
Some Aggregate Forward-Secure Signature Schemes

N.R.Sunitha
Department of Computer Science & Engg.

Siddaganga Institute of Technology,
Tumkur, Karnataka, India.

B.B.Amberker
Department of Computer Science & Engg.

National Institute of Technology,
Warangal, Andhra Pradesh, India.

Abstract
Ordinary digital signatures have an inherent weak-

ness: if the secret key is leaked, then all signatures, even
the ones generated before the leak, are no longer trust-
worthy. Forward-secure digital signatures address this
weakness, they ensure that the past signatures remain
secure even if the current secret key is leaked.

Following the notion of aggregate signatures intro-
duced by Boneh et al, which provides compression of
signatures, we have come up with aggregate signa-
ture schemes for ElGamal/DSA/Bellare-Miner forward-
secure signatures. We describe two schemes of aggrega-
tion for the Bellare-Miner Scheme. The first is a aggre-
gate signature scheme with aggregation done separately
in different time periods.The second is a aggregate sig-
nature scheme with aggregation done for a set of time
periods.

Keywords : Aggregate Signature, Forward-
Security, Key evolution, Hash function, Digital Signa-
ture.

1 Introduction
Aggregate signature schemes were introduced in 2003

by Boneh, Gentry, Lynn and Shacham [?]. Basically, an
aggregate signature scheme is a digital signature that
supports aggregation: Given n signatures on n distinct
messages from n distinct users, it is possible to aggre-
gate all these signatures into a single short signature.
This single signature will convince the verifier that the
n users did indeed sign the n original messages (i.e., user
i signed message Mi for i = 1, . . . , n). The advantage
of these signatures is that they provide compression of
signatures.

In a general signature aggregation scheme each user
i signs her message Mi to obtain a signature σi. Then
anyone can use a public aggregation algorithm to take
all n signatures σ1, . . . , σn and compress them into
a single signature σ. Moreover, the aggregation can
be performed incrementally. Signatures σ1, σ2 can be
aggregated into σ12 which can then be further ag-
gregated with σ3 to obtain σ123, and so on. There

is also an aggregate verification algorithm that takes
PK1, . . . , PKn,M1, . . . ,Mn and σ to decide whether
the aggregate signature is valid. Thus, an aggregate
signature provides non-repudiation at once on many dif-
ferent messages by many users. This is referred to as
general aggregation since aggregation can be done by
anyone and without the cooperation of the signers.

In another type of aggregation called sequential ag-
gregation scheme, signature aggregation can only be
done during the signing process. Each signer in turn
sequentially adds her signature to the current aggre-
gate. Thus, there is an explicit order imposed on the
aggregate signature and the signers must communicate
with each other during the aggregation process. Opera-
tionally, sequential aggregation works as follows: User1

signs M1 to obtain σ1; User2 then combines σ1 and M2

to obtain σ2; and so on. The final signature σn binds
Useri to Mi for all i = 1, . . . , n.

In [6], the concept of an aggregate signature, security
models for such signatures, and applications for aggre-
gate signatures are presented. They construct an effi-
cient aggregate signature from a recent short signature
scheme based on bilinear maps due to Boneh, Lynn,
and Shacham [6]. In [7], the authors survey two aggre-
gate signature schemes. The first is based on the short
signature scheme of Boneh, Lynn, and Shacham and
supports general aggregation. The second, based on a
multisignature scheme of Micali, Ohta, and Reyzin, is
built from any trapdoor permutation but only supports
sequential aggregation. In [4], the authors propose se-
quential aggregate signatures, in which the set of sign-
ers is ordered. The aggregate signature is computed
by having each signer, in turn, add his signature to it.
They show how to realize this in such a way that the
size of the aggregate signature is independent of the
number of signatures. In [8], the authors consider Fs-
sAgg (Forward-secure signature aggregation) authenti-
cation schemes in the contexts of both conventional and
public key cryptography and construct a FssAgg MAC
scheme and a FssAgg signature scheme, each suitable
under different assumptions. This work only represents

1

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

the initial investigation of Forward-Secure Aggregation
as the proposed schemes are not specific or optimal. In
a designated verifier aggregation scheme [3, 12], an ag-
gregate signature is addressed to a specific verifier. And
only this specific verifier needs to be convinced of the
integrity and origin of the signed messages.

Ordinary digital signatures have an inherent weak-
ness: if the secret key is leaked, then all signatures, even
the ones generated before the leak, are no longer trust-
worthy. Forward-secure digital signatures address this
weakness, they ensure that the past signatures remain
secure even if the current secret key is leaked.

Following the notion of aggregate signatures intro-
duced by Boneh et al, which provides compression of
signatures, we have come up with aggregate signa-
ture schemes for ElGamal/DSA/Bellare-Miner forward-
secure signatures.

The organisation of our paper is as follows: In Sec-
tion 2, we describe briefly the properties of forward-
secure signature schemes and in particular discuss the
Forward-secure Bellare-Miner Scheme. In Section 3,
we describe two schemes of aggregation for the Bellare-
Miner Scheme. The first is a aggregate signature scheme
with aggregation done separately in different time pe-
riods.The second is a aggregate signature scheme with
aggregation done for a set of time periods. In Section 4,
we discuss the Forward-Secure DSA Signature scheme
and the corresponding aggregation. In Section 5, we
discuss the Forward-Secure ElGamal Signature scheme
and the corresponding aggregation. Lastly in Section
6, we conclude.

2 Forward Secure Signature Scheme
Digital signatures are vulnerable to leakage of secret

key. If the secret key is compromised, any message can
be forged. To prevent future forgery of signatures, both
public key and secret key must be changed. Notice,
that this will not protect previously signed messages:
such messages will have to be re-signed with new pair of
public key and secret key, but this is not feasible. Also
changing the keys frequently is not a practical solution.

To address the above problem, the notion of forward
security for digital signatures was first proposed by An-
derson in [1], and carefully formalised by Bellare and
Miner in [5] (see also[2, 10, 9, 11]). The basic idea is to
extend a standard digital signature scheme with a key
update algorithm so that the secret key can be changed
frequently while the public key stays the same. Unlike a
standard signature scheme, a forward secure signature
scheme has its operation divided into time periods, each
of which uses a different secret key to sign a message.
The key update algorithm computes the secret key for
the new time period based on the previous one using a

one way function. Thus, given the secret key for any
time period, it is hard to compute any of the previously
used secret keys. (It is important for the signer to delete
the old secret key as soon as the new one is generated,
since otherwise an adversary breaking the system could
easily get hold of these undeleted keys and forge sig-
natures.) Therefore a receiver with a message signed
before the period in which the secret key gets compro-
mised, can still trust this signature, for it is still hard
to any adversary to forge previous signatures.

To specify a forward-secure signature scheme, we
need to (i) give a rule for updating the secret key (ii)
specify the public key and (iii) specify the signing and
the verification algorithms.

2.1 Bellare-Miner Forward-secure scheme
For the sake of completeness we describe the algo-

rithms of the Bellare-Miner scheme.
Key generation: The signer generates the keys by

running the following algorithm which takes as input
the security parameter k, the number l of points in the
keys and the number T of time periods over which the
scheme is to operate.

Pick at random, distinct k/2 bit primes p, q each
congruent to 3 mod 4 and set N ← pq. N is a Blum
Williams integer.

The base secret key SK0 = (S1,0, . . . , Sl,0, N, 0)

(where Si,0
R← Z∗

N).
For verifying signatures, the verifier is given the

public key PK, calculated as the value obtained on
updating the base secret key T + 1 times: PK =
(U1, . . . , Ul, N, T) where Ui = S2T+1

i,0 mod N, i =
1, . . . , l.

Key evolution: During time period j the signer
signs using key SKj . This key is generated at the start
of period j by applying a key update algorithm to the
key SKj−1. The update algorithm squares the l points
of the secret key at the previous stage to get the secret
key at the next stage. Once this update is performed
the signer deletes the key SKj . Since squaring modulo
N is a one way function, when the factorization of N
is unknown it is computationally infeasible to recover
SKj−1 from SKj .

The secret key SKj = (S1,j , . . . , Sl,j , N, j) of the
time period j is obtained from the secret key SKj−1 =
(S1,j−1, . . . , Sl,j−1, N, j−1) of the previous time period
via the update rule: Si,j = S2

i,j−1 mod N, i = 1, . . . , l.
Signature Generation: It has as input the secret

key SKj of the current period, the message M to be
signed, and the value j of the period itself to return a
signature 〈j, (Y,Z)〉 where Y, Z in Z∗

N are calculated as
follows:

2

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

Y = R2(T+1−j)
mod N (1)

where R
R← Z∗

N and

Z = R
l∏

i=1

Sci
i,j mod N (2)

with
c1, . . . , cl = H(j, Y,M) (3)

being the l output bits of a public hash function.
Signature Verification: A claimed signature

〈j, (Y,Z)〉 for the message M in time period j is ac-
cepted if

Z2(T+1−j)
= Y

l∏
i=1

U ci
i mod N (4)

where c1, . . . , cl = H(j, Y,M), and rejected otherwise.
Notice that since

Z2(T+1−j)
= (R(

l∏
i=1

Sci
i,j)

2(T+1−j)
mod N

= Y.(
l∏

i=1

S2(T+1)ci
i,0) mod N

= Y.
l∏

i=1

U ci
i mod N.

a signature by an honest signer with the secret key will
be accepted.

3 Aggregate signature scheme for
Forward-secure signatures with ag-
gregation done separately in different
time periods

Here we propose a forward-secure aggregate signa-
ture scheme based on Bellare-Miner Scheme in which
given n signatures, n = n1 +n2 + . . .+nT , where nj are
the number of signatures signed by a single signer in
the jth period on nj distinct messages. We aggregate
the signatures in different time periods separately i.e
each of the nj signatures are considered for aggregation
separately.

Aggregate Signature Generation: Let
〈(Mj,1, j, (Yj,1, Zj,1)), . . . , (Mj,nj , j, (Yj,nj , Zj,nj))〉
be the signatures generated as discussed in Section 3 in
any jth period. The aggregate signature is obtained by
computing the product of the individual components
of the signatures. Therefore, the aggregate signature is
〈(j, YA,j , ZA,j ,Mj,1, . . . ,Mj,nj)〉, where

YA,j = Yj,1 . . . Yj,nj mod N (5)

ZA,j = Zj,1 . . . Zj,nj mod N. (6)

Aggregate Signature Verification: The verifica-
tion equation for time period j is given by

Z2(T+1−j)

A,j = YA,j .
l∏

i=1

U
(cMj,1,i+...+cMj,nj,i)

i mod N. (7)

where cMj,1,1, . . . , cMj,l,l = H(j, Yj,1,Mj,1). Notice that
since

LHS = Z2(T+1−j)

j,1 . . . Z2(T+1−j)

j,nj
mod N

= (R1.
l∏

i=1

S
cMj,1,i

i,j)2
(T+1−j)

. . .

(Rnj .

l∏
i=1

S
cMj,nj,i

i,j)2
(T+1−j)

mod N

= (R1 . . . Rnj)
2(T+1−j)

.

(
l∏

i=1

S
cMj,1,i+...+cMj,nj,i

i,j)2
(T+1−j)

mod N

= YA,j(
l∏

i=1

S
cMj,1,i+...+cMj,nj,i

i,j)2
(T+1−j)

mod N

= YA,j .(
l∏

i=1

S
2(T+1).(cMj,1,i+...+cMj,nj,i)

i,0) mod N

= YA,j .

l∏
i=1

U
(cMj,1,i+...+cMj,nj,i)

i mod N.

= RHS,

an aggregate signature generated by a honest signer
with his secret key will be accepted.
3.1 Aggregate signature scheme for

Forward-secure signatures with aggre-
gation done for a set of time periods

We propose another aggregate signature scheme for
Bellare-Miner Scheme in which given n signatures, n =
n1+n2+. . .+nT , where nj are the number of signatures
signed in the jth period on nj distinct messages by a
single signer. We can aggregate all the signatures occur-
ring in any m distinct time periods, i1, . . . , im. Here for
convenience and to reduce the complexity of equations
we consider n1 = n2 = . . . = nj = 1.

Aggregate Signature Generation: Let
〈(Mi1,1, i1, (Yi1,1, Zi1,1)), . . . , (Mim,1, im, (Yim,1, Zim,1))〉
be the m signatures generated as discussed in
Section 2 in m time periods I = {i1, i2, . . . , im}

3

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

by a single signer. The aggregate signature is
〈(i1 . . . im, YA, ZA,Mi1,1, . . . ,Mim,1)〉, where

YA = Yi1,1 . . . Yim,1 mod N (8)

ZA = Z2(T+1−i1)

i1,1 . . . Z2(T+1−im)

im,1 mod N. (9)

Aggregate Signature Verification: The verifica-
tion equation is given by

ZA = YA.
∏
i∈I

l∏
j=1

U
cMi,1,j

j mod N. (10)

where cMik,1,1, . . . , cMik,1,l = H(ik, Yik,1,Mik,1), k =
1, 2, . . . ,m

Notice that since

LHS = Z2(T+1−i1)

i1,1 . . . Z2(T+1−im)

im,1 mod N

= (Ri1(
l∏

j=1

S
cMi1,1,j

j,i1
))2

(T+1−i1)
. . .

(Rim
(

l∏
j=1

S
cMim,1,j

j,im
))2

(T+1−im)
mod N

= R2(T+1−i1)

i1 . . . R2(T+1−im)

im
.

(
l∏

j=1

S
cMi1,1,j

j,i1
)2

(T+1−i1)

. . . (
l∏

j=1

S
cMim,1,j

j,im
)2

(T+1−im)
mod N

= Yi1,1 . . . Yim,1.(
l∏

j=1

S
2(T+1).cMi1,1,j

j,0)

. . . (
l∏

j=1

S
2(T+1)cMim,1,j

j,0) mod N

= YA.
l∏

j=1

U
cMi1,1,j

j . . .
l∏

j=1

U
cMim,1,j

j mod N.

= RHS,

an aggregate signature generated by a honest signer
with his secret key will be accepted.

4 Forward Secure DSA Signature
Scheme

To specify a forward-secure signature scheme, we
need to (i) give a rule for updating the secret key (ii)
specify the public key and (iii) specify the signing and
the verification algorithms.

In saying that our forward-secure scheme is based
on a basic signature scheme, we mean that, given a

Table 1: For prime p of size |p| bits, φT (p) has a prime
factor of size 160 bits.
|p| p T
256 23158417847463239084714197 56

00173758157065399693312811
28078915168015826259280709

256 23158417847463239084714197 56
00173758157065399693312811
28078915168015826259280027

274 60708402882054033466233184 77
58823496583257521372037936

0039119137804340758912662766479
274 6070840288205403346623318458823 73

49658325752137203793600391191
37804340758912662765931

512 268156158598851941991480499964 266
116922549587316411847867554471
228874435280601470939536037485
963338068553800637163729721017

07507765623893139892867298012168351

message and the secret key of a time period, the signing
algorithm is the same as in the basic signature scheme.
The public key for the forward-secure signature scheme
is the key obtained on running T times the update rule
for secret keys.

Now, we need to be able to write a verification equa-
tion relating the public key and the signature (and
incorporating the time period of the signature) from
which the claim of forward security can be deduced.

Here are the details.
1. Secret Key Updation

Let p be a large prime. Let φ(p−1) = pr1
1 . . . p

rk
k where

p1 < p2 < . . . < pk.
Choose g such that

gcd(g, p) = 1, gcd(g, φ(p)) = 1, gcd(g, φ2(p)) = 1, . . . ,
gcd(g, φT−1(p)) = 1

where φ(p) is the Euler totient function and φT−i(p) =
φ(φT−i−1(p)) for 1 ≤ i ≤ T − 1 with φ0(p) = p. It may
be noted that a prime g chosen in the range pk < g < p
satisfies the above condition. The base secret key a0

(this is the initialisation for the secret key updation) is
chosen randomly in the range 1 < a0 < p − 1.
The secret key ai in any time period i is derived as a
function of ai−1, the secret key in the time period i−1,
as follows:

ai = gai−1 mod φT−i+1(p) mod φT−i(p) (11)

for 1 ≤ i < T . Once the new secret key ai is
generated for time period i, the previous secret
key ai−1 is deleted. Thus an attacker breaking in
period i will get ai but cannot compute a0, . . . , ai−1,

4

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

because of difficulty of computing discrete loga-
rithms. For a given large prime p, though the value
of φi(p) decreases exponentially over time i, we
have determined experimentally (see Table 1) that
for the following typical values of p, φi(p) factor
into primes of size greater than 2160 for reasonable
value of T. Therefore, we assume that computing
discrete logarithms mod φT−i(p) is hard, for 1 ≤ i < T .

2. Public Key Generation
We obtain the public key by executing the Secret Key
Updation Algorithm T times as follows :

β = gaT−1 mod p = aT mod p (12)

3. Signature Generation: The signature generated in
any time period i is 〈r, s, i〉. The computation of r is

r = (gk mod p) mod q (13)

where k is a random number chosen such that 0 < k <
p and gcd(k, (p − 1)) = 1.
The computation of s is

s = k−1(SHA(m||i) + (A(g, T − i− 1, ai) ∗ r)) mod q
(14)

where SHA is a collision-resistant hash function.
While hashing, i is concatenated with m to indicate
the time period in which the message is signed.

The notation A(α, u, v) = α..
.α

v

we mean that there
are u number of α ’s in the tower and the topmost α is
raised to v, i.e in the above equation there are (T−i−1)
number of α’s in the tower and the topmost α is raised
to ai.

Notice that the public key β can also be given in terms
of ai as,

β = A(g, T − i, ai) mod p, (15)

This relation gets employed in the verification of
validity of the signature.

4. Verification:

w = (s)−1

u1 = SHA(m||i) ∗ w

u2 = r ∗ w

v = gu1 ∗ βu2

A claimed signature 〈r, s, i〉 for the message m in time
period i is accepted if

v = r (16)

else rejected.

Recall that the claim of security of the standard DSA
signature scheme is based on the difficulty of computing dis-
crete logarithms. The same security guarantee is obtained
in the Forward-secure DSA Signature Scheme.

4.1 Aggregate Signatures for Forward-
Secure DSA

Let 〈(Mi1,1, i1, (ri1,1, si1,1)) . . . (Mim,1, im, (rim,1, sim,1)〉
be the m DSA forward-secure signatures generated in m
time periods I = {i1, . . . , im} by a single signer. The aggre-
gate signature is obtained by computing the following:

σ1 = r
r−1

i1,1.si1,1

i1,1 . . . r
rim,1.sim,1
im,1 mod p

σ2 = (SHA(Mi1,1)r
−1
i1,1+. . .+SHA(Mim,1)r

−1
im,1).H(σ1) mod p.

The verification equation is given by

ασ2 = ((β)−m.σ1)
H(σ1) mod p

Since

RHS = (β−m.r
r−1

i1,1.si1,1

i1,1 . . . r
rim,1.sim,1
im,1)H(σ1) mod p

= (β−m.g
ki1 .k−1

i1
(SHA(Mi1,1)+A(g,T−1−i1,ai1).ri1,1)r−1

i1,1

. . . g
kim .k−1

im
(SHA(Mim,1)+A(g,T−j−im,aim).rim,1).r−1

im,1)H(σ1)

= (β−m.g
(SHA(Mi1,1).r−1

im,1)
. . .

g
(SHA(Mim,1).r−1

im,1)
.βm)H(σ1) mod p

= (g
(SHA(Mi1,1).r−1

i1,1)
. . . g

(SHA(Mim,1).r−1
im,1)

)H(σ1) mod p

= gσ2 mod p

= LHS,

a set of messages signed by a honest signer will be accepted.
This can be easily extended to any number of users.

5 Forward Secure ElGamal Signature
Scheme

As the Secret Key Updation Algorithm and Public Key
Generation Algorithm remains the same as in Forward-
Secure DSA scheme, we discuss only the Signature Gen-
eration and Signature Verification algorithms. Here are the
details.

1. Signature Generation
The signature generated in any time period i is
〈y1,i, y2,i〉. The computation of y1,i is

y1,i = αk mod p (17)

where k is a random number chosen such that 0 < k <
p and gcd(k, (p − 1)) = 1.
The computation of y2,i is

y2,i = (H(m||i)−(A(α, T−i−1, ai).y1,i))k
−1 mod (p−1)

(18)
where H is a collision-resistant hash function. While
hashing, i is concatenated with m to indicate the time
period in which the message is signed.

Notice that the public key β can also be given in terms
of ai as,

β = A(α, T − i, ai) mod p, (19)

5

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

This relation gets employed in the verification of
validity of the signature.

2. Verification
A claimed signature 〈y1,i, y2,i〉 for the message m in
time period i is accepted if

αH(m||i) = βy1,i y
y2,i

1,i mod p (20)

else rejected.

5.1 Aggregate Signatures for Forward-
Secure Elgamal Signature Scheme

Let 〈(Mi1,1, i1, (yi1,1, y
′
i1,1)) . . . (Mim,1, im, (yim,1, y

′
im,1)〉

be the m forward-secure ElGamal signatures generated in
m time periods I = {i1, i2, . . . , im} by a single signer. The
aggregate signature is obtained by computing the following:

σ1 = y
y−1

i1,1.y′i1,1
i1,1 . . . y

yim,1.y′im,1
im,1 mod p

σ2 = (SHA(Mi1,1)y
−1
i1,1+. . .+SHA(Mim,1)y

−1
im,1).H(σ1) mod p.

The verification equation is given by

gσ2 = ((β)m.σ1)
H(σ1) mod p.

Since,

RHS = (βm.y
y−1

i1,1.y′i1,1
i1,1 . . . y

yim,1.y′im,1
im,1)H(σ1) mod p

= (βm.g
ki1 .k−1

im
(H(Mi1,1)−A(g,T−1−1,ai1).yi1,1)y−1

i1,1

. . . g
kj .k−1

j
(H(Mj,1)−A(g,T−j−1,aim).yim,1).y−1

im,1)H(σ1)

= (βm.g
(H(Mi1,1).y−1

i1,1)
. . .

g
(H(Mim,1).y−1

im,1)
.β−m)H(σ1) mod p

= (g
(SHA(Mi1,1).y−1

i1,1)
. . . g

(H(Mim,j).y−1
im,1)

)H(σ1) mod p

= gσ2 mod p

= LHS,

a set of messages signed by a honest signer will be accepted.
This can be easily extended to any number of users.

6 Conclusion
Following the notion of aggregate signatures introduced

by Boneh et al, which provides compression of signa-
tures, we have come up with aggregate signature schemes
for ElGamal/DSA/Bellare-Miner forward-secure signatures.
We describe two schemes of aggregation for the Bellare-
Miner Scheme. The first is a aggregate signature scheme
with aggregation done separately in different time peri-
ods.The second is a aggregate signature scheme with ag-
gregation done for a set of time periods.

References
[1] Anderson, R.: Invited Lecture, Fourth Annual Con-

ference on Computer and Communications Security,
ACM, (1997).

[2] Abdalla,M., Reyzin,L. A New Forward-Secure Digital
Signature Scheme. In: ASIACRYPT 2000, LNCS 1976,
pp. 116-129. Springer-Verlag, (2000),116-129.

[3] Akihiro Mihara, Keisuke Tanaka, Universal
Designated-Verifier Signature with Aggregation In:
Proceedings of the Third International Conference on
Information Technology and Applications (ICITA05),
IEEE Computer Society.

[4] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, Hovav
Shacham, Sequential Aggregate Signatures from Trap-
door Permutations, In Proceedings of Eurocrypt 2004,
pp. 74-90.

[5] Bellare, M., Miner, S. A Forward-Secure Digital Sig-
nature Scheme. In: Wiener, M. (eds.): Advances in
Cryptology-Crypto 99 proceedings, Lecture notes in
Computer Science, Vol. 1666. Springer-Verlag, (1999).

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Ag-
gregate and verifiably encrypted signatures from bilinear
maps. In Proc. of Eurocrypt 2003, LNCS 2656:416-432,
May 2003.

[7] Dan Boneh, Craig Gentry, Ben Lynn Hovav Shacham,
A Survey of Two Signature Aggregation Techniques. In
Proc. CryptoBytes Vol.6, No.2, 2003.

[8] D. Ma, and G. Tsudik. Forward-secure sequentical ag-
gregate authentication IACR ePrint 2007/052.

[9] Itkis, G., Reyzin, L. Forward-secure signatures with op-
timal signing and verifying. In: CRYPTO’01, LNCS
2139, Springer-Verlag, (2001), 332-354.

[10] Krawczyk, H. Simple forward-secure signatures from
any signature scheme. In: Proc. of the 7th ACM Con-
ference on Computer and Communications Security
(CCS 2000), ACM, (2000), 108-115.

[11] Kozlov, A, Reyzin, L.: Forward-Secure Signatures
with Fast Key Update. In: Security in Communication
Networks (SCN 2002), LNCS 2576, Springer-Verlag,
(2002), (241-256).

[12] R.Bhasker, J.Herranz, F.Laguillaumie,Aggregate Des-
ignated Verifier Signatures and Application to Secure
Routing, In International Journal of Security and Net-
works, Vol-2,pp 192-201, 2007.

6

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 10:37:12 UTC from IEEE Xplore. Restrictions apply.

