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An application to assembled printed circuit board problem

V. Charles · D. Dutta

C© Springer Science + Business Media, Inc. 2006

Abstract This paper addresses classes of assembled printed circuit boards, which faces

certain kinds of errors during its process of manufacturing. Occurrence of errors may lead

the manufacturer to be in loss. The encountered problem has two objective functions, one is

fractional and the other is a non-linear objective. The manufacturers are confined to maximize

the fractional objective and to minimize the non-linear objective subject to stochastic and non-

stochastic environment. This problem is decomposed into two problems. A solution approach

to this model has been developed in this paper. Results of some test problems are provided.

Keywords Stochastic programming . Fractional programming . Non-linear programming ·
Lexicographical

Introduction

Stochastic programs are mathematical programs where some of the data incorporated in

the objective function or constraints is uncertain. Uncertainty is usually characterized

by a probability distribution on the parameters. Although uncertainty is rigorously de-

fined, in practice it can range in detail from a few scenarios to specific and precise

joint probability distributions. Stochastic programming has been applied to a wide vari-

ety of areas. Some of the specific problems are to be seen in (http://users.iems.nwu.edu/∼
jrbirdge//html/dholmes/SPTSlists.html). In real life situation, there are many applications of

stochastic programming. Some of these can be seen in (Charnes and Cooper, 1954; Jeeva

et al., 2002, 2004) and the web site of Maarten Van Der Vlerk (http://mally.

eco.rug.nl/biblio/Splist.html). Other applications are, Manufacturing/Production Planning,
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Manufacturing/ production capacity planning, Electrical generation capacity planning, Ma-

chine Scheduling, Macroeconomic modeling and planning, Timber management, Asset lia-

bility management, Portfolio selection, Traffic management, Optimal truss design, Inventory

management, Human resource planning (Martel and Price, 1981).

Fractional programming is an optimization problem in which ratio of two linear func-

tions is optimized subject to some constraints (Charnes and Cooper, 1962; Zionts, 1968).

Basic concepts about stochastic fractional programming are available in (Charles et al., 2001;

Charles and Dutta, 2003; Gupta and Kanti, 1979; Gupta et al., 1981). Bibliography in stochas-

tic programming and fractional programming are provided in Im and Wets (1976) and Im

(1977) respectively.

Extremization of Multi-objective Stochastic Fractional Programming (MOSFP) problem

is nothing but optimizing the fractional function along with linear or non-linear functions

subject to some constraints in which atleast one of the problem data is random in nature with

non-negative constraints on the decision variables. Dutta et al. (1993), Eschenauer et al. (1990)

and Rao (1984), Rao and Eslampour (1986) have discussed the procedures and applications of

multi-objective optimization problems. We have considered a special class of multi-objective

stochastic fractional programming problem, which arises in assembled printed circuit boards

(PCB) at the time of manufacturing.

This paper addresses classes of assembled PCB, which faces certain kinds of errors during

its processes of manufacturing. A PCB manufacturing company produces various types of

assembled PCB. Each type of assembled PCB has to undergo specific number of processes.

The total investment on the assembled PCB is predefined. The expenses on each type of

assembled PCB are well known to the manufacturer along with its profit. During the process

of assembled PCB, there are certain factors, which have deep impact on the assembled PCB

that makes them defective.

The encountered problem has two objective functions, one is fractional and the other is non-

linear objective function. Several methods are available to solve multi-objective optimization

problems. We have adapted lexicographical method. We have found that the lexicographical

method is more appropriate for the assembled printed circuit boards problem than the other

methods. In this method, the manufacturer ranks the objective functions in the order of

importance. The optimum solution of decision variables are then found by optimizing the

objective functions starting with most important and then proceeding according to the order

of preference of the objective functions. Usually, the manufacturers are confined to maximize

the fractional objective function and to minimize the non-linear objective function subject

to stochastic and non-stochastic environment. In our problem, the first preference is given

to fractional objective function and then to non-linear objective function. This problem is

decomposed into two problems, where the first problem deals with maximization of profit

whereas the next deals with minimization of loss (errors). The solution of the first problem

gives the upper bound of the profit as well as it helps to solve the second problem.

This paper is organized as follows; In Section 1 the multi-objective stochastic fractional

programming problem model is formulated. A required algorithm to solve the model is given

in Section 2. The methodology of solving the MOSFPP is presented in Section 3. Section 4

contains preliminary computational result, while Section 5 draws conclusion and indicates

the future direction for research.

Assumptions

1. Process time follows Normal Distribution with known mean and variance.

2. Profit model has feasible solution.
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Table 1 Assembled PCB models’ notations

Time required per unit (Hrs)

PCB Type

Process 1 2 . . . . n
Available time per

unit (Hrs)

1 u11 s11 u12 s12 . . . . u1n s1n b1

2 u21 s11 u22 s12 . . . . u2n s2n b2

. . . . . . . . . . . . . . . . . . . . . . . .

m um1 sm1 um2 sm2 . . . . umn smn bm

MI c1 c2 cn

MP d1 d2 dn

3. Prior estimation of errors is possible by R&D Department of the manufacturing company.

1. The assembled PCB model

Assembled PCB manufacturing problem is viewed as a Multi Objective Stochastic Fractional

Programming Problem in which process times are normally distributed. An assembled PCB

manufacturing company manufactures n types of PCB. Further, it has to under go m process.

The processing time tij are known to be independently distributed normal variables with

estimated mean uij and standard deviation sij. The annual average fixed cost to manufacture

the assembled PCB is β. The mean capital invested (MI) is Rs. d j per assembled PCB of

type j. Let the annual resultant mean profit (MP) be Rs. c j per assembled PCB of type j. The

available units of time per month is known, b = [b1, b2, . . . , bm ] (say). The above information

is presented in Table 1.

The objective is to determine the number of assembled PCB of each type that should be

produced per month so as to maximize profitability (ratio of net profit and capital invested).

Let us call this model as profit model.

The number of assembled PCB of type j manufactured per month is denoted as x j . Let

c′x be the profit function and d ′x + β be an investment function. The problem then can be

formulated from Charles et al. (2001); Charles and Dutta (2001) as follows

MaximizeR(1)(x) = c′x
d′x + β

(1)

subject to the constraints

Pr

(
n∑

j=1

tijx j ≤ bi

)
≥ 1 − pi (i = 1, . . . , m). (2)

where 1 − pi (0 < pi ≤ 1) is the least probability with which i th constraint is satisfied,

(i = 1, . . . , m),

x j ≥ 0 ( j = 1, . . . , n).

It was identified that during the processes of assembled PCB, there are eleven factors namely

nature of defects that makes them defective. They are Wrong Component Assembled (WCA),

Reversal Component (RC), Component Missing (CM), Wrong Cut Done/Cut Not Done
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(WCD/CND), Pattern Cut (PC), Pin Bend in IC’s (PB), Dry Soldering (DS), Not Cleaned

(NC), Wrong Strapping Done (WSD), Not Mounted Properly (NMP), Solder Short (SS).

Nature of defects are classified into three kinds of errors namely Machine Errors, Manual

Errors and Other Errors. Factors under Machine errors, Manual Errors and Other Errors are

(DS, SS), (WCA, RC, CM, WCD/CND, PB, WSD) and (PC, NC, NMP) respectively.

The prior knowledge made the R&D department to estimate these errors. Each type of

assembled PCB may have atmost three kinds of errors. This forms the combination FST

that stands for First, Second and Third and it depicts occurrence of Machine errors, Man-

ual Errors and Other Errors respectively. Binary values 1 and 0 are used to denote oc-

currence and non-occurrence of errors. We get totally seven combinations of errors, i.e.

111,110,101,011,100,010,001. Here 111-all kinds of errors occurred, 101- first and third

kinds of errors occurred, 010- only second error occurred, etc. Occurrence of these errors

may lead the manufacturer to be in loss. The ultimate aim of the manufacturer is to minimize

these errors in order to maximize the profit.

In the following loss model, let e( j)
FST depict the number of errors of j th type assembled PCB.

From the above discussion it is very well clear that the contribution for Machine Errors

form the set (111,110,101,100), for Manual Errors form the set (111,110,011,010) and for

Other Errors form the set (111,101,001,001). Obviously, e( j)
111 + e( j)

110 + e( j)
101 + e( j)

100 is the total

number of assembled PCB of j th type, which has Machine Errors. But this total is bounded by

estimated errors. Let e( j)
l be the estimated error percent of lower limit of j th type assembled

PCB for the above-mentioned sets. The mathematical form of loss model is as follows

Minimize R(2)(e) =
n∑

j=1

∑
FST={111,110,101,011,100,010,001}

(
e( j)

FST

)2

(3)

e( j)
l

100
x j ≤

∑
FST={111,110,101,100}

e( j)
FST ≤ e( j)

u1

100
x j (4)

e( j)
l

100
x j ≤

∑
FST={111,110,011,010}

e( j)
FST ≤ e( j)

u2

100
x j (5)

e( j)
l

100
x j ≤

∑
FST={111,101,011,001}

e( j)
FST ≤ e( j)

u3

100
x j

(6)

where e( j) =
[
e( j)

111, e( j)
110, e( j)

101, e( j)
011, e( j)

100, e( j)
010, e( j)

001

]
≥ 0 ( j = 1, . . . , n).

The profit function after minimizing the errors is

R(3)(X, e) = c′[x − e] (7)

where e =
[∑

FST
e(1)

FST,
∑
FST

e(2)
FST, . . . ,

∑
FST

e(n)
FST

]
; FST = {111, 110, 101, 011, 100, 010, 001}.

2. The sequential linear programming (SLP) algorithm for MOSFP problem

Cheney and Goldstein (1959) and Kelly (1960) originally presented the SLP method. The

concept of solving a series of linear programming problem in order to obtain the solution
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of the original non-linear programming problem is known as sequential linear programming

problem. Each linear programming problem is generated by approximating non-linear ob-

jective and constraint functions using first order Taylor series. Though the MOSFP model

is non-linear, after adopting the concepts of chance-constraints (Charles and Dutta, 2003;

Charnes and Cooper, 1954), the model become partially linear, in the sense that the objective

function turns out to be linear.

1. Start with an initial point Xint. The point Xint need not be feasible. Let X1 = Xint.

2. Linearize the non-linear objective and constraint functions about the point X j as R(X) ≈
R(X j ) + ∇R(Xj )

T (X − X j ) and gi (X)≈ gi (X j ) + ∇ gi (X j )
T (X − X j )

3. Formulate the approximating LSFP problem as LPP as given below

Minimize R(Xj ) + ∇R(X j )
T(X − X j )

subject togi (X j ) + ∇gi (X j )
T(X − X j ) ≤ 0; ∀X j ≥ 0(i = 1, . . . , m; j = 1, . . . , n).

4. Solve the approximating LPP to obtain the solution vector Xnext.

5. Evaluate the original constraints at Xnext; i.e. Get gi (Xnext), i = 1 to m. If gi (Xnext) ≤ ξ

for i = 1 to m, where ξ is a prescribed small positive tolerance, all the original constraints

can be assumed to have been satisfied. Hence stop the procedure by taking Xopt ≈ Xnext. If

gi (Xnext) > ξ for some i, find the most violated constraint , For example, as g∗ (Xnext) =
maxi [gi (Xnext)]. Relinearize the constraint g∗(X) ≤ 0 about the point Xnext as g∗

(X ) ≈
g∗

(Xnext)
+ ∇ g∗

(Xnext)
T(X − Xnext) ≤ 0 and add this as the (m + 1)th inequality constraints

to the previous LSFP problem. Let next = int + 1. Goto step 4.

3. Model implementation

1. Solve the profit model using the algorithm given in Section 2 and obtain the number of

assembled PCB of various types with the upper bound of profit.

2. Substitute the profit model solution in (4–6) to obtain the loss model constraints boundaries

and solve the loss model using any non-linear software.

3. Use (7) to get the profit function after minimizing the errors.

4. Small test problem

Let us consider the data given in Table 2 and 3 for (1–2) and (3–6) respectively.

Using (Charles et al., 2001) the following non-linear programming problem is obtained.

Max R(1)(X) = (17x1 + 18x2)/(12x1 + 15x2 + 10000) (8)

Table 2 Data for the profit model of section 4 test problem

Kqi

u11 u12 u21 u22 s11 s12 s21 s22 c 1 c2 d1 d2 β (qi=0.9)

4 5 3 2 2 3 1 1 17 18 12 15 10000 1.28
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subject to

4x1 + 5x2 + 1.28

√
(22x2

1 + 32x2
2) ≤ 300 (9)

3x1 + 2x2 + 1.28

√
(12x2

1 + 12x2
2) ≤ 150 (10)

x1, x2 ≥ 0

Let us take the initial value as (1,1) and solve the objective function (8) with (9) and (10)

using sequential linear programming technique of Section 2.

Max R(1)(X) = 0.0017009x1 + 0.0018020x2 − 0.0000129 (11)

Subject to

5.42x1 + 8.1950x1 ≤ 300 (12)

3.90x1 + 2.9050x2 ≤ 150 (13)

x1, x2 ≥ 0

Solution of (11-13) problem is R(1)(X) = 0.0772 at x1 = 22, x2 = 22.

Let us solve the loss model

Min R(2)(e) =
2∑

j=1

(
e( j)

111

)2 + (
e( j)

110

)2 + (
e( j)

101

)2 + (
e( j)

011

)2 + (
e( j)

100

)2 + (
e( j)

010

)2 + (
e( j)

001

)2
(14)

e( j)
l

100
x j ≤ e( j)

111 + e( j)
110 + e( j)

101 + e( j)
100 ≤ e( j)

u1

100
x j (15)

e( j)
l

100
x j ≤ e( j)

111 + e( j)
110 + e( j)

011 + e( j)
010 ≤ e( j)

u2

100
x j (16)

e( j)
l

100
x j ≤ e( j)

111 + e( j)
101 + e( j)

011 + e( j)
001 ≤ e( j)

u3

100
x j (17)

where e( j) ≥ 0 ( j = 1, 2).

Using Table 3, bounded constraints (15-17) gives (18-23)

1.10 ≤ e(1)
111 +e(1)

110 + e(1)
101 + e(1)

100 ≤ 2.20 (18)

1.10 ≤ e(1)
111 + e(1)

110 + e(1)
011 + e(1)

010 ≤ 4.40 (19)

1.10 ≤ e(1)
111 + e(1)

101 + e(1)
011 + e(1)

001 ≤ 2.20 (20)

Table 3 Data for the loss model
of section 4 test problem i e(i)

l e(i)
u1 e(i)

u2 e(i)
u3

1 5% 10% 20% 10%

2 5% 12% 15% 13%
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1.10 ≤ e(2)
111 + e(2)

110 + e(2)
101 + e(2)

100 ≤ 2.64 (21)

1.10 ≤ e(2)
111 + e(2)

110 + e(2)
011 + e(2)

010 ≤ 3.30 (22)

1.10 ≤ e(2)
111 + e(2)

101 + e(2)
011 + e(2)

001 ≤ 2.86 (23)

where e(1), e(2) ≥ 0.

Solving objective function (14) along with bounded constraints (18-23), we get

R(2)(e) = 0.9075 at e(1) = [0.4125, 0.2750, 0.2750, 0.2750, 0.1375, 0.1375, 0.1375] and
e(2) = [0.4125, 0.2750, 0.2750, 0.2750, 0.1375, 0.1375, 0.1375]. From (7), we can obtain

the profit of the manufacturer after minimizing the errors which is

R(3)(X, e) = 17

[
x1−

∑
FST

e(1)
FST

]
+ 18

[
x2−

∑
FST

e(2)
FST

]
= 17[22 − 1.65] + 18[22 − 1.65]

= 712.25

Now let us consider the above problem with e(1)
l = 8% and e(2)

l = 10%.

Solving the objective function (14) along with bounded constraints (18-23), we get

R(2)(e) = 2.9766 at e(1) = [0.6600, 0.4400, 0.4400, 0.4400, 0.2200, 0.2200, 0.2200] and
e(2) = [0.8250, 0.5500, 0.5500, 0.5500, 0.2750, 0.2750, 0.2750]. The profit of the manufac-

turer after minimizing the errors is

R(3)(X, e) = 17

[
x1 −

∑
FST

e(1)
FST

]
+ 18

[
x2 −

∑
FST

e(2)
FST

]
= 17[22 − 2.64] + 18[22 − 3.3]

= 665.72.

5. Conclusion & future direction

In this paper, we have formulated stochastic version of assembled PCB model. We have pre-

sented a simple sequential linear programming type approach for solving the profit model.

This type of algorithm is very popular among practitioners because it uses existing linear pro-

gramming techniques and has history of good performance. A solution approach to MOSFPP

model has been developed and implemented using Lingo software. This paper undoubtedly

assists the manufacturer to accrue the optimum profit after minimizing the loss. The devel-

opment of confidence intervals of profit and loss functions and error analysis is a topic of

future research. Our ultimate aim is to develop much more efficient models to make the

manufacturer to attain the highest profit.
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