
    end do
     mpi_send(buff,…)
 end if
if ( … ) 
    do …
         buff(..) = …
    end do
    // split send and move  wait 
    //  beyond take3
     mpi_send(buff,…)
 end if
…
end do
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3.1 The WaitGraph
The WaitGraph(WG) is a directed graph G=(V,E) whose 
vertices  consist  of  either  mpi  call  nodes  (ex: 
mpi_wait/isend/...) or other expression nodes that read/write 
buffers that are used in the matching mpi calls. The edges 
represent  dependences  between  the  nodes.  An  edge  be­
tween an mpi_isend node and an mpi_wait node represents 
a  data dependence(technically)  between the two while an 
edge between an mpi_wait  and an expression  node  (that 
reads/writes the buffer),  represents a real  WAR or RAW 
dependence. To give a simple example consider this code:

                                                                                   W2
W1
       

                                                                           W3

         WaitGraph Node
        CFG Node

                                                                         W4
        CFG Edge
        WaitGraph Edge

                Fig 3: CFG and its WaitGraph

    In this example, two calls to mpi_isend use buffer b and 
the request identifier denoted by r. The mpi_wait call waits 
on the request identifier r. The buffer b is updated subse­
quent to the mpi_wait call. The WaitGraph(WG) we con­
struct for this snippet consists of four vertices. These are 
W1,W2,W3  and  W4  –  three  for  the  mpi_isend  and 
mpi_wait calls and one for the write to buffer b. There are 
directed edges from W1 and W2 to W3. These two edges 
are technical dependence edges representing the isends that 
match the wait in W3. There is also a data dependence edge 
(  WAR )  from W3 to  W4 representing the  fact  that  the 
buffer b is updated at W4 after W3. 

3.2   Conservative Algorithm for mpi_wait sinking 
( Algorithm 1)
Our algorithm works on a per-function basis. All the steps 
outlined  earlier,  matching,  dependence  computation and 
sinking are  carried  out  intra-procedurally  and  marked  as 
(1),  (2) and (3) respectively in the ConservativeMpiWait­
Sinking function of  Algorithm 1. To make the method ef­
fective we invoke this pass after the compiler has carried 
out  inlining.  This  enables  cross-dependences  and  other 
complexities  to  bubble  up to  a  single  function level.  All 
cross-interval dependences are satisfied because mpi_waits 
never  move  from  the  original  interval  where  the 
mpi_sends/recvs are invoked. We will relax this constraint 

in a later aggressive algorithm (Algorithm 2). For blocking 
calls like mpi_send/mpi_recv, the matching part is trivial as 
there is no mpi_wait for such calls. We can view a blocking 
call  as a combination of a non-blocking call  immediately 
followed by a wait call. Our algorithm can then proceed to 
work on the matched isend/irecv and wait pairs.
 The  first  section  of  Algorithm  1  captures  all  the 
mpi_isends/irecvs/waits/waitalls that appear in a particular 
function and stores them in a set for later use. We  need 
several analyses to be used before Algorithm 1 can be ap­
plied. These include the computation of the dominator tree, 
SSA use-def information as well as the interval information. 
    Part 1 of the algorithm deals with mpi_wait matching. It 
involves extracting an mpi_wait/waitall from the set created 
earlier(TS in Algorithm 1) and then using the request iden­
tifier of the mpi_wait call to find out the set of isend/irecv 
calls that update the same request identifier. The matching 
pairs up all the mpi_waits with their corresponding depen­
dent  mpi_isend/mpi_irecvs.  This  happens  using  the  SSA 
use-def  information.  Once  the  matched  set  of  calls  are 
known, the wait graph WG can be populated with the nodes 
that represent the wait and its matched calls ( note that a 
single wait may have several matched calls depending on 
how the application is written ). We consider the matched 
calls in the same interval as the wait/waitall call as well as 
those that may occur outside the interval.
    Part 2 of the algorithm is used to extract the dependences 
on the buffer for which the wait is blocked. From the wait 
call and its matched set we are able to find the “buffer” that 
the wait call “waits” for. In general the the wait may be de­
pendent on multiple buffers, which we term the BUFFSET 
in Algorithm 1. It is also necessary to find out where each 
buffer belonging to BUFFSET is read/written again follow­
ing the  wait.  It  allows us  to  find  the  points  in the code 
where the wait call can be moved for increased overlap and 
hence better performance. Using SSA use-def we find any 
statement following the wait ( lying in the same interval ) 
that accesses each buffer in the BUFFSET ( or its aliases ). 
All such dependence nodes are inserted into the WG with a 
dependence edge connecting the wait call and the statement 
that accesses the set of buffers on which wait is dependent. 
In case of the original statement being an isend we consider 
only statements that update/write into one of the designated 
buffers, while in the case of the original statement being an 
irecv, we track those expression statements where the buffer 
is being read. 
    Part 3 of the algorithm carries out the actual code genera­
tion, where the wait call is moved around (sunk) to expose 
higher  CCO.  This  is  outlined  in  the  ConservativeWait­
SinkGenerate. In this part, each wait/waitall call is visited in 
the WG graph. If no statement is found in the same interval 
that has a dependence ( due to the buffer read or write ) 
then, the wait for the interval can be sunk to the last lexico­
graphic block of the interval as seen    in the   SinkCode­
Generate(LastBlock(L),…). LastBlock(L) is the last lexico­
graphic block of a loop, before it jumps back to the start 
block. For bottom-tested loops, it is just the block which 
tests for the loop condition. Loop-back dependences are ig­
nored as waits can be sunk to the bottom of the loop in the 
best case. SinkCodeGenerate emits the new “wait” call and 
deletes the old wait call.  In case where dependences exist 
within the interval, the wait can be sunk only to a “safe” 
point such that all the dependences can be satisfied. We use 
dominator/post-dominator information for ensuring safety.

if ( ... )

mpi_isend(b,...,r)
mpi_isend(b,...,r)

mpi_wait(...,r)

b[i] = ...

mpi_isend
mpi_isend

Write b

mpi-wait
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  ConservativeWaitSinkGenerate  function  collects  all  the 
dependences in a set termed the DBSet, and computes the 
“least common ancestor(lca)” [13] of  all the elements in 
the DBSet. The lca computation uses the dominator tree. If 
the wait statement is moved to the least common ancestor 
block  (from its  original  position)  it  is  guaranteed  to  be 
“safe” as far as dependences are concerned, as it dominates 
all  the blocks containing the dependent statements (  that 
read or write the buffer ). However, when the wait is moved 
to the least common ancestor block it is not guaranteed to 
be safe with respect  to the original position of wait.  The 
reason  for  this  is  the  existence  of   paths  leading  from 
isend/irecvs that do not pass through the least common an­
cestor  block.  In order  to  guarantee  this,  we must  find  a 
block that not only dominates the set of blocks in DBSet, 
but  also post-dominates the block containing the original 
“wait” call. This is done in the while loop of the Conserva­
tiveWaitSinkGenerate function  (marked  as  1),  where  we 
move up from the least common ancestor block in the dom­
inator tree, checking to see whether the current block post-
dominates the block containing the original wait call. Once 
we locate  such a block it  becomes the designated “sink” 
block i.e.  it  is the new block where the wait call  can be 
moved from its original position. 
  When ConservativeWaitSinkGenerate terminates it would 
have  generated  new  wait  calls  at  sink  points  via  the 
SinkCode calls. It also deletes the occurrences of the old 
wait calls. There is a point to note for the new wait calls 
that  are  emitted.  It  is  possible  that  the original  waits are 
called conditionally. In such cases, the new wait calls must 
also be emitted such that they are invoked only under the 
original  condition(s).  This  is  true  for  the  case  in  Fig.  1 
where the original wait is called conditionally. In order to 
honour  conditional  execution,  we  use  the  concept  of  a 
boolean flag f per wait/waitall call. This boolean flag f is set 
to  true  at  all  those  program  points  where  the  original 
wait/waitall is called. At the new position where the wait 
call is to be invoked, code is generated to test for the value 
of  f. The new wait call is invoked conditionally only for a 
true value of f. Subsequently, code is generated to reset the 
value of  f to false. This can be seen in the code generated 
for MG shown later in Fig. 4.
   When implemented on the MG code (Fig. 2), the final 
code generated after  mpi_wait sinking looks as shown in 
Fig.  4.  Inserted  code  is  shown  in  bold.  The 
ready/take3/give3 functions have been inlined in the code. 
b_<1>, b_<2> ... are the boolean flags described earlier. In 
this code the wait matching is trivial as the calls are block­
ing mpi_sends. As mentioned earlier, we interpret a block­
ing mpi_send as a couple of adjacent calls comprising of an 
mpi_isend and an mpi_wait following immediately. The de­
pendence graph computation phase finds one dependence 
of  the  buffer  used  in  mpi_send.  The  two split  mpi_wait 
calls  from those created in (1)  and (3) are  moved to the 
points (2) and (4). The sink generation phase, creates the if 
(...)  mpi_wait  sequence  at  (2)  and  (4).The  mpi_wait  se­
quences  are  conditionally  executed  as  the  original  split 
mpi_wait  calls  are  also  conditionally  executed.  We  may 
have incorrect results if the matching semantics is not main­
tained. This semantic matching is achieved through the use 
of a couple of boolean flags that are set and reset at the ap­
propriate points. The movement of the wait(s) to the posi­
tions shown in Fig. 4, can be derived easily if we construct 
the WaitGraph of the code. 

ConservativeMpiWaitSinking(func f)
{
      Capture all isend/irecv/wait/waitall  and store
      all these expression nodes in the set TS

     Compute Dominator Tree, DT, of function f
     WaitGraph = Φ

(1) // wait matching phase

     for ( every T1= wait/waitall in TS)  do {  
           Find using SSA use-def chain, 
           the set of all mpi_isend/irecv(T2set) that 
           define the requests which wait consumes
            
           Create WaitGraph node for T1  
                              
           for ( every T2 in T2set ) 
                 Create WaitGraph node for T2 and add a 
                 technical dependence edge between T1-T2
      }

(2) // wait dependence web building

     for ( every wait/waitall node W in WaitGraph ) do {

          Let BUFFSET be the set of buffers waited for
          for ( every buffer in BUFFSET or its aliases ) do {
                
             Let T be an expression node that reads/writes 
             to buffer
             Add  a dependence edge between T and W 
           }         
     } 

(3) ConservativeWaitSinkGenerate( //actual sinking
    WaitGraph, IntervalTree(f)) 

}

ConservativeWaitSinkGenerate( 
       WaitGraph WG, IntervalTree ITree) 
{
    while ( more wait/waitall are to be processed in WG ) do {

        W = wait/waitall node in the WaitGraph
        Let L be the interval in which W appears
       
        if ( OutDegree(W) == 0 ) // no dependence 
                                                 
            SinkCode(LastBlock(L), f, W) // SinkCode not shown

        else {
             DBSet = Set of nodes that are children of W in WG
             sinkBlock = lca(DBSet) 
                
             (1) while ( ! done ) {
                    if ( sinkBlock postdominates W ) {
       
                       SinkCode(sinkBlock, f, W )          
                       done = true;
                   }
                   else
                     sinkBlock = Immediate Dominator of sinkBlock 
                }         
         }
    }
}

Algorithm 1
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  The WaitGraph of Fig. 4 along with some of the CFG 
nodes and edges are shown in Fig. 5. The figure is simpli­
fied to show the important and interesting details. There are 
three WaitGraph nodes created for the code snippet in Fig. 
4.  Two  of  these  nodes  correspond  to  the  two mpi_send 
which  have  been  split  into  two  adjacent  calls  of 
mpi_isend/mpi_wait. We have shown the WaitGraph nodes 
corresponding to  the two mpi_isend and mpi_wait  nodes 
merged for  simplicity.  The  third  WaitGraph  node  comes 
into existence during the creation of the dependence web. 
This node corresponds to the write of the buff. 
   There  is  only one  true  dependence edge between the 
nodes of the WaitGraph. This is shown by the dotted edge 
between nodes W1 and W2. The dependence edge signifies 
that the wait call in the W1 cannot be sunk beyond W2 as 
there is an update of buff at W2. But for the wait call in W3 
there  is  no  data  dependence  that  hinders  its  movement. 
Hence, this wait call can be sunk all the way to the end of 
the loop ( shown by the bold edge ) which is the enclosing 
interval of the wait call.
    This is also highlighted in Fig. 4 where the wait is moved 
from point (3) to (4) just before the end of the loop. For the 
wait call in W1, we find that C4 is not safe as far as sinking 
the call  is  concerned because C4 does not  post-dominate 
C2.  Using the  post-dominator  tree  we find  that  the  safe 
point for sinking the wait call in W1 is C3. This is shown 
by the bold  line in Fig. 5 and also highlighted in Fig. 4 
where the wait call is seen to move from (1) to (2). Both of 

the wait calls are conditionally executed based on the val­
ues of b_<1> and b_<2> which are set to true/false at the 
original and new wait invocation points.

                                                         C1

            CFG Node                                                   C2
              
            WaitGraph Node
               

                                                                                       W1

                                                             data dependence

                  C3
                                                            

                                          C4                           W2

             CFG Edge
                                                                                   C5
             Data Dep Edge

             Wait Sink Edge

                                                                              W3

                       C6

                              

                                                                   
                     C7

                   Fig 5: CFG and WaitGraph of Fig 4

3.3 Aggressive Algorithm for mpi_wait sinking 
using an Inter-Interval(Loop) Approach 
(Algorithm 2)
The  aggressive  algorithm  for  mpi-wait  sinking  sinks 
mpi_waits to the points just before the buffers involved are 
used or defined - instead of sinking to a node which domi­
nates all the use or define points. This allows for sinking 
waits across intervals and loops  in an aggressive manner 
leading to greater CCO exploitation. 
   The crux of the algorithm is to locate all the intervals out­
side of L (assuming wait is in interval L) where the buffers 
for which mpi_wait/waitall is stalled is being used or de­
fined. Then we find a suitable node where the wait code 
(called in interval L) can be sunk. To find a node that domi­
nates all use/defs in other intervals for the buffer in ques­
tion, we first extract the set of all the intervals where the de­

if ( ... )

mpi_send(buff...)

subroutine comm3
{
    b_<1> = b_<2> = FALSE;
    Loop:
        // inlined ready
       ...
        // start of inlined give3
        if ( … ) 
                …
                buff(..) = …   
                 (1) mpi_isend(buff,…)  ; b_<1> = TRUE;                
                 ...                             Move  wait of (1) to (2)
        endif
        (2) if ( b_<1> ) mpi_wait(…); b_<1> = FALSE
        if ( ... )
                …                         
                buff(..) = …
                (3) mpi_isend(buff,…) ; b_<2> = TRUE; 
                ...
        end if
       // end of inlined give3              Move  wait of (3) to (4)

       // start of inlined calls to take3 
        ...  = buff( ...) // uses of buff
        ...
        ...  = buff(...) // use of buff

       // end of inlined calls to take3
       // mpi_wait has been moved across the inlined calls to 
       // take3 as there are only uses of buff but no definitions

       (4) if ( b_<2> ) mpi_wait(…); b_<2> = FALSE
   End of Loop:
}
                                 
              Fig 4: MG example after wait movement

if ( ... )

mpi_send(buff...)

... = buff(...) 

End of Loop

buff = ...

mpi_isend
mpi_wait

mpi_isend
mpi_wait

buff= ...
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pendences exist (LDSet). Next we compute L'= lca(L,LD­
set) and  find the ancestor A of L in the interval tree that is 
a direct child of L' that contains L. The exit node of this an­
cestor A, is the point where the sink code is generated. For 
the example shown below (Fig. 6) if there is a wait call in 
interval L1 and there is an usage of the buffer in interval 
L1', denoted by the dotted arrow dependence edge, then the 
sink code is generated at the exit point of interval L2. This 
follows from the algorithm as LDSet={L1'}, lca(L1,LDSet) 
= L3 and the predecessor of L1 that is a direct child of L3 is 
L2 and L2 contains L1.

 

          Fig 6: Inter-Interval Wait Sinking Approach

  The aggressive algorithm - AggressiveWaitSinkGenerate 
is used when some of the dependences lie outside the inter­
val L. Algorithm 1 would push the wait(s) to the bottom of 
the interval (corresponding to L) in such cases conserva­
tively. The aggressive version can sink the wait(s) beyond 
the interval(s). In the aggressive algorithm, all the depen­
dence generating intervals (that are not the same as L) are 
collected in LDSet. The block where the wait/waitall can fi­
nally  be  moved  is  determined  by  the  process  described 
above and denoted as SinkNode. 
   AggressiveSinkCodeGenerate is invoked to generate the 
wait(s) at the SinkNode. This sinking may involve a group 
of waits rather than a single wait we have assumed till now. 
As we plan to move a wait called in a loop(L), outside it we 
may need to  compensate  for  all  the possible  wait(s)  that 
could have been called in the loop.  AggressiveSinkCode­
Generate creates an array of resource ids,  Rid[ ] and two 
additional  variables denoted  as  w_cnt and  i_cnt for  each 
wait. These variables are used to keep track of the next re­
source id to be used and the resource id already consumed. 
Code  needs  to  be  inserted  both  at  the  original  wait  call 
point, at the non-blocking call points as well as the SinkN­
ode. At the isend/irecv calls we need to increment i_cnt to 
keep track of outstanding requests. At each of the depen­
dence  point  we  need  to  insert  an  if-check  to  find  out 
whether at this point we really need to wait or not. This is 
done by checking the difference of the i_cnt and w_cnt val­
ues. If the result of the comparison is positive it implies that 
there is/are outstanding request(s) for which a wait needs to 
be  called.  w_cnt is  also incremented at  each dependence 
point.  At  the  SinkNode,  we  need  to  generate  (i_cnt–
w_cnt+1) number of wait calls (or preferably a single wait­
all),  as these are all  outstanding requests for which waits 
have not been emitted yet.

    

  

L2'

L1'

L3

L1L2
Insert sink code here 
– after
L2 exits

AggressiveWaitSinkGenerate(
           WaitGraph WG, IntervalTree ITree) 
{
    
    while ( more mpi_wait/waitall to be processed in WG ) do {

        Let W = mpi_wait/waitall node in the WaitGraph WG

        if ( some dependences of W are outside L ) {
            Let LDSet = { set of all intervals ,different from L,
                                  where dependences exist  }
            
            // Find least common ancestor of the dependent 
            // set as well as the interval where wait appears

            Find SinkInterval = lca(LDSet,L) in ITree 
                                                                  
            // compute the sinking interval
            Lpred = pred(L) // predecessor of L in the ITree
           
            while ( Lpred != SinkInterval ) 
                Lpred = pred(Lpred) ; 
               
            Let SinkNode = Exit Node of Lpred

            AggressiveSinkCodeGenerate( SinkNode, W, WG) 
        }
    }
}   

AggressiveSinkCodeGenerate(
         Node SinkNode, Node WaitNode, WaitGraph WG)

{
    L = Interval in which Waitnode is present

    Create three variables : 
    w_cnt_<num>, i_cnt_<num>, Rid_<num>[ ]
    // num is a compiler generated global that is incremented 
    // every time this function is called

    Let M = matched mpi_isend/irecv node

    Insert (after M) the code :
        i_cnt_<num>++

    Replace the request id of mpi_isend/irecv to create:
        mpi_isend(buff,…,Rid_<num>[i_cnt_<num>],…) ;

    for ( every dependence point in L) do {

        Insert  an if-conditional to check:
            if ( w_cnt_<num>  >  i_cnt_<num> ) {
                mpi_wait(…,Rid_<num>[w_cnt_<num>])
                w_cnt_<num>++   
            }
    }
    At SinkNode do the following:
    {
         Insert code to create a waitall:

         mpi_waitall(…,Rid_<num>,...,
                              i_cnt_<num> - w_cnt_<num> + 1);
    }
    num++;
} 
                                      Algorithm 2
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  Fig. 7 employs the inter-interval aggressive wait sinking 
algorithm for the MG example to arrive at the new code. As 
there are two mpi_wait points in the loop we employ two 
w_cnt, i_cnt and  Rid arrays.  w_cnt  keeps  track  of  how 
many waits  have  been  issued  and  matched,  while  i_cnt 
keeps track of how many isends/irecvs have been issued. 
This is done for each matched pair of isend and wait. For 
any intra-loop dependence that exists, conditional  code is 
employed to generate waits to check whether they are really 
required at runtime.

4. Current Status and Experiments
We have currently implemented only the conservative algo­
rithm in the IBM’s xlc/c++/fortran compiler series [11] as 
a proof-of-concept. The compiler identifies all the mpi calls 
that need to be moved/split  and the final positions where 
the mpi_waits need to be placed. The actual splitting and 
placement is done by hand from the report. For our experi­
ments we have taken the NAS Parallel Benchmarks. Here, 
we mainly concentrate on three benchmarks : MG, LU and 
SP. 
   The hardware configuration used consists of IBM Pow­
er5+ CPUs, connected by a High Performance Federation 
Switch. IBM’s Parallel Operating Environment (POE) [8] is 
used to launch the MPI applications on these systems. The 
POE runs were carried out by setting the environment vari­
able  MP_CSS_INTERRUPT=ON which allows for inde­
pendent  progress.  Without  this  variable  being  set,  asyn­
chronous and independent progress of communication and 
computation does not happen and we may actually lose sig­
nificant performance for rendezvous messages.   The run­
time reported here are for an average of five runs. 

4.1     MG
In this subsection we show the results obtained from MG 
according to the conservative wait-sinking algorithm. The 
MG benchmark can only be run for a number of processors 
whose power is 2. We have run MG for classes B and C 
and for two configurations of processors,  32 and 64. We 
observed that class B had a greater impact (up to 20% im­
provement) when our algorithm was applied, compared to 
class C, where the improvement is very small (Table 1)

4.2     LU
LU  has  blocking  calls  which  can  be  converted  to  non-
blocking calls  (  as  in  MG )  and then moving the corre­
sponding waits. The LU benchmark can only be run for a 
number of processors whose power is 2. We have run LU 
for classes B and C for 32 processors only. This is because 
we saw high runtime both for the unoptimized as well as 
optimized codes when 64 processors are used. We are in­
vestigating the reasons for it. When 32 processors are used, 
we saw a modest speedup for class C while for class B the 
speedup is really high(26%) (Table 2).

4.3    SP
This NAS benchmark already uses some form of overlap. 
Overlap is exploited by using isend/irecv and waits. Hence, 
the only optimization that could be applied was to sink the 
waits so that we could create a higher computation-commu­
nication overlap. There was no scope for replacing blocking 
sends/recvs. SP can be run only for a square number of pro­
cessors.  We ran  SP  using 16,  25  and  36  processors  for 
classes  B  and  C.  We saw a  significant  improvement for 
class B when 25 processors are used. For others, the im­
provement is marginal or flat.  We saw a small slowdown 
with a B class run using 36 processors. The slowdown was 
higher at 4% for class C with 36 processors(Table 3). This 
is probably due to the overhead of thread switching (a spe­
cial thread is required for independent progress when inter­
rupt  mode  is  on)  overshadowing  the  benefit  of  overlap 
when such benefit is small.

subroutine comm3
{
    integer  w_cnt_<1> = w_cnt_<2> = 0
    integer  i_cnt_<1> = i_cnt_<2> = 0;     
    integer  Rid_<1>[loop_cnt], Rid_<2>[loop_cnt];

    Loop:
        ...
        if ( … ) 
             ...
                if (i_cnt_<1> - w_cnt_<1>  .gt. 0 ) 
                    mpi_wait(…,Rid_<1>[w_cnt_<1>]);    
                    w_cnt_<1>++;
                endif

                if (i_cnt_<2> - w_cnt_<2> .gt. 0 ) 
                    mpi_wait(…, Rid_<2>[w_cnt_<2>]); 
                    w_cnt_<2>++;
                endif
                …
                buff(..) = …   

mpi_isend(buff,…,Rid_<1>[i_cnt_<1>],…) ;
                i_cnt_<1>++;
                ...
       endif                
        if ( … )  
                …    
                if (i_cnt_<1> - w_cnt_<1>  .gt. 0 ) 
                    mpi_wait(…,Rid_<1>[w_cnt_<1>]); 
                    w_cnt_<1>++;
                endif

                if (i_cnt_<2> - w_cnt_<2> .gt. 0 ) 
                    mpi_wait(…, Rid_<2>[w_cnt_<2>]); 
                    w_cnt_<2>++;  
                endif
       
                buff(..) = …
                mpi_isend(buff,…,Rid_<2>[i_cnt_<2>],…) ;
                i_cnt_<2>++; 
             ...
        end if
        …
    // End of Loop
    // Groups of waits for isends that did not get 
    // consumed in the Loop 
   
    mpi_waitall(…,Rid_<1>,...,i_cnt_<1>-w_cnt_<1>+1);
    mpi_waitall(…,Rid_<2>,...,i_cnt_<2>-w_cnt_<2>+1);
    ...
}

      Fig 7: MG example after aggressive wait movement
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Table 1: MG
Class #processors Unopti­

mized run 
time (in 
secs )

Optimized 
(split sends 
and move 
waits) run­
time

%improve­
ment

B 32 1.53 1.22 20.3
B 64 1.12 1.02 9.0
C 32 7.85 7.82 0.4
C 64 4.32 4.31 0.25

Table 2: LU
Class #processors Unopti­

mized run 
time (in 
secs )

Optimized 
(split sends 
and move 
waits) run­
time

%improve­
ment

B 32 37.9 27.8 26
C 32 122.1 114.9 5

Table 3: SP
Class #processors Unopti­

mized run 
time (in 
secs )

Optimized 
(split sends 
and move 
waits) run­
time

%improve­
ment

B 16 59.5 58.8 1.1
B 25 69.8 60.2 13.8
B 36 61.7 62.2 -0.8
C 16 152.5 151.3 0.8
C 25 106.6 106.3 0.3
C 36 77.3 80.4 -4.0

5.    Related Work
Previous  work in  the  area  of  CCO also  termed as  split-
phase communication, have targeted various languages like 
UPC, Parallel C and HPF [1,5,6]. However none of them 
have  have  tackled  explicit  message  passing  applications 
like MPI. In [1] Chakrabarti et al. deal with HPF and the 
main purpose of the work is message coalescing rather than 
CCO. The work [5] by Iancu et al for UPC comes closest to 
ours. They try to build an automated tool for UPC [9] that 
tries to exploit overlap as well as message coalescing. How­
ever, it uses a very simplistic algorithm to expose CCO for 
UPC code. Their technique is inadequate for non-trivial ap­
plications.  We have devised both conservative as well as 
aggressive algorithms for CCO exploitation with which we 
can  tackle  complicated  MPI  applications  and  non-trivial 
send/recv sequences. This is specifically true when such se­
quences are invoked in loops and have intervening function 
calls, for which [5] does not do anything. The aggressive al­
gorithm is able to introduce groups of mpi_waits at the end 
of  loops  for  mpi_isends/mpi_irecvs which have not  been 
waited for inside a loop, as part of wait sinking. 

6.    Conclusion and Future Work
Our work outlines how mpi_waits can be moved/sunk to al­
low better  opportunities  for  overlap  of  computation with 
communication. We have developed a conservative and an 

aggressive  strategy to  effect  this  movement.  In  the  first 
case,  the  mpi_waits  can  move  only  within  the  interval 
where they are originally invoked. In the aggressive algo­
rithm,  we  loosen  this  restriction,  thereby  allowing 
mpi_waits originating in one interval to be finally sunk to a 
parent interval.  On experimenting with some of the NAS 
benchmarks  according  to  the  algorithms we devised,  we 
noted  moderate  to  good speedups for  certain classes  and 
configurations. We also saw small drops in performance for 
some  benchmarks.  For  other  configurations,  the  perfor­
mance was flat. From these we can conclude that  exploit­
ing CCO may lead to good-to-moderate performance im­
provements in some cases while for others it may not yield 
anything. However,  we are  also exploring the reasons of 
lower/negative  speedups  for  the  bigger  classes  of  NAS 
benchmarks  as well as for those which use a larger number 
of processors. We would also like to apply our analyses to 
real-world  applications  as  well  as  the  specmpi2007[12] 
benchmark suite, where gains may be much higher, as many 
of them may not be optimized for overlap. Future work also 
involves supporting the aggressive algorithm via the com­
piler.
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