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ABSTRACT
Traditionally reasoning systems have been implemented using 
symbolic methods of artificial intelligence. Connectionist methods 
of implementing reasoning systems form an alternative paradigm. 
Among the connectionist reasoning systems two types of 
representational methods can be used. They are i) localist and ii) 
distributed representational methods. In the literature, some 
localist methods for reasoning were used in connectionist systems. 
Since those systems used localist representations, advantages of 
distributed representations are not obtainable by them. In this 
paper, we describe the design and implementation of a 
connectionist knowledge based system which integrates a 
connectionist predicate logic reasoning system and a connectionist
semantic network. The system uses distributed coarse-coded 
representations. The connectionist predicate logic system supports 
both simple rules as well as a complex rule having multiple 
conjunctions. Distributed representations have advantages of 
increased fault tolerance, graceful degradation of performance;
neural plausibility, cognitive modeling and parallel distributed 
processing. The system besides showing above features allows the 
communication between these two connectionist systems and 
makes it possible to access the information of attributes and 
corresponding values from the connectionist semantic network for 
the entities used in the connectionist predicate logic system.  

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models - neural nets.

General Terms
Design, Reliability, Experimentation.

Keywords
Coarse-coding, Connectionist, Reasoning, Fault Tolerance,
Semantic Network.

1. INTRODUCTION
Traditionally reasoning systems using predicate logic have been 
implemented using symbolic methods of artificial intelligence.
Connectionist methods of implementation of reasoning systems 
form an alternative paradigm and this is called sub-symbolic 
approach. Among the connectionist systems they use two types of 
representational schemes. They are 1) localist and 2) distributed 
representational schemes. Localist  representational schemes 
represent each concept with an individual unit or neuron. In the 
distributed representational schemes [2] each unit or neuron is 
used in representation of multiple concepts and multiple units or 
neurons are used to represent a single concept. Subsymbolic 
systems for reasoning which are described in the literature used 
localist representations. The connectionist inference system 
SHRUTI [6], [7] described a localist method where temporal 
synchrony was used to create bindings between variables and 
entities they represent. A variable x of the predicate give(x,y,z) is 
getting bound to an entity d if the nodes representing them fire 
during the same phase  of time during a predicate’s activation 
period T. The time period T is divided into three phases p1, p2
and p3 during which synchronous firing of variable x, y and z and
entity nodes they bound respectively takes place. CONSYDERR
[1] described a localist method for variable binding and forward 
reasoning. Since, these systems used localist representations, 
advantages of distributed representations are not obtainable by
them. In our previous works [3], [4] and [5] we have described 
the design and development of a connectionist predicate logic 
reasoning system and a connectionist non-monotonic reasoning 
system. In this present work, we describe the design and 
implementation of a connectionist knowledge based system which 
integrates a connectionist predicate logic reasoning system and a 
connectionist semantic network. The system uses distributed 
coarse-coded representations. The organization of the paper is as 
follows. In section 2, we describe the connectionist predicate 
logic reasoning system. In section 3, we describe the connectionist 
semantic network and in section 4, we describe the 
interconnecting connectionist network between these two systems. 
In section 5 we describe testing and verification and in section 6 
conclusions.
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2. CONNECTIONIST PREDICATE LOGIC 
REASONING SYSTEM
Connectionist predicate logic reasoning system represents and 
reasons with predicate logic rules and facts. Following are rules 
and facts we use.

1. give(x, y, z)→  own(y, z);

2. own(y, z) →  candonate(y, z);

3. own(y,z) ∧ wantstobuy(w, z) ∧ hasrequiredmoney(w, m)→
cansell(y,w,z);

4. give(John,Mary,Book-1);

5. give(John,Chris,Book-2);

6. wantstobuy(Walter,Book-2);

7. hasrequiredmoney(Walter,Money);

In our rules and facts base we have used variables x, y to denote 
specific persons and have used variable z to denote a specific 
book. Our system uses the above rules and facts base and makes 
inferences shown below.

1. own(Mary,Book-1);

2. candonate(Mary,Book-1);

3. own(Chris,Book-2);

4. cansell(Chris,Walter,Book-2);

2.1 Forward Reasoning using Connectionist 
System
In this subsection, we see how to accomplish the forward 
reasoning for predicate calculus facts and rules using neural 
networks which operate on coarse coded distributed 
representations. Each fact of predicate pi is represented by a 
vector vij. The vector vij is a k dimensional vector which stores the 
coarse coded representation of predicate fact. The different 
instantiations of predicate pi are each represented by separate 
vector vij where j varies from 1 to m where m is the number of 
vectors in predicate pi table.   

We describe here, briefly with an example how forward reasoning 
using localist representations [1], [6] is made using a 
connectionist system. Let us consider the rule 1:give(x,y,z)—>  
own(y,z) from the knowledge base. The localist pattern for the 
LHS of rule 1 can be written as 0001 001  001 001  1. The first 4 
bit value denotes the predicate give, the next 3 bit value denotes 
an object getting bound to variable x, ‘John’, the next 3 bit value 
denotes an object getting bound to variable y , ‘Mary’ and the 
next value denotes, ‘Book-1’. The last bit indicates the truth value 
of predicate give. This instantiation will activate rule 1 and make 
variables on the right hand side of the rule ‘y’ and ‘z’ be assigned 
the values ‘001’ and ‘001’ representing the objects ‘Mary’ and ‘
Book-1’ respectively. 

Table 1. Shows a sample of localist tuples used by predicate 
give

S.No of  Tuple 215

Predicate ‘id’ code 00001000000

Localist Value of  x 0000100000

Localist Value of   y 0000100000

Localist Value of   z 0000010000

Truth  Value of 
Predicate

00001

Because of the rule activation the localist pattern representation 
for RHS will be 0010 001 001 1 denoting own(Mary,Book-1). 
This triggers the rules whose left hand sides match RHS of rule 1 
and through this forward chaining, forward reasoning using 
localist representations is accomplished. In Table 1 and 2 we 
show samples of localist vectors for some of the predicates in the 
rule base.

Table 2. Shows a sample of localist tuples used by predicate 
Cansell

S.No of  Tuple 46

Predicate ‘id’ code 00000001000

Localist Value of  y 0000000010

Localist Value of   w 0000100000

Localist Value of  z 0000010000

Truth  Value of 
Predicate

00001

2.2 Obtaining Coarse-coded Distributed 
Representations from Localist Representations
Consider the following tuple from the localist representation table 
of predicate give(x,y,z), ‘00001000000  0000000001  0000000010  
0000000010  00001’.

We view the above vector as being kept in overlapping coarse 
zones of length of 4 consecutive bits and encode the zone as 1 if 
there is at least one 1 bit in that zone or else as 0. We then 
consider next coarse zone and encode it as 1 or 0 following above 
method. We do this process left to right starting from the left most 
bit. We do this encoding process for above localist tuple to get the 
following coarse-coded tuple
‘ 01111000000   0000001111  0000011110   0000011110   
01111’.
Coarse-coding can be applied when the number of 1’s in the 
original string is sufficiently sparse. If the number of 1’s in the 
original string is not sufficiently sparse then coarse-coded string 
when decoded will not yield the original string. This is the reason 
we have chosen a 5 bit string to denote the truth value of 
predicate( in which first 4 bits were kept as zeros). The reason the 
coarse-coding could be applied successfully to our reasoning 
problem is that localist representations of  instantiated predicates 
were sufficiently sparse with regard to distribution of 1’s. 

Table 3. Shows a sample of Coarse-code Representation of 
data tuples used by predicate give

S.No of  Tuple 215
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Predicate ‘id’ code 01111000000

Value of  x 0111100000

Value of  y 0111100000

Value of  z 0011110000

Truth  Value of 
Predicate

01111

Coarse-coding increases the information capacity [2] by 
increasing the number of units active at a time compared to 
localist codes which have sparsely populated 1’s. The amount of 
information conveyed by a unit that has a probability p of being 
‘1’ is  – plog (p) – (1 - p)log(1 - p). We obtain the coarse-coded 
representations of tuples for all the predicates in the rule base
using the above described method. We show here a sample of 
coarse-coded representations of the tuples for predicates give and
cansell in the rule base.

Table 4. Shows a sample of Coarse-code Representation of 
Data Tuples used by predicate cansell

S.No of  Tuple 46

Predicate ‘id’ code 00001111000

Value of  x 0000011110

Value of  y 0111100000

Value of  z 0011110000

Truth  Value of 
Predicate

01111

2.3 Organization of Neural Networks in the 
Connectionist Reasoning System 

Figure 1. Neural Networks for processing rules 1 and 2

The neural networks shown accomplish the forward reasoning 
using the coarse-coded tuples. They generate inferences by firing 
rules from the rule base. Consider the neural networks shown in 
figure 1. When impressed on its inputs with one of the vectors vg

from the predicate table give the network 1 generates on its 
outputs a vector vo  from the predicate table own. This way the 
rule give(x,y,z) —> own(y,z) was processed. This in turn 
impresses on the inputs of network 2 to generate a vector vd on its 
outputs. This processed the rule own(y,z) —> candonate (y,z).
These vectors are in coarse-coded form and denote a predicate 
fact. So we see the rules 1 and 2 are getting activated in a forward 
chaining fashion.  

2.4 Variable Binding during processing of the 
Complex Rule
Consider the complex rule which involves multiple conjunctions.

own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m) →
cansell(y,w,z).

This rule is processed by the connectionist architecture shown in 
figure 2. We use the  vectors vo, vw and vh from the predicate 
tables own, wantstobuy and hasrequiredmoney respectively. 
Though these are coarse-coded tuples their structure has the 
format of predicate code p, value of variable 1, value of variable 
2,….. value of variable n and predicate truth value T / F. These 
constituents are distinguishable and hence they can be used 
directly. These constituents are in coarse coded form. We use 
these constituents to implement the complex rule under 
consideration. Component z is taken from both vo and vw   and 
given to network 3. This network generates truth value T or F
depending on whether the values of variable z given to it are same 
or different. Similarly, component w is taken both from vectors, 
vw and vh and given to network 4. This network generates truth 
value of T or F depending upon whether the values of variable w
given to it are same or different. These truth values from network
3 and network 4 outputs are given to network 5 which outputs T if 
both of the truth values on its inputs are true else outputs F. The 
predicate code components of the vectors are given to another 
neural network 6 which outputs predicate code p for cansell. The 
values of y, w and z are passed on to the output lines as shown in 
figure 3 from the vectors vo, vw and vw respectively. If network 5
output is ‘T’, the values of y, w and z are accepted as belonging to 
vector vc  of the predicate table of cansell. Using this method the 
variable binding problem has been solved, while processing the 
above complex rule, which is involving multiple conjunctions. 
Our task was to check whether the variable w belonging to both 
wantstobuy and hasrequiredmoney are binding to same value. 
Similarly, we had to check whether variable z belonging to own 
and wantstobuy are bound to the same value. We had 
accomplished these with networks 4 and 3 respectively.

Figure 2. Neural Networks for processing rule 4

We have accomplished the variable binding task here using a 
divide and conquer strategy and distributed the total task to a set 
of neural networks which together accomplished the same. This 
approach can be similarly extended to handle even more complex 
rules which involve more number of conjunctions.
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3. CONNECTIONIST SEMANTIC 
NETWORK
A semantic network consists of a number of nodes representing 
various entities. Each node in the semantic network represents an 
entity. Each entity has attributes and also corresponding values for 
those attributes. Here we use neural networks to implement 
semantic network. Figures 3 and 4 describe neural networks used 
to construct connectionist semantic network.

Figure 3. Depicts details of Inputs and Outputs of Neural 
Network 8

Figure 4. Depicts details of Inputs and outputs of Neural 

Network 9

We show in tables 5 and 6 a sample of the coarse-coded 
representations of the input and the output vectors for neural 
network 8. When given the coarse-coded input vector as shown in 
table 5 describing the identification code for a specific person and 
codes designating attributes profession, gender, education and 
age-group, neural network 8 produces on its outputs the coarse-
coded vector shown in table 6, with the codes representing the 
values for the above attributes of profession, gender, education 
and age-group respectively. This is a representation for 
information about a person identified by the person-code
regarding the values of attributes profession, gender, education 
and age-group. It also denotes that entity represented by this 
neural network is an instance of person. Similarly, when given the 
coarse-coded input vector describing the identification code for a 
specific book and codes for attributes title, subject, author and
publisher to neural network 9; it produces on its outputs the 
coarse-coded vector with the codes representing the 
corresponding values for the above attributes of title, subject, 
author and publisher respectively. Neural network 9 is therefore 

representing information about a book identified by the book-code
regarding its title, subject, author and publisher.

Table 5. Shows a sample of coarse-coded input data for Neural 
Network 8

person-code 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 
0 0 0   0 0 0 0 0 0 0 0 0 0   0 0 0 
0 0 0 0 0 0 1 1 1 1 0

Coarse-coded representation 
for attribute ‘profession’

0 1 1 1 1

Coarse-coded representation 
for  attribute ‘gender’

0 1 1 1 1

Coarse-coded representation 
for  attribute ‘education’

0 1 1 1 1

Coarse-coded representation 
for  attribute ‘age-group’

0 1 1 1 1

Table 6. Shows a sample of coarse-coded output data for 
Neural Network 8

Coarse-coded value for 
attribute ‘profession’

0 0 0 0 1 1 1 1 0

Coarse-coded value for 
attribute ‘gender’

1 1 1 1 0

Coarse-coded value for 
attribute ‘education’

0 0 1 1 1 1 0

Coarse-coded value for 
attribute ‘age-group’

0 1 1 1 1 0

Coarse-coded value 
designating entity
‘person’

0 1 1 1 1

4. INTERCONNECTING NEURAL 
NETWORK
The neural network 7 is used to interconnect the connectionist 
predicate logic system and the connectionist semantic network.

Figure 5. Inputs and outputs of Neural Network 7

Table 7. Shows a sample of coarse-coded input-output 
data for Neural Network 7

Predicate ‘id’ code
0 1 1 1 1 0 0 0 0 0 0 
0 0

Value of  v1
0 0 0 0 0 0 0 0 0 1 1 
1 1 0
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Value of  v2
0 0 0 0 0 0 0 0 0 0 0 
0

Person-code output 
generated 

0 0 0 0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 0

Neural network 7 takes on its input a coarse-coded pattern having 
a predicate code and the value of a variable denoting a person and 
it produces on its output a unique person-code identifying a 
person. In the figure 5, v1 or v2 can take as input the value of a 
variable denoting a person. Only one of these inputs, v1 or v2, is 
activated at a time. If the value of a variable is input to v1 then v2
is given all zeros on its input and vice versa. This way person-
code identifying a person is generated on the output of Neural 
network 7. This is explained below with an example. 

For example, for the predicate give(x, y, z) consider the 
instantiation give (John, Mary, Book-1). The variables x and y
denote persons John and Mary and the variable z denotes a book 
book-1. To generate unique person code corresponding to the 
person John we give following as inputs to the neural network-7: 
i) predicate code for give predicate to input predicate ‘id’ code ii)
the coarse-coded value representing John to the input v1 and iii) 
all zeros to input v2. Neural network-7 then generates as output a 
unique person code corresponding to John. Similarly, to generate 
unique person code corresponding to the person Mary we give 
following as inputs to the neural network-7: i) predicate code for 
give predicate to input predicate ‘id’ code ii) all zeros to input v1  
and iii) the coarse-coded value representing Mary to the input v2.
Neural network-7 then generates as output unique person code 
corresponding to Mary. In our rules and facts base, coarse-coded 
values given to the variables x and y denote specific persons. 
Same coarse-coded pattern, say, 0111100000 when assigned 
respectively to different variables x and y in predicate give(x, y, z)
could be denoting different persons, say, John and Mary. This is 
because, entities denoted by the values for x and y variables are 
chosen independently. Since, John is bound to the first occurring 
variable x in predicate give(x, y, z) coarse-coded value 
representing John is given as input to v1 in the neural network-7 
to generate unique person code for John. Similarly, since, Mary is 
bound to the second occurring variable y in predicate give(x, y, z)
coarse-coded value representing Mary is given as input to v2 in 
the neural network-7 to generate on neural network-7 output,
unique person code for Mary. So for generating the unique person 
code corresponding to John or Mary we not only consider the 
coarse-coded value denoting the person, say John or Mary but 
also consider the position of the variable in the predicate (1st or 
2nd) and accordingly input the coarse-coded value representing the 
person respectively to v1 or v2 input of neural network-7. This is 
done for values of x and y variables which denote persons. We 
show in table 7, sample of the coarse-coded representations of the 
input and the output vectors for neural network 7. This unique 
person code generated as output by neural network 7 is used for 
giving as an input to the person-code input of neural network 8.

For the variable z, whose value denotes a book and since it is the 
only variable in the knowledge base whose value denotes a book 
the value of the variable itself serves as a unique book-code for 
giving as an input to the input book-code of neural network 9.

5. TESTING AND VERIFICATION
In table 8 we show the details of neural networks used. The neural 
networks in table 8 are feed forward neural networks using back-
propagation algorithm. 

The connectionist predicate logic reasoning system had 
performed reasoning satisfactorily for the reasoning task described 
in the knowledge base shown in section II. The connectionist 
semantic network which was implemented by networks 8 and 9
was verified to retrieve information about attributes and the 
corresponding values of persons and books respectively. The 
connectionist knowledge based system which is the result of 
integration of connectionist predicate logic system  and 
connectionist semantic network, allowed communication between 
these two connectionist systems and made it possible to access the 
information of attributes and corresponding values from the 
connectionist semantic network for the entities used in the 
connectionist predicate logic system. For example, for the entity 
john which is used by connectionist predicate logic system with 
the predicate give, we can access from the connectionist semantic 
network the values for the attributes profession, gender, education
and age-group using the integrated system. That means for every 
entity used by the connectionist predicate logic system we can 
store and retrieve attribute values relevant to the entity from the 
connectionist semantic network.

Table 8. Shows the details of neural networks used

Network No. of 
input units

No. of 
hidden 
units

No. of 
output 
units

1 66 56 52

2 52 5 52

3 20 10 5

4 20 10 5

5 10 5 5

6 33 25 11

7 39 7 44

8 64 6 32

9 44 6 48

Secondly, to observe the fault tolerance property of the coarse-
coded connectionist reasoning system we completed the following 
tests. The coarse-coded connectionist reasoning system was 
compared for error tolerance under noise conditions with a 
localist representation based connectionist reasoning system 
(which was having identical number of input, hidden and output 
units for its neural networks). 

Table 9. Shows the details of  test 1

Test 1 No. of 
training 
patterns

No. of test 
patterns

No. of 
output 

patterns 
correctly 
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generated

Localist 
reasoning 

system 216 108 60

Coarse-
coded 

reasoning 
system

216 108 89

In the test 1, neural network 1 with 66 input units, 56 hidden units and 
52 output units was trained with 216 input-output patterns. 108 of 
these training patterns were made test patterns after introducing 1 bit
error at a random location in each of the input patterns leaving the 
output patterns unchanged. If output pattern is correctly produced by 
the neural network 1 despite having a 1 bit error in the input side of 
the test pattern, it indicates the fault tolerance property of the 
connectionist system. Results of the test 1 are as shown in table 9.

In the test 2, neural network 1 was trained with 750 input-output 
patterns. 300 of these training patterns were made test patterns after 
introducing a 1 bit error at a random location in each of the input 
patterns leaving the output patterns unchanged. If output pattern is 
correctly produced by the neural network 1 despite having a 1 bit 
error in the input side of the test pattern, it indicates fault tolerance 
property of the connectionist system. Results of the test 2 are as 
shown in table 10. Tests were performed using the SNNS simulator. 
The coarse-coded reasoning system was found to be much more fault 
tolerant to errors compared to localist reasoning system as was 
indicated by the tests performed. 

Table 10. Shows the details of test 2

Test 2 No. of 
training 
patterns

No. of test 
patterns

No. of
output 

patterns 
correctly 
generated

Localist 
reasoning 

system 750 300 207

Coarse-
coded 

reasoning 
system

750 300 274

6. CONCLUSIONS
We have designed and implemented a connectionist knowledge 
based system which integrates a connectionist predicate logic 
reasoning system and a connectionist semantic network and 
allows communication between them. The system makes it 
possible to access the information of attributes and corresponding 
values from the connectionist semantic network for the entities
used in the connectionist predicate logic system making it an 
integrated system. Subsymbolic systems which use neural 
networks are brain inspired systems. Subsymbolic systems can 
show the properties of fault tolerance, graceful degradation in 
performance under error conditions and parallel distributed 
processing which are also the characteristics found in the human 
brain. Symbolic models while describing cognitive tasks like 
reasoning do not show above characteristics found in human 

brain. Hence, subsymbolic models are useful for modeling 
cognitive tasks like reasoning. Also, human brains are known for 
using distributed representations. In this work, we designed and 
developed a system with subsymbolic architecture using 
distributed coarse-coded representations to perform predicate 
logic reasoning and for realizing a semantic network. The 
knowledge based system used distributed coarse-coded 
representation vectors to represent instantiated predicates used by 
predicate logic system and for representing the attributes, 
corresponding values for the entities in the semantic network. 
Besides performing the functions of predicate logic reasoning and 
accessing information from the semantic network the system also 
showed the characteristics of fault tolerance, graceful degradation 
in performance under error conditions and parallel distributed 
processing.
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