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1. Introduction

Natural convection flow is caused by buoyancy forces which arise
from density differences in a fluid. These density differences are
consequence of temperature gradients within the fluid. Natural
convection flows in a fluid saturated porous media are of great
interest because of their applications in design of chemical processing
equipment, formation and dispersion of fog, distributions of temper-
ature and moisture over agricultural fields, grain storage systems, heat
pipes, packed microsphere insulation, distillation towers, ion ex-
change columns, subterranean chemical waste migration, solar power
absorbers etc. A number of studies have been reported in the
literature focusing on the problem of combined heat and mass
transfer in porous media. Nield [ 1] made the first attempt to study the
stability of convective flow in horizontal layers with imposed vertical
temperature and concentration gradients. This was followed by Khan
and Zebib [2] in the study of flow stability in a vertical porous layer. An
analysis of the mass transfer effect on the free convective transport of
a viscous fluid past an infinite vertical porous plate was carried out by
Soundalgekar [3]. The analysis of convective heat and mass transfer in
a porous medium with the inclusion of non-Darcian effects has also
been a matter of study in recent years. The inertia effect is expected to
be important at a higher flow rate and it can be accounted for through
the addition of a velocity squared term in the momentum equation,
which is known as the Forchheimer's extension. Several researchers
have studied natural convection heat and mass transfer in porous
medium by considering Forchheimer's extension. A detailed review of
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convective heat transfer in Darcian and Non-Darcian porous media
can be found in the book by Nield and Bejan [4].

The study of non-Newtonian fluid flows has gained much attention
by the researchers because of its applications in biology, physiology,
technology and industry. In addition, the effects of heat and mass
transfer in non-Newtonian fluid saturated porous media also have
great importance in engineering applications like the thermal design
of industrial equipment dealing with molten plastics, polymeric
liquids, foodstuffs, or slurries. Several investigators have extended
many of the available convective heat and mass transfer in fluid
saturated porous media problems to include the non-Newtonian
effects. Many of the non-Newtonian fluid models, describe the
nonlinear relationship between stress and the rate of strain. But the
micropolar fluid model introduced by Eringen [5] exhibits some
microscopic effects arising from the local structure and micro motion
of the fluid elements. Further, they can sustain couple stresses and
include classical Newtonian fluid as a special case. The model of
micropolar fluid represents fluids consisting of rigid, randomly
oriented (or spherical) particles suspended in a viscous medium
where the deformation of the particles is ignored. Micropolar fluids
have been shown to accurately simulate the flow characteristics of
polymeric additives, geomorphological sediments, colloidal suspen-
sions, haematological suspensions, liquid crystals, lubricants etc. The
main advantage of using micropolar fluid model compared to other
non-Newtonian fluids is that it takes care of the rotation of fluid
particles by means of an independent kinematic vector called the
microrotation vector. The mathematical theory of equations of
micropolar fluids and applications of these fluids in the theory of
lubrication and porous media are presented by Lukaszewicz [6]. The
heat and mass transfer in micropolar fluids in porous media have
received less attention despite important applications in emulsion
filtration, polymer gel dynamics in packed beds, petroleum and
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Nomenclature
A Slope of ambient temperature
b Forchheimer constant (Geometric)
B Slope of ambient concentration
B Buoyancy ratio
C Concentration
Cw Wall concentration
Cr Skin friction coefficient
Ca.0 Ambient concentration
D Solutal diffusivity
Da; Darcy number
f Reduced stream function
Fs Forchheimer number
g Dimensionless microrotation
g Gravitational acceleration
Gry Thermal Grashof number
J Dimensionless micro-inertia density
j Micro-inertia density
k Thermal conductivity
L Length of the plate
M,y Dimensionless wall couple stress
My Wall couple stress
N Coupling number
Nu Average Nusselt number
Nu, Local Nusselt number
Pr Prandtl number
Sc Schmidth number
Sh Average Sherwood number
Shy Local Sherwood number
T Temperature
Tw Wall temperature
Tw.0 Ambient temperature
U. Characteristic velocity
u,v Darcian velocity components in X and y directions
X,y Coordinates along and normal to the plate
a Thermal diffusivity
Br.Bc Coefficient of thermal and solutal expansion
0% Spin-gradient viscosity
61,6¢ Thermal and Solutal boundary layer thickness
n Pseudo-similarity variable
0 Dimensionless temperature
1) Dimensionless concentration
K Vortex viscosity
A Dimensionless spin-gradient viscosity
u Dynamic viscosity
v Kinematic viscosity
13 Dimensionless streamwise coordinate
p Density of the fluid
Tw Wall shear stress
¥ Stream function
(0] Component of microrotation
£1,& Thermal and Solutal stratification parameter
Subscripts
w Wall condition
0 Ambient condition
C Concentration
T Temperature
Superscript

!

Differentiation with respect to n

lubrication flows in porous wafers. Free convection boundary layer
flow of a micropolar fluid from a vertical flat plate is examined by Rees
and Pop [7]. They solved the governing non-similar boundary layer
equations numerically using the Keller-box method for a range of
values of micropolar fluid parameters. Hassanien et al. [8] have
considered natural convection flow of micropolar fluid along a vertical
and a permeable semi-infinite plate embedded in a porous medium.
They obtained a nonsimilarity solution for the case of uniform heat
flux and used a finite-difference scheme to solve the system of
transformed governing equations. The problem of fully developed
natural convection heat and mass transfer of a micropolar fluid
between porous vertical plates with asymmetric wall temperatures
and concentrations is analyzed by Abdulaziz and Hashim [9]. They
presented an analytic solution to the resulting boundary value
problem by the homotopy analysis method (HAM) and profiles for
velocity and microrotation are presented for a range of values of the
Reynolds number and the micropolar parameter.

Stratification of fluid arises due to temperature variations,
concentration differences or the presence of different fluids. The
analysis of natural convection in a doubly stratified medium is a
fundamentally interesting and important problem because of its
broad range of engineering applications. The applications include heat
rejection into the environment such as lakes, rivers and the seas;
thermal energy storage systems such as solar ponds and heat transfer
from thermal sources such as the condensers of power plants.
Although the effect of stratification of the medium on the heat
removal process in a fluid is important, very little work has been
reported in the literature. Murthy et al.[ 10] have analyzed the effect of
double stratification on double diffusive natural convection from a
vertical impermeable flat plate in non-Darcy porous media with the
constant heat and mass flux conditions at the wall using similarity
solution technique. Later, Lakshmi Narayana and Murthy [11] have
analyzed the natural convection heat and mass transfer from a vertical
surface embedded in a doubly stratified non-Darcy porous medium.
They assumed that the wall temperature and concentration are
constants and the medium is linearly stratified with respect to both
temperature and concentration in the vertical direction. A mathe-
matical model is presented for the two-dimensional, steady, incom-
pressible, laminar free convection flow boundary layer flow over a
continuously moving plate immersed in a thermally-stratified high-
porosity non-Darcian porous medium by Anwar Beg et al. [12].
Recently, Cheng [13] considered the combined heat and mass transfer
in natural convection flow from a vertical wavy surface in a power-
law fluid saturated porous medium with thermal and mass
stratification.

The main purpose of the present investigation is to study the
natural convection heat and mass transfer along a vertical plate in a
micropolar fluid saturated non-Darcy porous medium. A numerical
solution using the Keller-box method [14] is obtained. The effects of
micropolar parameter, Forchheimer number, thermal and mass
stratification parameters on the physical quantities of the flow are
analyzed. The results are compared with relevant results in the
existing literature and are found to be in good agreement.

2. Mathematical formulation

Consider the natural convection heat and mass transfer along a
vertical plate of length L embedded in a doubly stratified non-Darcy
micropolar fluid. Assume that the fluid and the porous medium have
constant physical properties. The fluid flow is moderate and the
permeability of the medium is low so that the Forchheimer flow
model is applicable and the boundary effect is neglected. The flow is
steady, laminar, two-dimensional and the fluid and the porous medium
are in local thermodynamical equilibrium. Choose the coordinate
system such that x-axis is along the vertical plate and y-axis normal to
the plate. The plate temperature is T,, and concentration is C,, and are
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assumed to be constants. The ambient medium is assumed to be
vertically and linearly stratified with respect to both temperature and
concentration in the form T.(x)=Two+Ax and C.(x)=Ce o+ Bx
respectively, where A and B are constants and varied to alter the
intensity of stratification in the medium. The values of T,, and C, are
assumed to be greater than the ambient temperature T. o and
concentration C. o at any arbitrary reference point in the medium
(inside the boundary layer).

Using the Boussinesq and boundary layer approximations, the
governing equations for the micropolar fluid are given by

% + g—; =0 (1)
p(uft + o) =t e o) @
+ BC(C—cm))—It;u ?(b 2
) 8
ug—i + Ug_}T, = a% (4)
T DZZTE 5)

where u and v are Darcian velocity components in x and y directions
respectively, @ is the component of microrotation whose direction of
rotation lies in the xy-plane, T is the temperature,C is the concentra-
tion, g~ is the acceleration due to gravity, p is the density, b is the
Forchheimer constant, K, is the permeability, u is the dynamic
coefficient of viscosity, Bris the coefficient of thermal expansion, 3¢ is
the coefficient of solutal expansions,  is the vortex viscosity, j is the
micro-inertia density, vy is the spin-gradient viscosity, « is the thermal
diffusivity and D is the solutal diffusivity of the medium.
The boundary conditions are

u=0v=00=— g,T—T ,C=C, at y=0 (6a)
u=00=0T=T,(x),C=C.,(x) as y—» (6b)

where k is the thermal conductivity of the fluid, the subscripts w,
(e0,0) and « indicate the conditions at the wall, at some reference
point in the medium and at the outer edge of the boundary layer
respectively and n is a constant such that 0<n<1. Generally, when
n=0, Eq. (6a) yields w(x,0)=0. This represents the case of
concentrated particle flows in which the microelements close to the
wall are not able to rotate. The case corresponding to n = 5 results in
the vanishing of antisymmetric part of stress tensor and represents
weak concentrations. The particle spin is equal to fluid vorticity at the
boundary for the fine particle suspensions. The case corresponding to
n=1 is representative of turbulent boundary layer flows (Ahmadi
[15], Gorla and Ameri [16]). Thus for n=0, particles are not free to
rotate near the surface, whereas, as n increases from 0 to 1, the
microrotation term gets augmented and induces flow enhancement.
In this study, the value of n is taken as 1/2 only.

In view of the continuity Eq. (1), introduce the stream function ¢
by

_0 0
u—@,U— a (7)

Substituting Eq. (7) in Eqs. (2)-(5) and then using the following
similarity transformations

x Grg/‘l IJGrl/‘lg3/4 ]JG 3/4@1/4
g_ Zvn_ Lg1/4y7 - P f(gan)vm Tg(g~n)a
T-T., Ax _ CCpo Bx
0E,m) = : — d(E, —'_—
( n) Tw_TooO T TwO ( n w_ 0 Cw_coo,o

we get the following nonlinear system of differential equations.

(ﬁ)f ¥ §ff”—1<f’>2 * (%)g +0 ©
g‘” o [po o

N+ 3 -1 (o >J§1/2(2g + = E-¢d o

ot 30 —af =g]f "’g_e gﬂ (11)

<b + f¢ —&f —&{fg(z gﬂ (12)

where the primes indicate partial differentiation with respect to 7
alone, Gr; = ‘Wif”")? is the thermal Grashof number, Pr = zis
the Prandtl number, Sc = % is the Schmidth number, Da; = ” is the
Darcy number, Fs = 2”" is the Forchheimer number, 7 = T L is the
micro-inertia densnty,)\ = ]‘:’v is the spin-gradient v1sc051ty,N = m
(0<N<1) is the Coupling number. If N= 0 the flow, temperature and
concentration fields are unaffected by the microstructure of the fluid
and the microrotation component is a passive quantity. In this case
the present problem reduces to that of a viscous fluid. B = B((Ci_i’o”))
is the buoyancy ratio. Thermal buoyancy acts always vertically
upwards, the species buoyancy may act in either direction depending
on the relative molecular weights. So >0 indicates aiding buoyancy
where both the thermal buoyancy and solutal buoyancy are in the
same direction and B<0 indicates opposing buoyancy where the
solutal buoyancy is in the opposite direction to the thermal buoyancy.
When B=0, the flow is driven by thermal buoyancy alone.
& = 1 A T and g, = o E"CND are the thermal and solutal stratification

parameters and are constants.
Boundary conditions Eq. (6) in terms of f, g, 6, ¢ become

/ —4. /(0 —1 .
=060 =0f€0 = () £60 =560
g n=0
0(€,0) = 1—¢1,0(5,0) = 1—¢, (13a)
N f (€)= 0,g(8,%) = () = (&, =) =0 (13b)
Table 1
Comparison of results for a vertical plate with unstratified case [17].
NuGr; '/*
Pr Ming-I Char et.al. [17] Present results
0.7 0.44600 0.44600
2.0 0.62809 0.62800
6.0 0.87825 0.87821
20.0 1.27226 1.27204
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Fig. 1. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for various values of N.

If Da— o, & =0 and &, = 0, the problem reduces to free convection
heat and mass transfer on a vertical plate with uniform wall
temperature and concentration in an unstratified micropolar fluid.
In the limit, as Da — « and B — 0, the governing Eqs. (2)-(5) reduce to
the corresponding equations for a free convection heat transfer in a
micropolar fluids. Hence, the case of the coupling of wall conduction
with laminar free convection heat transfer of an unstratified
micropolar fluids along a isothermal vertical flat plate of Ming et al.
[17] can be obtained by taking Da— «, £y =0, &, =0 and B=0.

The wall shear stress and the wall couple stress are

Ty = {(u + K)g—; + HmL:O, (14a)

and the heat and mass transfers from the plate respectively are given
by

G = —D{gﬂr (15b)

The non dimensional wall shear stress C; = zlfjw wall couple stress

My, = pUzL, the the local Nusselt number Nuy, = qz" and local Sher-

wood number Shy = qu where U- is the characteristic velocity, are
given by

_ 2—N 1/4
G = (Tox)on ' &0 (162)
M, = (5)g"%0n % &0 (16b)
Nu, = —Gri/*0'(€,0), (16¢)
Sh, = —Gr, "¢ (€,0) (16d)
where Gr, = % is the local thermal Grashof number.

In terms of non-dimensional variables, the average Nusselt
number and Sherwood numbers are

er = Jig"% go>gcl/4 Jo&7 1 (€, 0)dg (17)

3. Results and discussions

The flow Egs. (9) and (10) which are coupled, together with the
energy and concentration Eqgs. (11) and (12), constitute nonlinear
nonhomogeneous differential equations for which closed-form solu-
tions cannot be obtained. Hence, these Eqs. (9) to (12) are solved
numerically using the Keller-box implicit method discussed in Cebeci
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Fig. 2. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for various values of Fs.

and Bradshaw [14]. This method has been proven to be adequate and
give accurate results for boundary layer equations. In the present
study the boundary conditions for 1) at « are replaced by a sufficiently
large value of 1) where the velocity, microrotation, temperature and
concentration profiles approach zero. In the present calculations, the
value of 1. is taken as 6 and a grid size of 1) as 0.02. The solutions are
computed for the dimensionless velocity, microrotation, temperature
and concentration and shown graphically through Figs. (1-4). In order
to study the effects of the coupling number N, Forchheimer number Fs,
thermal stratification parameter &; and solutal stratification param-
eter & on the physical quantities of the flow, the remaining
parameters are fixed as 7=5.0, A=5.0, B=1.0, Pr=0.7, Sc=0.7,
Gr; =10, Da; = 0.1 and { =0.1. These values are chosen so as to satisfy
the thermodynamic restrictions on the material parameters given by
Eringen [5].

In the absence of stratification parameters &; and & with N=0.5,
Da— o, 7=50000, A=5.0 and B=0.0, the results have been
compared with the special case of laminar free convection flow of
micropolar fluids along an isothermal vertical flat plate[17] and it is
found that they are in good agreement, as shown in (Table 1).

In Fig. 1(a-d), the effects of the coupling number N on the
dimensionless velocity, microrotation, temperature and concentra-
tion profiles are presented for fixed values of Fs=0.5 and
&,=¢&=0.2. As N increases, it can be observed from Fig. 1(a) that
the maximum velocity decreases in amplitude and the location of the
maximum velocity moves farther away from the wall. Since N— 0
corresponds to the case of viscous fluid, the velocity in case of

micropolar fluid is less that of viscous fluid. From Fig. 1(b), it can be
noticed that the microrotation changes sign from negative to positive
values within the boundary layer. It is clear from Fig. 1(c) that the
temperature increases with the increase of coupling number N. It can
be seen from Fig. 1(d) that the concentration of the fluid increases
with the increase of coupling number N. The temperature and
concentration in case of micropolar fluids is more than that of the
corresponding Newtonian fluid case.

The dimensionless velocity component for different values of
Forchheimer number Fs with N=0.5 and &; =&, =0.2 is depicted in
Fig. 2(a). It shows the effects of Forchheimer (inertial porous)
parameter on the velocity. In the absence of Forchheimer number
(i.e., when Fs=0), the present investigation reduces to a natural
convection heat and mass transfer in a micropolar fluid saturated with
porous medium in the presence of stratification effects. An increase in
Fs is seen to considerably lower velocity profiles closer to the wall and
the influence is reversed away from the wall. From Fig. 2(b), it can be
observed that the microrotation changes sign from negative to
positive values at the critical point n=1.6 within the boundary
layer. Also, it is clear that the magnitude of the microrotation
decreases with an increase in Forchheimer parameter for N=0.5,
& =2¢&,=0.2. The dimensionless temperature for different values of
Forchheimer parameter for N=0.5 and & =¢&,=0.2, is displayed in
Fig. 2(c). It is seen that the temperature of the fluid increases with the
increase of Forchheimer parameter. Fig. 2(d) demonstrates the
dimensionless concentration for different values of Forchheimer
parameter with N=0.5 and & =¢,=0.2. It is clear that the
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Fig. 3. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for various values of &;.

concentration of the fluid increases with the increase of Forchheimer
parameter.

Fig. 3(a) depicts the non-dimensional velocity for different values
of thermal stratification parameter &; for fixed values of N=0.5,
Fs=0.5 and &,=0.2. It is observed that the velocity of the fluid
decreases with the increase of thermal stratification parameter. From
Fig. 3(b), it can be noticed that the microrotation changes sign from
negative to positive values at the critical point n=1.6 within the
boundary layer. Also, the magnitude of the microrotation decreases
with an increase in thermal stratification parameter. The dimension-
less temperature for different values of thermal stratification
parameter for N=0.5, Fs=0.5 and & =0.2, is shown in Fig. 3(c). It
is clear that the temperature of the fluid decreases with the increase of
thermal stratification parameter. Fig. 3(d) demonstrates the dimen-
sionless concentration for different values of thermal stratification
parameter for N=0.5, Fs=0.5and & =0.2. It can be seen that the
concentration of the fluid increases with the increase of thermal
stratification parameter.

The dimensionless velocity component for different values of
solutal stratification parameter &, with constant N=0.5, Fs=0.5 and
&1 =04, is depicted in Fig. 4(a). It is observed that the velocity of the
fluid decreases with the increase of solutal stratification parameter.
From Fig. 4(b), it can be noticed that the microrotation changes sign
from negative to positive values at the critical point )= 1.6 within the
boundary layer. Also, it is clear that the magnitude of the microrota-
tion decreases with an increase in solutal stratification parameter for
N=0.5, Fs=0.5 and & =0.4. The dimensionless temperature for

different values of solutal stratification parameter for N= 0.5, Fs=0.5
and &; = 0.4, is displayed in Fig. 4(c). It is seen that the temperature of
the fluid increases with the increase of solutal stratification
parameter. Fig. 4(d) demonstrates the dimensionless concentration
for different values of solutal stratification parameter with N=0.5,
Fs=0.5 and &; =04. It is clear that the concentration of the fluid
decreases with the increase of thermal stratification parameter.

(Table 2) shows the effects of the coupling number N, Forchheimer
number Fs, thermal stratification parameter &; and solutal stratifica-
tion parameter &, on the skin friction parameter f'(0) and the
dimensionless wall couple stress g’ (§,0). It is observed from this table
that both the skin friction parameter and the wall couple stress
decrease with increasing coupling number N. The skin friction
parameter decreases and the wall couple stress increases as Fs
increases. Also, the skin friction parameter decreases while the wall
couple stress increases as &; increases. Further, the skin friction
parameter decreases but the wall couple stress increases as &
increases.

(Table 3) displays the effect of coupling number N on the non-
dimensional heat and mass transfer coefficients with variation of the
thermal stratification parameter &; and solutal stratification param-
eter &, for fixed Fs=0.5. It can be seen from this table that, for fixed
values of N, the heat and mass transfer coefficients are decreasing
with increasing values of both &; and &,. Also, for fixed values of both
&1 and &, the heat and mass transfer coefficients are decreasing with
the increasing values of coupling number N. Further, it can be noticed
that the heat and mass transfer coefficients are more in case of viscous
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Fig. 4. (a) Velocity, (b) microrotation, (c) temperature and (d) concentration profiles for various values of &,.

fluids. Therefore the presence of microscopic effects arising from the
local structure and micromotion of the fluid elements reduce the heat
and mass transfer coefficients.

The effects of Forchheimer number Fs on the non-dimensional
heat and mass transfer coefficients against the thermal stratification
parameter & and solutal stratification parameter &, is presented in
(Table 4). It can be observed from this table that, for fixed values of &;
and &,, the non-dimensional heat and mass transfer coefficients are
reducing with the increasing values of Forchheimer number Fs.
Similarly for fixed values of Forchheimer number, the heat and mass

Table 2

Effect of skin friction and wall couple stress for various values of N, Fs, &; and &,.
N Fs £ & f(€0) —g'(§0)
0.1 0.5 0.2 0.2 0.6537 —0.0245
0.3 0.5 0.2 0.2 05713 —0.0111
0.6 0.5 0.2 0.2 0.4239 0.0352
0.9 0.5 0.2 0.2 0.2161 0.0470
0.5 0.0 0.2 0.2 0.4956 0.0272
0.5 0.5 0.2 0.2 0.4774 0.0178
0.5 1.0 0.2 0.2 0.4631 0.0106
0.5 2.0 0.2 0.2 0.4415 0.0001
0.5 0.5 0.0 0.2 0.5390 0.0374
0.5 0.5 0.4 0.2 0.4170 —0.0011
0.5 0.5 0.8 0.2 0.2994 —0.0370
0.5 0.5 1.0 0.2 0.2421 —0.0540
0.5 0.5 0.4 0.0 0.4774 0.0178
0.5 0.5 0.4 0.25 0.4020 —0.0057
0.5 0.5 04 0.75 0.2564 —0.0498
0.5 0.5 0.4 1.0 0.1857 —0.0705

transfer coefficients are decreasing with increasing value of both &;
and &,. Hence, the inertial effects in micropolar fluid saturated porous
medium reduce the skin friction and couple stresses.

4. Conclusions

In this paper, a boundary layer analysis for free convection flow in
a doubly stratified non-Darcy micropolar fluid over a vertical plate
with uniform plate temperature and concentration is presented. Using
the similarity variables, the governing equations are transformed into
a set of non-similar parabolic equations where numerical solution has
been obtained for a wide range of parameters. The higher values of the
coupling number N result in lower velocity distribution but higher
temperature, concentration distributions in the boundary layer
compared the Newtonian fluid case(N=0). The lower velocity
profiles and the higher temperature and concentration profiles
occur for the higher values of Forchheimer number Fs. An increase
in the both thermal and solutal stratification parameters, the velocity,
skin friction parameter and non-dimensional heat and mass transfer
coefficients are decreasing but the wall couple stress is increasing. An
increase in the thermal stratification parameter, decrease the
temperature but increase the concentration distribution. The reverse
trend is observed for temperature and concentration distributions in
case of solutal stratification parameter. The numerical results indicate
that the micropolar fluids reduce the skin friction but increase the
wall couple stresses. Also, non-dimensional heat and mass transfer
coefficients decrease with the increasing values of the coupling
number and Forchheimer number.
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Table 3
Variation of non-dimensional heat and mass transfer coefficients versus &; and ¢, for different values of N with Fs = 0.5.
Nu,Gry /4 ShyGry V4
& & N=0.1 N=03 N=0.6 N=0.9 N=0.1 N=03 N=0.6 N=09
0.0 03 03125 0.3097 0.2901 0.2463 0.3411 0.3332 0.3146 0.2627
0.2 03 0.3033 0.2967 0.2815 0.2413 0.3135 0.3063 0.2895 0.2439
0.4 0.3 0.2923 0.2852 0.2690 0.2255 0.2858 0.2793 0.2646 0.2256
0.6 03 0.2665 0.2593 0.2431 0.1996 0.2581 0.2525 0.2400 0.2080
0.8 03 0.2264 0.2195 0.2044 0.1643 0.2309 0.2262 0.2162 0.1912
1.0 0.3 0.1725 0.1665 0.1539 0.1204 0.2041 0.2006 0.1933 0.1752
0.2 0.0 0.3390 0.3314 0.3139 0.2654 0.3076 0.3115 0.2975 0.2516
0.2 0.2 0.3153 0.3083 0.2923 0.2492 0.3153 0.3083 0.2923 0.2492
0.2 0.4 0.2913 0.2850 0.2708 0.2334 0.3080 0.3005 0.2832 0.2359
0.2 0.6 0.2673 0.2617 0.2495 0.2182 0.2858 0.2781 0.2604 0.2123
0.2 0.8 0.2435 0.2388 0.2287 0.2036 0.2491 0.2415 0.2246 0.1790
0.2 1.0 0.2201 0.2164 0.2086 0.1897 0.1984 0.1915 0.1766 0.1368
Table 4
Variation of non-dimensional heat and mass transfer coefficients versus &; and ¢, for different values of Fs with N=0.3.
Nu,Gry /4 Sh,Gry /4
&1 & Fs =05 Fs=10 Fs=15 Fs =20 Fs =05 Fs=1.0 Fs=15 Fs =20
0.0 0.7 0.2615 0.2537 0.2478 0.2433 0.3029 0.2844 0.2704 0.2592
0.2 0.7 0.2502 0.2423 0.2362 0.2312 0.2615 0.2480 0.2375 0.2289
0.4 0.7 0.2248 0.2179 0.2124 0.2078 0.2208 0.2116 0.2042 0.1981
0.6 0.7 0.1860 0.1808 0.1764 0.1727 0.1811 0.1754 0.1707 0.1667
0.8 0.7 0.1343 0.1311 0.1283 0.1258 0.1426 0.1396 0.1370 0.1348
1.0 0.7 0.0704 0.0690 0.0678 0.0666 0.1054 0.1043 0.1032 0.1023
03 0.0 0.3332 03129 0.2985 0.2874 0.3052 0.2947 0.2817 0.2748
0.3 0.2 0.3063 0.2901 0.2782 0.2690 0.2967 0.2825 0.2721 0.2641
03 0.4 0.2793 0.2668 0.2575 0.2501 0.2852 0.2712 0.2607 0.2524
03 0.6 0.2525 0.2434 0.2364 0.2308 0.2593 0.2469 0.2372 0.2294
03 0.8 0.2262 0.2200 0.2151 0.2110 0.2195 0.2095 0.2015 0.1948
03 1.0 0.2006 0.1968 0.1937 0.1910 0.1665 0.1594 0.1535 0.1484
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