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Abstract

The work involves experimentation on drying of solids in a continuous fluidized bed dryer covering different

variables like bed temperature, gas flow rate, solids flow rate and initial moisture content of solids. The data are

modeled using artificial neural networks. The results obtained from artificial neural networks are compared with

those obtained using Tanks-in-series model. It was found that results obtained from ANN fit the experimental data

more accurately compared to the RTD model with less percentage error. This indicates a better fit of artificial

neural networks to experimental data compared to various mathematical models.
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1. Introduction

When a wet solid is subjected to thermal drying, two processes occur simultaneously:

1. Transfer of energy from the surrounding environment to evaporate the surface moisture.

2. Transfer of internal moisture to the surface of the solid and its subsequent evaporation due to process 1.

In process 1, the removal of water from the surface as vapor depends on the external conditions of

temperature, air humidity and flow, area of exposed surface. In process 2, the movement of moisture
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internally inside the solid is a function of the physical nature of the solid, its moisture content and the

bed temperature.

The advantages offered by fluidized bed drying technology compared to other drying methods are

principally as follows :

1. by rapid exchange of heat and mass between gas and particles, overheating of heat-sensitive particles

is avoided.

2. heat transfer rates between fluidized bed and the immersed objects are high.

3. rapid mixing of solids leads to nearly isothermal conditions throughout the fluidized bed and thus

reliable control of the drying process can be achieved easily.

Several mathematical models have appeared in the literature describing the RTD of solids in a

continuous fluidized bed . The outlet moisture content of solids in a continuous fluidized bed dryer can be

predicted using any of these models. Lenin Babu and Pydi Setty [1] reported the development of a drying

kinetic model for a continuous fluidized bed dryer using Tanks-in-series model to predict average moisture

content of solids. Such models obtained are based on the parameters like constant drying rate, critical

moisture content and equilibrium moisture content that are characteristics of the solids obtained from the

batch drying curve. These parameters exhibit a dependency on the system variables such as holdup of

solids, diameter of the fluidization column, etc. Existing empirical equations defining the dependency

relationships are specific to materials and to the batch drying operation. Little information is available in

the literature on the empirical equations defining these relationships for the continuous drying operation.

Hence, the potential of Artificial Neural Networks as universal approximators can be explored and

their usefulness in predicting the values of process performance variables from independent variables

based on experimental continuous fluidized bed dryer data can be studied. For complex processes like

fluidized bed drying, neural networks perform better than empirical models with noisy or incomplete

information. Neural networks have a better filtering capacity than empirical models because of the

microfeature concept, as each node encodes only a microfeature of the overall input–output pattern. The

concept of microfeature implies that each node affects the input–output pattern only slightly. Only when

all the nodes are assembled together into a single coordinated network do these microfeatures map the

macroscopic input–output pattern.
2. Experimental setup and procedure

The experimental setup consists of a fluidization column made up of iron provided with a perforated

plate of 3 mm perforations arranged with 6 mm triangular pitch. The plate acts as a distributor for air. It is

provided with a downcomer weir. The distributor plate is provided with a vertical baffle of 90mm in height

and 20 mm in width. Wet solids are fed continuously through a hopper. The hopper is provided with a

horizontally sliding perforated plate. The perforations are calibrated for solids flow rate. Air drawn from a

compressor passes through a rotameter and then through an air chamber, which lies below the fluidization

column. The rotameter measures the air flow rate. A heating coil provided along the outside surface of the

fluidization column supplies necessary heat to the column. The coil is connected to a variac which in turn is

connected to an electrical source. Temperatures at the center of the column and at the inner surface of the

column are read directly from the temperature indicator using Copper–Constantan thermocouples attached



Fig. 1. Experimental setup.

S. Satish, Y. Pydi Setty / Int. Commun. Heat and Mass Transf. 32 (2005) 539–547 541
to it. The temperature indicator is pre-calibrated for temperature correction using a thermometer. The variac

provides constant supply of heat to the column to maintain constant required temperature within the

column throughout the experiment.

The solids fed at one end of the column fluidize in the presence of upflowing air and move around the

baffle and finally exit through the downcomer weir at the other end of the column and in the process the

solids get dried. The other end of the downcomer protrudes through the air chamber to outside and the

samples were collected at different time intervals at steady state. The samples were then analyzed for

moisture content. The weight of moisture removed and that of dry sand were determined by weighing
Table 1

Experimental conditions

Inside diameter of the column, mm 89.0

Thickness of the column, mm 2.00

Downcomer diameter, mm 10.00

Length of the column, mm 1280.00

Bed height, mm 30.00

Mass flow rate of solids, kg/m2-s 0.29–0.67

Mass flow rate of air, kg/m2-s 1.08–1.90

Temperature at the centre of the column, 8C 35–60

Initial moisture content of solids, kg moisture/kg dry solid 0.015–0.032

Particle characteristics

Sample Binary solid mixture

Density, kg/m3 2620

Diameter, mm 0.83



Table 2

Experimental data on drying of solids [2]

t c(t) t c(t)

150 0.001251 255 0.000932

165 0.001201 270 0.000844

180 0.001096 285 0.000784

195 0.001081 300 0.000651

210 0.001075 315 0.000544

225 0.001001 330 0.000507

240 0.000983

Ambient temperature, 8C: 28.
Mass flow rate of air, kg/m2-s: 1.63.

Mass flow rate of solids, kg/m2-s: 0.50.

Temperature at the center of the column, 8C : 60.

Initial moisture content of solids, kg moisture/kg dry solid: 0.0203.

Average outlet moisture content, (c̄/c0): 0.0439 kg water/kg dry solid.
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method and moisture concentration is expressed as kg moisture/kg dry sand. Fig. 1 shows the

experimental setup and the baffle plate indicating the solids flow path.

Drying experiments were performed in a single stage continuous fluidized bed dryer using a binary

solid mixture of sand containing 20% of coarse size (dp=0.995 mm) and 80% of fine size (dp=0.796 mm )

under constant drying conditions. Mean particle size of the binary solid mixture is obtained from:

dp ¼
1Xn

i¼1

/i=dpi

ð1Þ

where /i is the mass fraction of i of particle size dpi.

The relative moisture content of the solids in the product is obtained as:

c̄

c0
¼
R
ðc=c0ÞdtR

dt
ð2Þ

Table 1 shows the experimental conditions of the present investigation [2] and the experimental drying

data for a typical experiment are shown in Table 2.
3. Artificial neural networks

Artificial Neural Networks have been successfully used in the prediction and optimization problems in

Bioprocessing and Chemical Engineering [3]. ANN is a massive parallel-distributed information

processing system that has certain performance characteristics resembling biological neural networks of

the human brain. ANN has been developed as a generalization of mathematical models of human cognition

and neural biology.

The available data set is partitioned into two parts, one corresponding to training and the other

corresponding to validation of the model. The purpose of training is to determine the set of connection

weights and nodal thresholds that cause the ANN to estimate outputs that are sufficiently close to target

values. This fraction of the complete data to be employed for training should contain sufficient patterns so
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that the network can mimic the underlying relationship between input and output variables adequately. The

weights and biases are assigned small random values initially. During training, these are adjusted based on

the error or the difference between ANN output and target responses. This adjustment can be continued

recursively until a weight space is found, which results in the smallest and overall prediction error. The

performance of a trained ANN can be fairly evaluated by subjecting it to new patterns that it has not seen

during training. The performance of the network can be determined by computing the percentage error

between predicted and desired values.

The network consists of an input layer, an output layer and a number of hidden layers. At each node in

a layer the information is received, stored, processed and communicated further to nodes in the next

layer. All the weights are initialized to small random numeric values at the beginning of training. These

weights are updated or modified iteratively using the generalized delta rule or steepest-gradient descent

principle. The training process is stopped when no appreciable change is observed in the values

associated with the connection links or some termination criterion is satisfied. Thus, the training of a

back-propagation network consists of two phases: a forward pass during which the processing of

information occurs from the input layer to the output and a backward pass when the error from the output

layer is propagated back to the input layer and the interconnections are modified.
4. Results and discussion

The relative moisture content of solids in the product is calculated using Eq. (2). The following

observations have been made based on the experimental data on continuous fluidized bed drying of

solids obtained for changes in temperature, inlet solids flow rate, initial moisture content of solids and

flow rate of air.

4.1. Effect of temperature

It is seen that drying rate is enhanced with an increase in temperature. It is also observed that the

equilibrium moisture content decreases with increase in temperature. Furthermore, the change in drying

rate between temperatures 40 8C and 50 8C is more than that between 50 8C and 60 8C. Due to low initial

moisture content, an increase in temperature may increase the drying rate but at higher temperatures, its

effect over the drying rate may not increase proportionately.

4.2. Effect of inlet solids flow rate

An increase in solids flow rate decreases themean holding time of solids, which is in agreement with that

of Chandran et al. [4]. As the inlet solids flow rate is increased, the rate of drying decreased due to increase

in holdup of solids.

4.3. Effect of initial moisture content of solids

It was observed that as the initial moisture content is increased, the equilibrium moisture content also

increases. However, the time required to obtain a particular moisture content in the product was found to

be more for the solids with high initial moisture content.
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4.4. Effect of flow rate of air

With increase in flow rate of air, the drying rate is enhanced.

Outlet moisture content is found to decrease with increase in temperature and decrease in initial

moisture content of solids.

Using Tanks-in-series model, Lenin Babu and Pydi Setty [1] developed a kinetic model for drying of

solids in a continuous fluidized bed to predict the average moisture content of solids in the product

c̄

c0
¼
Z~
0

c

c0

�
b

E hð Þdh
�

ð3Þ

where E(h) represents exit age distribution of particles in a continuous dryer.

For a system exhibiting only constant rate period,

c̄

c0
¼ 1� Rt̄

c0
ð4Þ

For a system exhibiting only falling rate period,

c̄

c0
¼ 1� R

bc0
1� N

N þ bt̄

�N
 #"

ð5Þ

The data obtained for the system without baffle [5] are fitted to the drying model obtained using Tanks-

in-series model to describe RTD of solids and the results are tabulated for typical experiments by Lenin

Babu and Pydi Setty [1], which are shown in Table 3. The table shows the predicted values from the

model and the corresponding percentage errors.

Using experimental data in a continuous fluidized bed dryer, ANN models have been developed to

predict the outlet moisture content of solids. Two different models have been developed for two separate

sets of data. The first data set corresponds to the experiments performed when there is no baffle present

[5] whereas the second set is obtained when the vertical baffle is present between the solids inlet and the

downcomer [2].

For the first data set, three input variables are chosen, namely, inlet solids flow rate, air flow rate and

temperature at the center of the column, whereas for the second set, an additional fourth variable,

namely, initial moisture content of solids, is considered. However, in both cases, the output variable is

the average outlet moisture content.
Table 3

Results of earlier investigators [1] using tanks-in-series model

S. no Number of

theoretical

stages

Experimental

average outlet

moisture content

Predicted

average outlet

moisture content

Percentage

error

1 5 0.2914 0.2610 10.4170

2 7 0.2673 0.2387 10.7020

3 7 0.2812 0.2484 11.6910

4 10 0.1660 0.1473 11.2770



Table 4

Results obtained from network modeling [5]

S. no Network output Desired output Percentage error

Results of recall of training data

1 0.3238 0.3235 0.0722

2 0.3056 0.3064 0.2421

3 0.2582 0.2582 0.0101

4 0.2550 0.2547 0.0955

5 0.2380 0.2403 0.9326

6 0.2296 0.2269 1.1743

7 0.2525 0.2528 0.1289

8 0.2840 0.2850 0.3406

9 0.2431 0.2465 1.3755

10 0.2344 0.2333 0.4750

11 0.2769 0.2750 0.6905

12 0.2334 0.2329 0.2177

13 0.2039 0.2060 1.0434

14 0.2090 0.2060 1.4221

15 0.2310 0.2349 1.6459

16 0.2396 0.2371 1.0560

17 0.2029 0.2055 1.2587

18 0.2190 0.2175 0.6809

19 0.2704 0.2673 1.1480

20 0.2812 0.2812 0.0167

21 0.1883 0.1898 0.7774

22 0.1814 0.1814 0.0160

23 0.1740 0.1811 3.9436

24 0.1210 0.1210 0.0089

25 0.1052 0.1000 5.2353

26 0.1094 0.1012 8.0842

27 0.2937 0.2914 0.7875

28 0.1747 0.1760 0.7396

29 0.1366 0.1405 2.7987

30 0.0987 0.1000 1.2567

Results obtained for testing data

1 0.2906 0.2885 0.7202

2 0.1689 0.1660 1.7482

3 0.2262 0.2430 6.9084

4 0.3035 0.3022 0.4223

5 0.2276 0.2375 4.1743

6 0.3188 0.3222 1.0734

7 0.1750 0.1823 3.9854

Data set: I.

Number of hidden layers: 1.

Input neurons: 3.

Output neuron: 1.

Neurons in the hidden layer: 6.

Activation function used: Sigmoid.

Training algorithm: Back propagation.
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Table 5

Results obtained from network modeling [2]

S. no Network output Desired output Percentage error

Results of recall of training data

1 0.1449 0.1412 2.6283

2 0.0871 0.0855 1.8371

3 0.1279 0.1295 1.2411

4 0.2702 0.2619 3.1564

5 0.0829 0.0797 4.0400

6 0.0873 0.0847 3.0605

7 0.0782 0.0693 12.8660

8 0.2437 0.2409 1.1609

9 0.1569 0.1531 2.5192

10 0.0985 0.0949 3.8226

11 0.1586 0.1554 2.0735

12 0.0908 0.0870 4.2922

13 0.0863 0.0802 7.6556

14 0.0865 0.0866 0.1600

15 0.1210 0.1199 0.9469

16 0.1572 0.1535 2.3912

17 0.0954 0.0907 5.1755

18 0.0716 0.0646 10.8050

19 0.1176 0.1154 1.8808

20 0.0827 0.0774 6.8392

21 0.0782 0.0758 3.1478

22 0.1119 0.1101 1.6380

23 0.1866 0.1842 1.2774

24 0.1163 0.1146 1.4220

25 0.1003 0.0988 1.5824

26 0.1882 0.1833 2.6702

Results obtained for testing data

1 0.0727 0.0707 2.8825

2 0.0571 0.0578 1.2145

3 0.0866 0.0909 4.7464

4 0.0420 0.0435 3.3459

5 0.1359 0.1314 3.4501

Data set: II.

Number of hidden layers: 2.

Input neurons: 4.

Output neuron: 1.

Neurons in the first hidden layer: 15.

Neurons in the second hidden layer: 10.

Activation function used: Sigmoid.

Training algorithm: Back propagation.
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The data set is first normalized and then divided into two parts, one of which is used for training the

network and the other for testing. The training procedure continues on an optimal procedure until an

optimal architecture is attained. Plotting the model output against the desired response and also

evaluating the percentage error between the predicted and desired values assesses the performance of the
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network. The desired, predicted values and percentage error for the training and testing data for various

network architectures are also tabulated in Tables 4 and 5.
5. Conclusions

The resultant network as seen from the above results for the first data set is simple and its performance

evaluated by the percentage error criterion is also satisfactory. On the other hand, introducing one more

input variable makes the network more complex as seen from the results of the second set. It has been

observed that back-propagation networks with two hidden layers outperform the single hidden layer

networks when applied to prediction problems.

As seen from Tables 3–5, the average error predicted by the ANN model is less than that predicted by

the mathematical model, indicating a better fit of ANN model compared to the usual drying models

suggested for drying of solids in a continuous fluidized bed. Also, the network is able to learn the

underlying rule even when the training data sets contain noise and measurement errors.
Nomenclature

c(t) Moisture content of solids at any time, kg water/kg dry solid

c̄ Average moisture content of solids, kg water/kg dry solid

c0 Initial moisture content of solids, kg water/kg dry solid

c+ Equilibrium moisture content of solids, kg water/kg dry solid

di Inside diameter of the column, mm

dp Particle diameter, mm

N Number of stages

R Constant drying rate, kg water/kg dry solid-s

t Time, s

tc Time corresponding to critical moisture content, s

t̄ Mean residence time, s

b R/(c�c+), s�1

h Dimensionless time, t/t̄

hc Dimensionless time corresponding to critical moisture content, tc/ t̄
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