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ABSTRACT

Traditionally reasoning systems have been implemented using
symbolic methods of artificial intelligence. Connectionist methods
of implementing reasoning systems form an alternative paradigm.
Among the connectionist reasoning systems two types of
representational methods can be used. They are i) localist and ii)
distributed representational methods. In the literature, some
localist methods for reasoning were used in connectionist systems.
Since those systems used localist representations, advantages of
distributed representations are not obtainable by them. In this
paper, we describe the design and implementation of a
connectionist knowledge based system which integrates a
connectionist predicate logic reasoning system and a connectionist
semantic network. The system uses distributed coarse-coded
representations. The connectionist predicate logic system supports
both simple rules as well as a complex rule having multiple
conjunctions. Distributed representations have advantages of
increased fault tolerance, graceful degradation of performance;
neural plausibility, cognitive modeling and parallel distributed
processing. The system besides showing above features allows the
communication between these two connectionist systems and
makes it possible to access the information of attributes and
corresponding values from the connectionist semantic network for
the entities used in the connectionist predicate logic system.

Categories and Subject Descriptors
1.5.1 [Pattern Recognition]: Models - neural nets.

General Terms
Design, Reliability, Experimentation.

Keywords
Coarse-coding, Connectionist, Reasoning, Fault Tolerance,
Semantic Network.
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1. INTRODUCTION

Traditionally reasoning systems using predicate logic have been
implemented using symbolic methods of artificial intelligence.
Connectionist methods of implementation of reasoning systems
form an alternative paradigm and this is called sub-symbolic
approach. Among the connectionist systems they use two types of
representational schemes. They are 1) localist and 2) distributed
representational schemes. Localist representational schemes
represent each concept with an individual unit or neuron. In the
distributed representational schemes [2] each unit or neuron is
used in representation of multiple concepts and multiple units or
neurons are used to represent a single concept. Subsymbolic
systems for reasoning which are described in the literature used
localist representations. The connectionist inference system
SHRUTI [6], [7] described a localist method where temporal
synchrony was used to create bindings between variables and
entities they represent. A variable x of the predicate give(x,y,z) is
getting bound to an entity d if the nodes representing them fire
during the same phase of time during a predicate’s activation
period T. The time period 7 is divided into three phases pl, p2
and p3 during which synchronous firing of variable x, y and z and
entity nodes they bound respectively takes place. CONSYDERR
[1] described a localist method for variable binding and forward
reasoning. Since, these systems used localist representations,
advantages of distributed representations are not obtainable by
them. In our previous works [3], [4] and [5] we have described
the design and development of a connectionist predicate logic
reasoning system and a connectionist non-monotonic reasoning
system. In this present work, we describe the design and
implementation of a connectionist knowledge based system which
integrates a connectionist predicate logic reasoning system and a
connectionist semantic network. The system uses distributed
coarse-coded representations. The organization of the paper is as
follows. In section 2, we describe the connectionist predicate
logic reasoning system. In section 3, we describe the connectionist
semantic network and in section 4, we describe the
interconnecting connectionist network between these two systems.
In section 5 we describe testing and verification and in section 6
conclusions.
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2. CONNECTIONIST PREDICATE LOGIC
REASONING SYSTEM

Connectionist predicate logic reasoning system represents and
reasons with predicate logic rules and facts. Following are rules
and facts we use.

1. give(x, y, z)— own(y, z);
2. own(y, z) — candonate(y, z);

3. own(y,z) N wantstobuy(w, z) N\ hasrequiredmoney(w, m)—
cansell(y,w,z);

4. give(John,Mary,Book-1);

5. give(John, Chris,Book-2);

6. wantstobuy(Walter,Book-2);

7. hasrequiredmoney(Walter,Money);

In our rules and facts base we have used variables x, y to denote
specific persons and have used variable z to denote a specific
book. Our system uses the above rules and facts base and makes
inferences shown below.

1. own(Mary,Book-1);

2. candonate(Mary,Book-1);

3. own(Chris,Book-2);

4. cansell(Chris, Walter,Book-2);

2.1 Forward Reasoning using Connectionist
System

In this subsection, we see how to accomplish the forward
reasoning for predicate calculus facts and rules using neural
networks which operate on coarse coded distributed
representations. Each fact of predicate p; is represented by a
vector v;;. The vector vy is a k dimensional vector which stores the
coarse coded representation of predicate fact. The different
instantiations of predicate p; are each represented by separate
vector v;; where j varies from / to m where m is the number of
vectors in predicate p; table.

We describe here, briefly with an example how forward reasoning
using localist representations [1], [6] is made using a
connectionist system. Let us consider the rule I:give(x,y,z)—>
own(y,z) from the knowledge base. The localist pattern for the
LHS of rule 1 can be written as 0001 001 001 001 1. The first 4
bit value denotes the predicate give, the next 3 bit value denotes
an object getting bound to variable x, ‘John’, the next 3 bit value
denotes an object getting bound to variable y , ‘Mary’ and the
next value denotes, ‘Book-1’. The last bit indicates the truth value
of predicate give. This instantiation will activate rule / and make
variables on the right hand side of the rule y’and Z’ be assigned
the values ‘001’ and ‘001’ representing the objects ‘Mary’ and *
Book-1" respectively.

Table 1. Shows a sample of localist tuples used by predicate
give
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S.No of Tuple 215
Predicate ‘id’ code 00001000000
Localist Value of x 0000100000
Localist Value of y 0000100000
Localist Value of z 0000010000
g;;lcti}ilcate value ot 00001

Because of the rule activation the localist pattern representation
for RHS will be 0010 001 001 1 denoting own(Mary,Book-1).
This triggers the rules whose left hand sides match RHS of rule 1
and through this forward chaining, forward reasoning using
localist representations is accomplished. In Table I and 2 we
show samples of localist vectors for some of the predicates in the
rule base.

Table 2. Shows a sample of localist tuples used by predicate

Cansell
S.No of Tuple 46
Predicate ‘id’ code 00000001000
Localist Value of y 0000000010
Localist Value of w 0000100000
Localist Value of z 0000010000
g;;l:i};cate value ot 00001

2.2 Obtaining Coarse-coded Distributed

Representations from Localist Representations
Consider the following tuple from the localist representation table
of predicate give(x,y,z), ‘00001000000 0000000001 0000000010
0000000010 00001 .

We view the above vector as being kept in overlapping coarse
zones of length of 4 consecutive bits and encode the zone as / if
there is at least one / bit in that zone or else as 0. We then
consider next coarse zone and encode it as / or 0 following above
method. We do this process left to right starting from the left most
bit. We do this encoding process for above localist tuple to get the
following coarse-coded tuple
01111000000 0000001111
01111".

Coarse-coding can be applied when the number of 1’s in the
original string is sufficiently sparse. If the number of 1’s in the
original string is not sufficiently sparse then coarse-coded string
when decoded will not yield the original string. This is the reason
we have chosen a 5 bit string to denote the truth value of
predicate( in which first 4 bits were kept as zeros). The reason the
coarse-coding could be applied successfully to our reasoning
problem is that localist representations of instantiated predicates
were sufficiently sparse with regard to distribution of 1’s.

0000011110 0000011110

Table 3. Shows a sample of Coarse-code Representation of
data tuples used by predicate give

S.No of Tuple 215
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Predicate ‘id’ code 01111000000
Value of x 0111100000
Value of y 0111100000
Value of z 0011110000
g;:;?cate velue ot Tt
Coarse-coding increases the information capacity [2] by

increasing the number of units active at a time compared to
localist codes which have sparsely populated 1°s. The amount of
information conveyed by a unit that has a probability p of being
‘1"is — plog (p) — (1 - p)log(1 - p). We obtain the coarse-coded
representations of tuples for all the predicates in the rule base
using the above described method. We show here a sample of
coarse-coded representations of the tuples for predicates give and
cansell in the rule base.

Table 4. Shows a sample of Coarse-code Representation of
Data Tuples used by predicate cansell

S.No of Tuple 46

Predicate ‘id’ code 00001111000
Value of x 0000011110
Value of y 0111100000
Value of z 0011110000
g;;lcti}ilcate velue ot 0Tttt

2.3 Organization of Neural Networks in the
Connectionist Reasoning System

give 1t— Networkl |—{ own |— Network2 — Cando
X — nate

y — L |y | LY

z | | Network 1 z || Network 2 z

Figure 1. Neural Networks for processing rules 1 and 2

The neural networks shown accomplish the forward reasoning
using the coarse-coded tuples. They generate inferences by firing
rules from the rule base. Consider the neural networks shown in
figure 1. When impressed on its inputs with one of the vectors v,
from the predicate table give the network 1 generates on its
outputs a vector v, from the predicate table own. This way the
rule give(x,y,z) —> own(y,z) was processed. This in turn
impresses on the inputs of network 2 to generate a vector v, on its
outputs. This processed the rule own(y,z) —> candonate (y,z).
These vectors are in coarse-coded form and denote a predicate
fact. So we see the rules 1 and 2 are getting activated in a forward
chaining fashion.
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2.4 Variable Binding during processing of the
Complex Rule

Consider the complex rule which involves multiple conjunctions.

A A

wantstobuy(w,z) hasrequiredmoney(w,m) —

own(y,z)
cansell(y,w,z).

This rule is processed by the connectionist architecture shown in
figure 2. We use the vectors v,, v,, and v, from the predicate
tables own, wantstobuy and hasrequiredmoney respectively.
Though these are coarse-coded tuples their structure has the
format of predicate code p, value of variable /, value of variable
value of variable n and predicate truth value 7 / F. These
constituents are distinguishable and hence they can be used
directly. These constituents are in coarse coded form. We use
these constituents to implement the complex rule under
consideration. Component z is taken from both v, and v,, and
given to network 3. This network generates truth value T or F
depending on whether the values of variable z given to it are same
or different. Similarly, component w is taken both from vectors,
v,, and v, and given to network 4. This network generates truth
value of T or F depending upon whether the values of variable w
given to it are same or different. These truth values from network
3 and network 4 outputs are given to network 5 which outputs T if
both of the truth values on its inputs are true else outputs F. The
predicate code components of the vectors are given to another
neural network 6 which outputs predicate code p for cansell. The
values of y, w and z are passed on to the output lines as shown in
figure 3 from the vectors v,, v, and v, respectively. If network 5
output is ‘T’, the values of y, w and z are accepted as belonging to
vector v, of the predicate table of cansell. Using this method the
variable binding problem has been solved, while processing the
above complex rule, which is involving multiple conjunctions.
Our task was to check whether the variable w belonging to both
wantstobuy and hasrequiredmoney are binding to same value.
Similarly, we had to check whether variable z belonging to own
and wantstobuy are bound to the same value. We had
accomplished these with networks 4 and 3 respectively.

Metwork 3 | T'F et

| z work 5

TIF

Network 4

Network | p
3

2

Pz ——

03 \ w

Figure 2. Neural Networks for processing rule 4

We have accomplished the variable binding task here using a
divide and conquer strategy and distributed the total task to a set
of neural networks which together accomplished the same. This
approach can be similarly extended to handle even more complex
rules which involve more number of conjunctions.
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3. CONNECTIONIST SEMANTIC
NETWORK

A semantic network consists of a number of nodes representing
various entities. Each node in the semantic network represents an
entity. Each entity has attributes and also corresponding values for
those attributes. Here we use neural networks to implement
semantic network. Figures 3 and 4 describe neural networks used
to construct connectionist semantic network.

person-code
profession  — | vl
gender T | [ val2
Metwork 8

education  ——| | val3

age-group
— wal4

[~ person

Figure 3. Depicts details of Inputs and Outputs of Neural
Network 8

book-code

— I wall
tide ¥

— — wal2
Network 8
1 [ wal3

subject
author

publisher —— | vl

[ book

Figure 4. Depicts details of Inputs and outputs of Neural
Network 9

We show in tables 5 and 6 a sample of the coarse-coded
representations of the input and the output vectors for neural
network 8. When given the coarse-coded input vector as shown in
table 5 describing the identification code for a specific person and
codes designating attributes profession, gender, education and
age-group, neural network 8 produces on its outputs the coarse-
coded vector shown in table 6, with the codes representing the
values for the above attributes of profession, gender, education
and age-group respectively. This is a representation for
information about a person identified by the person-code
regarding the values of attributes profession, gender, education
and age-group. It also denotes that entity represented by this
neural network is an instance of person. Similarly, when given the
coarse-coded input vector describing the identification code for a
specific book and codes for attributes fitle, subject, author and
publisher to neural network 9; it produces on its outputs the
coarse-coded vector with the codes representing the
corresponding values for the above attributes of ftitle, subject,
author and publisher respectively. Neural network 9 is therefore

representing information about a book identified by the book-code
regarding its title, subject, author and publisher.

Table 5. Shows a sample of coarse-coded input data for Neural
Network 8

0000000000 0000000
000 0000000000 000
00000011110

person-code

Coarse-coded representation | 01111
for attribute ‘profession’

Coarse-coded representation | 01111
for attribute ‘gender’

Coarse-coded representation | 01111
for attribute ‘education’

Coarse-coded representation | 01111

for attribute ‘age-group’

Table 6. Shows a sample of coarse-coded output data for

Neural Network 8
Coarse-coded value for
attribute ‘profession’ oooolT1LTo
Coarse-coded value for 11110
attribute ‘gender’
Coarse-coded value for
attribute ‘education’ 0011110
Coz}rse-co‘ded value ’for 011110
attribute ‘age-group
Coarse-coded value
designating entity | 01111
‘person’

4. INTERCONNECTING NEURAL
NETWORK

The neural network 7 is used to interconnect the connectionist
predicate logic system and the connectionist semantic network.

predinate
code

S— Merwork 7

w1 person-code

Figure 5. Inputs and outputs of Neural Network 7

Table 7. Shows a sample of coarse-coded input-output
data for Neural Network 7

01111000000

Predicate ‘id’ code 00

00000000011

Value of vi 110
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00000000000

Value of v2 0

00000000000
00000000000
00000000000
00000011110

Person-code output
generated

Neural network 7 takes on its input a coarse-coded pattern having
a predicate code and the value of a variable denoting a person and
it produces on its output a unique person-code identifying a
person. In the figure 5, vI or v2 can take as input the value of a
variable denoting a person. Only one of these inputs, v/ or v2, is
activated at a time. If the value of a variable is input to v/ then v2
is given all zeros on its input and vice versa. This way person-
code identifying a person is generated on the output of Neural
network 7. This is explained below with an example.

For example, for the predicate give(x, y, z) consider the
instantiation give (John, Mary, Book-1). The variables x and y
denote persons John and Mary and the variable z denotes a book
book-1. To generate unique person code corresponding to the
person John we give following as inputs to the neural network-7:
i) predicate code for give predicate to input predicate ‘id’ code ii)
the coarse-coded value representing Jokhn to the input v/ and iii)
all zeros to input v2. Neural network-7 then generates as output a
unique person code corresponding to John. Similarly, to generate
unique person code corresponding to the person Mary we give
following as inputs to the neural network-7: 1) predicate code for
give predicate to input predicate ‘id’ code ii) all zeros to input v
and iii) the coarse-coded value representing Mary to the input v2.
Neural network-7 then generates as output unique person code
corresponding to Mary. In our rules and facts base, coarse-coded
values given to the variables x and y denote specific persons.
Same coarse-coded pattern, say, 0171100000 when assigned
respectively to different variables x and y in predicate give(x, y, z)
could be denoting different persons, say, John and Mary. This is
because, entities denoted by the values for x and y variables are
chosen independently. Since, John is bound to the first occurring
variable x in predicate give(x, y, z) coarse-coded value
representing John is given as input to v/ in the neural network-7
to generate unique person code for John. Similarly, since, Mary is
bound to the second occurring variable y in predicate give(x, y, z)
coarse-coded value representing Mary is given as input to v2 in
the neural network-7 to generate on neural network-7 output,
unique person code for Mary. So for generating the unique person
code corresponding to John or Mary we not only consider the
coarse-coded value denoting the person, say John or Mary but
also consider the position of the variable in the predicate (1* or
2"%) and accordingly input the coarse-coded value representing the
person respectively to v/ or v2 input of neural network-7. This is
done for values of x and y variables which denote persons. We
show in table 7, sample of the coarse-coded representations of the
input and the output vectors for neural network 7. This unique
person code generated as output by neural network 7 is used for
giving as an input to the person-code input of neural network 8.

For the variable z, whose value denotes a book and since it is the
only variable in the knowledge base whose value denotes a book
the value of the variable itself serves as a unique book-code for
giving as an input to the input book-code of neural network 9.
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5. TESTING AND VERIFICATION

In table 8 we show the details of neural networks used. The neural
networks in table 8 are feed forward neural networks using back-
propagation algorithm.

The connectionist predicate logic reasoning system had
performed reasoning satisfactorily for the reasoning task described
in the knowledge base shown in section II. The connectionist
semantic network which was implemented by networks 8 and 9
was verified to retrieve information about attributes and the
corresponding values of persons and books respectively. The
connectionist knowledge based system which is the result of
integration of connectionist predicate logic system  and
connectionist semantic network, allowed communication between
these two connectionist systems and made it possible to access the
information of attributes and corresponding values from the
connectionist semantic network for the entities used in the
connectionist predicate logic system. For example, for the entity
john which is used by connectionist predicate logic system with
the predicate give, we can access from the connectionist semantic
network the values for the attributes profession, gender, education
and age-group using the integrated system. That means for every
entity used by the connectionist predicate logic system we can
store and retrieve attribute values relevant to the entity from the
connectionist semantic network.

Table 8. Shows the details of neural networks used

Network No. of | No. of | No. of
input units | hidden output
units units
1 66 56 52
2 52 5 52
3 20 10 5
4 20 10 5
5 10 5 5
6 33 25 11
7 39 7 44
8 64 6 32
9 44 6 48

Secondly, to observe the fault tolerance property of the coarse-
coded connectionist reasoning system we completed the following
tests. The coarse-coded connectionist reasoning system was
compared for error tolerance under noise conditions with a
localist representation based connectionist reasoning system
(which was having identical number of input, hidden and output
units for its neural networks).

Table 9. Shows the details of test 1

Test 1 No. of No. of test No. of
training patterns output
patterns patterns

correctly
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generated

Localist
reasoning

216
system

108 60

Coarse-
coded
reasoning
system

216 108 89

In the test 1, neural network / with 66 input units, 56 hidden units and
52 output units was trained with 2/6 input-output patterns. /08 of
these training patterns were made test patterns after introducing / bit
error at a random location in each of the input patterns leaving the
output patterns unchanged. If output pattern is correctly produced by
the neural network / despite having a / bit error in the input side of
the test pattern, it indicates the fault tolerance property of the
connectionist system. Results of the test 1 are as shown in table 9.

In the test 2, neural network / was trained with 750 input-output
patterns. 300 of these training patterns were made test patterns after
introducing a / bit error at a random location in each of the input
patterns leaving the output patterns unchanged. If output pattern is
correctly produced by the neural network / despite having a / bit
error in the input side of the test pattern, it indicates fault tolerance
property of the connectionist system. Results of the test 2 are as
shown in table 10. Tests were performed using the SNNS simulator.
The coarse-coded reasoning system was found to be much more fault
tolerant to errors compared to localist reasoning system as was
indicated by the tests performed.

Table 10. Shows the details of test 2

Test 2 No. of No. of test No. of
training patterns output
patterns patterns

correctly
generated
Localist
feasonng 750 300 207
system
Coarse-

coded 750 300 274

reasoning

system

6. CONCLUSIONS

We have designed and implemented a connectionist knowledge
based system which integrates a connectionist predicate logic
reasoning system and a connectionist semantic network and
allows communication between them. The system makes it
possible to access the information of attributes and corresponding
values from the connectionist semantic network for the entities
used in the connectionist predicate logic system making it an
integrated system. Subsymbolic systems which use neural
networks are brain inspired systems. Subsymbolic systems can
show the properties of fault tolerance, graceful degradation in
performance under error conditions and parallel distributed
processing which are also the characteristics found in the human
brain. Symbolic models while describing cognitive tasks like
reasoning do not show above characteristics found in human
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brain. Hence, subsymbolic models are useful for modeling
cognitive tasks like reasoning. Also, human brains are known for
using distributed representations. In this work, we designed and
developed a system with subsymbolic architecture using
distributed coarse-coded representations to perform predicate
logic reasoning and for realizing a semantic network. The
knowledge Dbased system wused distributed coarse-coded
representation vectors to represent instantiated predicates used by
predicate logic system and for representing the attributes,
corresponding values for the entities in the semantic network.
Besides performing the functions of predicate logic reasoning and
accessing information from the semantic network the system also
showed the characteristics of fault tolerance, graceful degradation
in performance under error conditions and parallel distributed
processing.
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