Design and Implementation of
Peer-to-Peer E-Mail System

K. Ramesh, Venkateswarlu K., R. Chandra Sekharam
Department of Computer Science and Engineering,
National Institute of Technology — Warangal — 506004,
Andhra Pradesh, INDIA
srifram2002@yahoo.com

Abstract

E-mail has become the most widely used communication
Jfacility for all institutions and individuals in the present era.
Existing E-mail systems employ a server-centric design in
which the user is critically dependent on the mail server.
Insecurity due to mail sever failures is a major problem faced
by many users. Design and implementation of a secure Peer-
to-Peer E-mail facility is addressed in this work. Locating the
specific computer that stores the emails of a specific user is
the critical design requirement for which a solution is offered
through the implementation of Chord protocol, which maps
an E-mail entity onto a specific node. The architectural
design and implementation also provides for better
confidentiality. The prototype implementation has been
observed to provide a good scope for improved anonymity.
We present our prototype implementation and discuss the
scope of future extensions.

1. INTRODUCTION

The present day E-mail systems employ a sever-centric
design for handling and storing e-mails. If the mail server is
down the user can neither receive nor access mails in such a
case. This traditional server-centric approach has many other
drawbacks like, less reliability due to sever failure, high
demand on Server storage space, high performance demand
on servers, excessive message duplication due to mailing lists,
etc.

In this paper, running Internet e-mail application as a
server-less application over a Peer-to-Peer (P2P) Chord ring
is explored for two reasons. First, a P2P design [10] can
eliminate the single point of failure. Tt can more easily store
large messages by providing orders of magnitude of more
storage, and eliminate server stress by distributing server
functionality to millions of peers, and can handle mailing lists
more efficiently. The second reason is simply because it is a
challenging P2P design problem. Successful design
implementation of this P2P E-mail system can be easily
extended to many other Internet applications.

Considering the prototype design of P2P E-mail system
one can choose a distributed hash table {DHT) substrate, such
as Chord [1], CAN [7], Tapestry [9], or Pastry [8].

1-4244-0716-8/06/$20.00 ©2006 IEEE. 54

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 06:42:47 UTC from IEEE Xplore.

In our work Chord protocol has been chosen. Many
distributed peer-to-peer applications need to determine the
node that stores a data item [3]. The Chord protocol solves
this challenging problem in a decentralized manner. It offers a
powerful primitive: given a key, it determines the node
responsible for storing the key’s value.

Overview of the architecture, design details of Data and
Procedures, prototype implementation details, conclusions
and future scope are presented in the subsequent sections.

2. ARCHITECTURE

The proposed P2P E-mail system architecture is shown in
the Figure 1. Tt consists of system nodes and Email User
Agents (UA). The system nodes are the computers in a chord
ring whereas the UAs use these system nodes to access the e-
mail system. The UAs are the mail reader programs that are
run by the users. The UA must have the IP address of at least
one of the system nodes in the chord ring to access this e-mail
system.

The role of the system nodes is to provide persistence for
messages that are in transit from sender to recipient. This E-
mail system uses the lookup service of a Chord for providing
persistence of messages. Chord provides the following lookup
service: The application supplies an arbitrary key (an element
in the chord ring) and a variable k. The lookup service returns
to the application the k active nodes in the chord that are the
closest to the key.

E-mad
User Agent

CHORD RING
Send/receive
Mails

E-mail
User hgent

E-mail
User Agent

SN - Sysiem Hode

Fig. 1: Overview of Architecture

Restrictions apply.

Each user has unigne email address used for mailing
purpose. Generally, the e-mail address certificates bind the e-
mail addresses to public keys. These e-mail address
certificates are created using extemal services provided by a
certificate anthority. A users” public key is contained in the
certificate whereas his private key is stored on his local
computer in a trusted mamner. Each user has an inbox
associated to e-mail address, which stores the notification of
all unread messages. The messages are not stored in the inbox
but are stored separately along with their identifiers. Once the
user reads a new message he can store them on his local
computer. This system is similar to traditional POP-based e-
mail. The difference is in the storage of e-mails. In this
architecture the message is stored at k closet nodes of the
message. The persistence of the message is gnaranteed until
the user reads the message. Once a message is read it will be
deleted from the peers. Thus, this P2P e-mail system uses the
Chord substrate to store three types of objects: e-mail address
certificates, unread email message bodies, and inboxes. Each
object has a unique identifier. All UAs and system nodes use
the same hash function to map an object’s identifier to a key,
which is an element in the chord ring.

The Chord protocol supports the mapping of given key
onto a node. Each node in the chord has a unique ID. Chord
ID is assigned an m-bit identifier using consistent hashing.
The SHA-1 algorithm [2] is the base hashing function for
consistent hashing. Chord is completely decentralized and
symmetric, and can find data using only Jog (N) messages,
where N is the number of nodes in the system. Chord has a
ring-based topology where each node stores at most log (&)
entries (or state} in its finger fable to point to other peers.
Lookup is done in O ({og (V}) time.

Each node has a snccessor and a predecessor located in the
next positions clockwise and counter-clockwise respectively.
Pointers are stored in every node to predecessor and snccessor
along with pointers to other few nodes. These other nodes
provide access in case of node failures of successor or
predecessor. An example Chord network with three bit
identifiers is shown in Figure 2.

Fig. 2: Finger tables and key locations for a ring withnodes 1, 3, and 6 and
keys 3,4, and 7.

55

Chord is expected to perform three tasks when a node joins
the network with at least one node. Those tasks are presented
in the form of psendo-code in [4].

3. DESIGN

Details of Data design and Procedural design are presented
below.

A. Data Design

The system node of the chord ring is expected to maintain
the following data stmetures for providing the lookup service.
Finger Table: Finger table entry includes both the Chord
identifier and the IP address of the relevant node, the
successor and predecessor nodes ids and IP addresses, and
start node and end node for the given index.
Node: Node structure contains the node identifier and node IP
address.
The E-mail User Agent module is expected to maintain the
following data structures for sending and receiving the mails.
Store users: used for storing user e-mail address along with
certificate.
Store messages: the message ID and its message body of the
each message sent by the user and list of recipients for the
message [D.
Inbox: The inbox stores an e-mail address and the encrypted
email message headers.

B. Procedural Design

A simple store-and- forward is considered as the basis for
the procedural design of the proposed system. A Store
function is used to store e-mail message body and the
corresponding e-mail address certificates. Delete function is
used by a requester to reclaim storage space in an individual
node by removing unneeded objects from its storage. Fetch
fimction is used to retrieve stored objects. Append-inbox
fimction is used by a sender to append email message headers
to a recipient inbox, which is a container of message
notifications for the recipient. A UA calls Read-inbox
function on a node when it wants to retrieve message
notifications placed into its user’s inbox.

Peer-to-Peer E-Mail System Procedures: As the network
comprises of semi reliable nodes the E-mail message data
needs to be replicated in a sufficient number of nodes to
guarantee persistence. The user agents handle replication of
data through the services that are available in the system
nodes. The two major tasks are composing and checking
mails. These tasks require store, fetch, delete, append inbox
and read inbox services provided by each system node in the
Chord ring.

Following are the sequence of events that occur when
Alice sends an email message to Bob and when Bob wants to
read his new message.

Composing E-mail: Following are the sequence of events
that occur when Alice sends an email message to Bob
[5,6,11]. Let A be Alice’s user agent.

1. 4 appends Bob’s email address with "-certificate,” and
maps this to a key (related to email address or email address

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 06:42:47 UTC from IEEE Xplore. Restrictions apply.

identifier). 4 uses the lookup service to obtain the list of &
nodes closest to this key, and fetches Bob’s certificate from
one of these nodes. 4 authenticates the certificate, and
extracts Bob’s public key.

2. A generates a session key, and uses it to encrypt the e-mail
message body.

3. A generates an RFC 822 message 1D that will be used to
identify the message body.

4. A maps the message ID to a key. 4 uses the lookup service
to obtain the & nodes closest to the key, and invekes the store
operation on each of them, using the message ID as identifier,
and the encrypted message body as object.

5. A constructs the e-mail message headers (which include the
session key, the message ID header, and a digest of the
message), and encrypts them with Bob’s public key. 4 maps
Bob’s e-mail address to a key. A obtains from the lookup
service the & nodes closest to the key, and invokes the
append-inbox function on each of them with Bob’s e-mail
address and the encrypted message headers.

The figure 3 shows the sequence of steps involved in the
composing E-mail.

el [e [i

TRl ‘ ‘ ‘

% LookapMD)

buma : cosastnides
& SeretD
fseage body 1 |
10 S pessae
le
11 Clloulafe dgest o
|12 MessaeCigest
13| Syt message Hehders.
. E‘nuyp(mnz.sa;z.
ke
15: Append hbox ‘ ‘
i &

: Sequence Diagram for Composing E-Mail

2| Lodap el

Ganerste sessic ey and riessage
éSFbeluns jonkey ndMD

e

Fig. 3

Checking E-Mail: Following are the sequence of events that
occur when Bob wants to read his new message. Let B be
Bob’s user agent.

1. User agent B obtains the & nodes closest to Bob’s e-mail
address, which are the nodes to which senders are appending
message notifications. The inboxes stored across these nodes
may be inconsistent. Hence B invokes the read-inbox
operation on all & nodes, and forms the superser of message
notifications returned from all k nodes. Each node will delete
the message notifications once it has sent them to the user
agent, and so the user agent becomes wholly responsible for
maintaining the persistence of these e-mail message
notifications.

2. B decrypts the message headers using Bob’s private key. B
gets the message ID from the message header. The user agent
obtains the % nodes closest to the key of the message ID

3. B invokes the fetch operation on one of the nodes, and
verifies that the message body is valid by comparing a digest

56

of the retrieved object with a digest that the sender placed in
the message headers.

4. If the message body is not on the node, or if the message
digest is not valid, B invokes the fetch operation on one of the
other nodes, and repeats until it obtains a satisfactory result.
Once the message body object has been obtained, B decrypts
the object with the session key that the sender placed in the
message headers.

5. B invokes the delete operation on all k peers to remove its
certificate from the list of certificates attached to the message
body. If Bob’s certificate is the last on the list, the node will
remove the object from storage. Because the message headers
have left peer storage, there is liftle motivation for user agents
to leave message bodies in peer storage, other than to avoid
the consumption of local storage. For this reason, user agents
are expected to perform message deletion immediately
following message refrieval. The figure 4 shows the sequence
of steps involved in the checking E-mail.

B

v sy ‘ ‘ ‘

Fig. 4: Sequence Diagram for Checking E-Mail
4. IMPLEMENTATION

The Implementation comprises system nodes (Chord
Substrate) and User Agents (UAs). C++ classes used and
the implementation details of various functions in those
classes are described below .

A . Chord Substrate

The figure 5 shows the details of classes used and
relationships between them in implementing the Chord
substrate.
Class End Point:This class acts as an endpoint for the
outside module. Udplnitialization method is used for
initializing the UDP socket listening point with given port
number for sending and receiving the messages.
WaitForRequests waits for requests. It uses select system call
for selecting the request that came from any outside module.
ProcessTheRequests method calls the appropriate function
depending upon the request.
Class Node: This class is used for maintaining the finger
entries of chord node. getID method is used for generating the
unique identifier for each node going to join in chord ring. A

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 06:42:47 UTC from IEEE Xplore. Restrictions apply.

node’s identifier is chosen by hashing the combination of
node’s TP address and port number. Jookup method supports
the operation of mapping given a key to a node. Hence this is
may be viewed as the Chord Application Program Interface
(API) for the outside module. UpdateFingerTable updates the
existing finger table of node n. Node n will become the it
finger of node p if and only if p precedes n by at least 2™,
and the i® finger of node p succeeds n.

Class EmailSystem: This class is used for providing the
different services for P2P E-mail system. storeAddress
stores the E-mail address and certificate for authentication
when a user is publishing E-mail address. readlnbox takes an
e-mail address and returns the message notifications stored in
the node

EndPaoint

Sudp : socket
EHosthame © char

Enode : Nods.

Sudp_initry
®narsing_message()
Seonding_resuli(y

Node I_ ErnallSyster
Bdentifier : int BBinbox | INBOX
Ehpredecessor: int iessageheader : MessageHeader|
gpsu:cassnr int Eemaillist : EmailList
&

Sipaddress : char
SAingertable : FingerTable

B mallSystem()
tore()

ook up int()
nd_predecessorint(y

$rind_successor int()

Sclosest_preceding fingsrint()

Sain()

Binit_fingar_tabled

R pdate_othersp

% pdate_finger_table()

Sfotch:char ()
ppend_inbox()

Bjolete()

®read_inbox chasr ()

Fig . 5: Class collaboration Diagram for Chord substrate

B. E-Muail User Agent

The Figure 6 shows the details of classes used and
relationships between them in implementing the E-mail User
Agent.

A Qpecalians

e
Heytamgamant
nes

i . RS

wos
B OHT Canector
—

e

m‘\:ﬂﬁae e

DES fEA
e =
Beet bt} lang
Bt [Rimeiat,) Bty m——
M arrding messagel) | Seneate Dy &g:g:%}

Fig. 6: Class collaboration Diagram for E-mail User Agent
5.CONCLUSIONS

In this paper we have proposed a P2P E-mail system using
Chord as the DHT substrate. The system has been
implemented in C++ and tested for functionality at present.
At a later stage we wish to identify the generic classes in this
work as patterns or a P2P communication framework. Such

57

framework could be easily adopted for various types of
mailing systems.

A P2P architecture could be an ideal vehicle for bringing
the different forms of communications together. With its
distributed advantages and resilient aspects, P2P architecture
could be reformed as a P2P framework. This framework can
be customized to design and implement many distributed
applications of either Internet or other large-scale distributed
tasks. Few such envisaged applications are co-operating file
sharing, E-mail, time-shared available storage systems, and
secure distributed databases.

REFERENCES

[1]. Stoica, L., Morris, R., Karger, D.,Kaashoek, M. F., and
Balakrishnan, H. Chord: A scalable peer-to-peer lookup
service for mternet applications. Tech. Rep. TR-R819, MIT
LCS, March 2001.

[2]. FIPS 180-1. Secure Hash Standard. .S. Department of
Commerce/NIST, National Technical Information Service,
Springfield, VA, Apr. 1995.

[3]. Karger, D., Lehman, E., Leighton, F., Levine, M., Levine,
D., and Panigrahy, R. Consistent hashing and randem frees:
Distributed caching protecols for relieving hot spots on the
World Wide Web. In Proceedings of the 29th Annual ACM
Svmposium on Theory of Computing (El Paso, TX, May
1997}, pp. 654-663.

[4]. R. Rivest, “The MDS5 message-digest algorithm,” IETF
Network Working Group, RFC 1321, April 1992.
[5] R. Rivest, A. Shamir and L. Adleman, “A method for
obtaining digital signatures and public key cryptosystems,”
CACM 21 (1978).
[6] www.rsasecurity.com
[7]. S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A scalable content-addressable network. In
proceedings of SIGCOMM, San Diego, CA, Aug.27-31,2001.
[R]A Rowstron and P.Druschel. Pastry: Scalable, distributes
object location and routing for large-scale perr-to-peer

systems. In IFIP/ACM International Conference on
Distributed Sysytems Platforms, Heidelberg,Germany,
Nov.2001.

[9] B.Y. Zhao, J.DD. Kubiatowicz, and A.D.Jaseph. Tapestry:
An infrastructure for fault-tolerant wide-are location and
routing. Technical Report UCB//CSD-01-1141, University of
Califomia, Berkeley, Apr.200.

[10]. Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose,
Kiran Nagarajal, Jim Pruyne, Bruno Richard, Sami Rollins,
and Zhichen Xu - “Peer-fo-Peer Computing”. HP
laboratories, July 2003.

[11]. www.aci.net/kalliste/des.htm

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 06:42:47 UTC from IEEE Xplore. Restrictions apply.

