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milarity transformations, the governing equations are reduced to nonlinear
ordinary differential equations. The resulting equations are then solved numerically using quasilinearization
technique. The graphs for velocity components and temperature distribution are presented for different
values of the fluid and geometric parameters.
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1. Introduction

The flow through channels and tubes with porous walls is of great
importance both in technological as well as biophysical flows.
Examples of this are found in soil mechanics, transpiration cooling,
food preservation, cosmetic industry, blood flow and artificial dialysis,
binary gas diffusion, filtration, ablation cooling, surface sublimation,
grain regression (as in the case of combustion in solid rocket motors),
and the modeling of air and blood circulation in the respiratory
system. A large number of theoretical investigations dealing with
steady incompressible laminar flowwith either injection or suction at
the boundaries have appeared during the last few decades. Several
authors, to mention some [1–4] have studied the steady laminar flow
of an incompressible viscous fluid in a two-dimensional channel with
parallel porous walls.

The flows of fluid in a porous channelwith deformablewalls has also
gained importance because of its applications in the modeling of
pulsating diaphragms, sweat cooling or heating, isotope separation,
filtration, paper manufacturing, irrigation, and the grain regression
during solid propellant combustion. The viscous flow inside an
impermeable tube of contracting cross section was first examined by
Uchida et al. [5]. Unsteady flow of a viscous, incompressible fluid in a
semi-infinite circular tube with a porous, elastic wall whose length
varies with time, but whose cross section does not vary, is studied by
Ohki andMorimatsu [6] considering the effect of suction or injection on
ahoo.com (D. Srinivasacharya).
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the wall. In simulating the laminar flow field in cylindrical solid rocket
motors, Goto et al. [7] have analyzed the laminar incompressible flow in
a semi-infinite porous pipewhose radius variedwith time. Goto et al. [8]
made a theoretical analysis of the unsteady flow in a semi infinite
expanding or contracting circular pipe into which an incompressible
fluid is injected or sucked in through the wall surface. Bujurke et al. [9]
obtained computer extended series solution for unsteady flow in a
contracting and expanding pipe. Majdalani et al. [10] obtained exact
solution to the viscous flow driven by small wall contractions and
expansions of twoweakly permeable walls using similarity transforma-
tions inboth space and timeanddouble perturbations in thepermeation
Reynolds number and the wall expansion ratio. The analysis of [7] was
extended numerically using shooting method coupled with a Runge–
Kutta integration schemebyDauenhaueret al. [11] andbothnumerically
and asymptotically for moderate to large Reynolds numbers by
Majdalani and Zhou [12] to expanding or contracting channels with
porous walls. Adamkowski [13] proposed a mathematical model based
on the one-dimensional theory of the unsteady flow for the problem of
transient flow of liquid in tapered or expanding pipes and compared
with the methods available in the literature. Boutros et al. [14]
considered the laminar, isothermal and incompressible flow in a
rectangular domain bounded by twoweakly permeable ,movingporous
wall,which enable thefluid to enter or exit due to successive expansions
or contractions using Lie group method for determining symmetry
reductions of partial differential equations followed by a double
perturbation. Asghar et al. [15] extended the very restricted results
obtained in [14] using various Lie point symmetries to reduce a complex
systemtoaneasy-to-handle second-orderordinarydifferential equation
system in combination with the conservation laws that the system
generates. As a particular case, they constructed exact solutions of a
systemmodeling viscous flow between slowly expanding and contract-
ing walls.
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Fig. 1. Two-dimensional channel with expanding (or contracting) porous walls.

Nomenclature

A Injection coefficient (vw/a)
a(t) Distance between parallel plates
c Specific heat at constant temperature
E Eckert number, μv1

ρhc T2−T1ð Þ
h Distance between parallel plates
k Thermal conductivity
m 1/3 Trace of M
M Couple stress tensor
P Fluid pressure
Pr Prandtl number, μck
q̄ Velocity vector
R Cross flow Reynolds number, ρavwμ

T Dimensionless temperature, T−T1
T2−T1

T1 Temperature at the lower plate
T2 Temperature at the upper plate
u(x,y) Axial velocity component
v(x,y) Velocity component in y-direction
vw Suction or injection velocity

Greek Letters
α2 Dimensionsless couple stress parameter, η

μh2

β A wall expansion ratio =
:
aa
v

� �
λ Dimensionless y coordinate, y/h
τ Force stress tensor
ζ Dimensionless axial variable, x

2

a2

ρ Fluid density
µ Fluid viscosity
ρC Body couple tensor
η, ηI Couple stress fluid parameters
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It is known that many of the industrially and technologically
important fluids behave like a non-Newtonian fluid. The couple stress
fluid theory developed by Stokes [16] represents the simplest
generalization of the classical viscous fluid theory that sustains couple
stresses and the body couples. The important feature of these fluids is
that the stress tensor is not symmetric and their accurate flow
behavior cannot be predicted by the classical Newtonian theory. The
main effect of couple stresses will be to introduce a size dependent
effect that is not present in the classical viscous theories. The fluids
consisting of rigid, randomly oriented particles suspended in a viscous
medium, such as blood, lubricants containing small amount of
polymer additive, electro-rheological fluids and synthetic fluids are
examples of these fluids. Application of the couple stress model to
biomechanics problems has been proposed in the study of peristaltic
transport by Srivastava [17], Shehawey andMekheimer [18] and blood
flow in the microcirculation by Dulal Pal et al. [19]. In lubrication
problems many authors have investigated the couple stress effects on
different lubrication problems (Chiang et al. [20], Naduvinamani et al.
[21], Jian et al. [22], Lu et al. [23]).

In this paper, we study the unsteady incompressible Couple stress
fluid flow in a channel of expanding walls with injection. The problem
is examined numerically using quasi-linearization technique, which
provides an effective computational tool for the solution of a
wide class of nonlinear two-point and multipoint boundary-
value problems. The effects of different parameters on velocity
components and temperature distribution are studied and shown
graphically.

2. Formulation of the problem

Consider the laminar incompressible couple stress fluid flow
through an elongated rectangular channel exhibiting a sufficiently
large aspect ratio of width w to height a. Introduce the Cartesian
coordinate system with the origin through the center of the channels
and the x-axis along the axial flow direction and the y-axis
perpendicular to it. Both upper and lower walls are assumed to
have equal permeability and expand or contract uniformly at a time-
dependent rate in the transverse direction only. Hence, their
separation is a function of time a(t). Assume that the fluid is
injected or aspirated uniformly and orthogonally through the
channel walls at an absolute velocity vw. One end of the rectangular
channel (x=0) is closed by a solid membrane that is allowed to
stretch with channel expansions or contractions (see Fig. 1). At the
other end, the channel is fully open. The influence of the opening at
this end can be neglected by assuming semi-infinite length despite
of its finite body length [5].

The governing equations of the flow of an incompressible couple
stress fluid [16] in the absence of body force and body couple and the
energy equations are

jd q̄ = 0 ð1Þ

ρ
A q̄
At

+ q̄djð Þ q̄
� �

= −rP−μr×r× q̄− ηr×r×r×r× q̄ ð2Þ

ρc
AT
At

+ q̄djð ÞT
� �

= μ j q̄ð Þ: j q̄ð ÞT + j q̄ð Þ: j q̄ð Þ
h i

+ 4η j ω̄ð Þ: j ω̄ð ÞT
h i

+ 4ηI j ω̄ð Þ: j ω̄ð Þ½ � + kj2T

ð3Þ

where ρ is the density, q ̄ is the velocity vector, P is the fluid
pressure, µ is the fluid viscosity, η and ηI are the couple stress
fluid parameters, k is the thermal conductivity, c is the specific heat
at constant temperature, ω̄ is the rotation vector and T is the
temperature.

The force stress tensor τ and the couple stress tensorM that arises
in the theory of couple stress fluids are given by

τ = −p + λ1div q̄ð ÞI + μ grad q̄ + grad q̄ð ÞT
h i

+ 1=2 I × divM + ρC½ � ð4Þ

and

M =mI + 2η grad curl q̄ð Þ + 2η I grad curl q̄ð Þð ÞT ð5Þ

where m is 1/3 trace of M and ρC is the body couple tensor.
The quantity λ is the material constant and ηI is the constant as-
sociatedwith couple stresses. The dimensions of thematerial constant
λ1 is that of viscosity where as the dimensions of η and ηI are those



Fig. 2. The effect of α on axial velocity component.

Fig. 3. The effect of α on radial velocity component.
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of momentum. These material constants are considered by the
inequalities,

μ z 0; 3λ + 2μ z 0; ηz 0; ηI V η ð6Þ

The assumption of large aspect ratio (the height is smaller than the
width) enables us to treat the problem as a case of two-dimensional
flow. We choose the velocity vector as q ̄=u(x, y, t)î +v(x, y, t) ĵ . The
basic field Eqs. (1)–(4) can be expressed as

Au
Ax

+
Av
Ay

= 0 ð7Þ

ρ u
Au
Ax

+ v
Au
Ay

� �
= −

AP
Ax

+ μr2u − ηr4u ð8Þ

ρ u
Av
Ax

+ v
Av
Aλ

� �
= −

AP
Ay

+ μr2v − ηr4v ð9Þ

ρc u
AT
Ax

+ v
AT
Aλ

� �
= μ 2

Au
Ax

� �2

+ 2
Av
Ay

� �2

+
Au
Ay

+
Av
Ax

� �2
" #

+ η j2v
� �2

+ j2u
� �2h i

+ kj2T

ð10Þ

The boundary conditions on the velocity profile and temperature
are

u x;λð Þ = 0; v x; yð Þ = vw = −A
:
α ; r× q̄ = 0; T x;yð Þ = T1 at y = a tð Þ

u x;λð Þ = 0; v x;λð Þ = 0; j× q̄ = 0; T x;λð Þ = T2 at y = 0
ð11Þ

At the wall, it is assumed that the fluid inflow velocity vw is
independent of position. The injection coefficient (A≡vw/a) that
appears in the above conditions is a measure of wall permeability.
Following Berman [1] and in view of the boundary conditions
represented by Eqs. (9) and (10), a similarity solutionwith respect to x
can be taken as

u =
ux
ρa2

FI η; tð Þ; υ = −
ux
ρa

F η; tð Þ ð12Þ

where η=y/a
Substituting Eq. (12) in to Eq. (5)–(8) and eliminating pressure

from the resulting equations, we get

α2FVI− FIV + 3βFII + βλFIII − RFIFII + RFFIII −
a2

ν
dFII

dt

� �
= 0 ð13Þ

where prime denotes differentiationwith respect to η, β = β tð Þ = :
aa
v is a

wall expansion ratio, m = μ
ρ, α

2 = η
μa2. Eq. (10) together with Eq. (12),

suggests that the form of temperature may be taken as

T x;λð Þ = T1 + μv1
ac

�1 λð Þ + x2

a2
�2 λð Þ

� �
ð14Þ

Substituting Eq. (14) in Eq. (10), and equating the coefficients of x2
a2

and the terms without x2
a2 on both sides of the equation thus obtained,

we get

�II
2 = Pr −3β�2 + 2F

I�2−F�
I
2

� �
−
Pr
Re

4FII
2
+ α2FIII

2
� 	

ð15Þ

�II
1 = −Pr β�1 + �

I
1

� �
−
Pr
Re

4FI
2
+ α2FII

2
� 	

−2�2 ð16Þ

where Pr = μc
k is the Prandtl number.

The dimensionless form of temperature from Eq. (14) can be
written as

T =
T−T1
T2−T1

= E �1 + f
2�2

� 	
ð17Þ

where E = μv1
ρhc T2−T1ð Þ is the Eckert number and f = x2

a2 is the dimensionless
axial variable.



Fig. 5. The effect of β on radial velocity component.

Fig. 4. The effect of β on axial velocity component.
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The boundary conditions (Eq. (11)) in terms of f, ϕ1 and ϕ2 are

f 0ð Þ = 1−a; f 1ð Þ = 1;
f I 0ð Þ = 0; f I 1ð Þ = 0;
f II 0ð Þ = 0; f II 1ð Þ = 0;
�1 0ð Þ = 0; �1 1ð Þ = 0;
�2 0ð Þ = 0; �2 1ð Þ = 1=E =w sayð Þ

ð18Þ

where Re = ρavw
μ is cross flow Reynolds number.

A similar solutionwith respect to space and timecanalsobeobtained
following the transformation described by Uchida et al. [5]. This can be
accomplished by considering the case for which β is constant and F is
dependent on λ only. Under this assumption Eq. (13) becomes

α2FVI− FIV + 3βFII + βλFIII−RFIFII + RFFIII
� �¼ 0 ð19Þ

3. Solution of the problem

ThenonlinearEqs. (13), (15) and (16) are converted into the following
system of first order differential equations by the substitution

f ; f I ; f II; f III; f IV ; f V ; f VI; �1; �
1
1; �2; �

1
2

� �
= x1; x2; x3; x4; x5; x6; x7; x8; x9; x10ð Þ

ð20Þ

dx1
dλ

= x2;
dx2
dλ

= x3;
dx3
dλ

= x4;
dx4
dλ

= x5;
dx5
dλ

= x6;

dx6
dλ

=
1
α2 ½x5 + 3βx3 + βλx4−x2x3 + x1x4Þ

dx7
dλ

= x8;
dx8
dλ

= −Pr βx7 + x8ð Þ− Pr
Re

4x22 + α
2x23

� �
−2x9

dx9
dλ

= x10;
dx10
dλ

= Pr −3βx9 + 2x2x9−x1x10ð Þ− Pr
Re

4x23 + α
2x24

� �
ð21Þ

The boundary conditions in terms of x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10 are

x1 0ð Þ = 1−a; x2 0ð Þ = 0; x3 0ð Þ = 0; x7 0ð Þ = 0; x9 0ð Þ = 0
x1 1ð Þ = 1; x2 1ð Þ = 0; x3 1ð Þ = 0; x7 1ð Þ = 0; x9 1ð Þ =w ð22Þ
The system of Eq. (21) is solved numerically subject to the
boundary conditions (Eq. (22)) using quasilinearization method (also
known as generalized Newton's method) given by Bellman and Kalaba
[24]

Let (xi(k), i=1, 2,…10) be an approximate current solution and (xi(k+1),
i=1, 2,…10) be an improved solution of Eq. (21). By taking Taylor's series
expansion around the current solution and neglecting the second and
higher order derivative terms, the coupled first order system (Eq. (21)) is
linearized as:

dx k + 1ð Þ
1
dλ

= x k + 1ð Þ
2 ;

dx k + 1ð Þ
2
dλ

= x k + 1ð Þ
3 ;

dx k + 1ð Þ
3
dλ

= x k + 1ð Þ
4 ;

dx k + 1ð Þ
4
dλ

= x k + 1ð Þ
5 ;

dx k + 1ð Þ
5
dλ

= x k + 1ð Þ
6 ;

dx k + 1ð Þ
6
dλ

=
1
α2 3βxk + 1

3 + βλxk + 1
4 −xk2x

k + 1
3 −xk3x

k + 1
2 + xk1x

k + 1
4 + xk4x

k + 1
1 + xk + 1

5

h i

+
1
α2 xk3x

k
2−x

k
4x

k
1

h i
dxk + 1

7

dλ
= xk + 1

8 ;

dxk + 1
8

dλ
= −Pr βxk + 1

7 + xk + 1
8

� 	
−
Pr
Re

8xk2x
k + 1
2 + 2α2xk3x

k + 1
3

� 	
−2xk + 1

9

+
Pr
Re

4xk2x
k
2 + α

2xk3x
k
3

� 	
dxk + 1

9

dλ
= xk + 1

10 ;

dxk + 1
10
dλ

= −Pr −3βxk + 1
9 + 2xk2x

k + 1
9 + 2xk9x

k + 1
2 −xk1x

k + 1
10 −xk10x

k + 1
1

h i

−
Pr
Re

8xk3x
k + 1
3 + 2α2xk4x

k + 1
4

h i
+ Pr −2xk9x

k
2 +x

k
10x

k
1

h i
+
Pr
Re

4xk3x
k
3 +α

2xk4x
k
4

h i

ð23Þ

To solve for (xi(k +1), i=1, 2,…10), the solution to four separate initial
value problems, denoted by xi

h1(λ), xi
h2 (λ), xi

h3(λ), xi
h4(λ), xi

h5(λ) (which
are the solutions of the homogeneous system corresponding to
Eq. (23)) and xi

p(λ) (which is the particular solution of Eq. (23)), with



Fig. 6. The effect of α on temperature distribution.
Fig. 8. The effect of suction Reynolds number on temperature distribution.
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the following initial conditions are obtained by using a Runge–Kutta
method.

xh14 0ð Þ = 1; xh1i 0ð Þ = 0 for i≠4;
xh25 0ð Þ = 1; xh2i 0ð Þ = 0 for i≠5;
xh36 0ð Þ = 1; xh3i 0ð Þ = 0 for i≠6;
xh48 0ð Þ = 1; xh4i 0ð Þ = 0 for i≠8
xh110 0ð Þ = 1; xh5i 0ð Þ = 0 for i≠10
xp11 0ð Þ = 1−a; xp19 0ð Þ =w
xp12 0ð Þ = xp13 0ð Þ = xp14 0ð Þ = xp15 0ð Þ = xp16 0ð Þ = xp17 0ð Þ= xp18 0ð Þ= xp110 0ð Þ=0

ð24Þ

Since the differential equations are linear, the principle of super-
position holds and the general solution may be written as,

x k + 1ð Þ
i λð Þ = C1xh1i λð Þ + C2xh2i λð Þ + C3xh3i λð Þ + xpi λð ÞÞ ð25Þ
where C1, C2, and C3 are the unknown constants and are determine by
considering the boundary condition at λ=1. This solution (xi(k +1), i=1,
Fig. 7. The effect of β on axial temperature distribution.
2, …10) is then compared with solution at the previous step (xi(k), i=1,
2, …10) and further iteration is performed if the convergence has not
been achieved or greater accuracy is desired.

4. Results and discussion

To have a better understanding of the flow characteristics,
numerical results for the velocity components and temperature
distribution are calculated for different values of parameters in the
domain [0,1].

The effect α on the axial and radial velocity components is shown
in Figs. 2 and 3. From Fig. 2, it can be seen that the axial velocity
decreases as α increases. The transverse velocity component also
decrease throughout the domain for an increase in the value of α.

The effect of β on axial and transverse velocity components has
been presented in Figs. 4 and 5 respectively. It can be observed that the
axial velocity increases near the central plane as the value of β
increases. However, this trend is reversed near walls. The transverse
velocity component increase throughout the domain for an increase in
the value of β. Figs. 6, 7 and 8 show that the variation temperature
distributionwith α, β and S. It can be observed from these figures that
the temperature distribution increases for increasing values of α, β
and S.
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