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Abstract:

This paper, describes a connectionist fault-tolerant
non-monotonic reasoning system, which uses coarse-coded
distributed representations. Distributed representations are
known to give the advantages of fault tolerance, generalization
and graceful degradation of performance under noise
conditions. A semantic network is designed, using a novel
approach, with connectionist networks using coarse-coded
representations to perform non-monotonic reasoning. The
system performs non-monotonic reasoning using the property
of inheritance. The system also supports the feature of
cancellation of inheritance, whereby more specific information
associated with the nodes lower in the ‘isa’ hierarchy is given
precedence over default information associated with the nodes
higher in the hierarchy. System has exhibited good
generalization ability on wunseen test inputs. System’s
performance with regard to its ability to exhibit fault
tolerance under noise conditions is also studied. The system
offers very good results of fault tolerance under noise
conditions.
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1. Introduction

Traditionally reasoning systems using predicate logic
have been implemented using symbolic methods of
artificial  intelligence. = Connectionist methods  of
implementation of reasoning systems describe an
alternative paradigm. There are two types of reasoning 1)
Monotonic and 2) Non-monotonic. In a monotonic
reasoning system adding new axioms to the system does not
diminish the set of theorems that can be proved. In
non-monotonic reasoning systems we make default
inferences. These default inferences are assumed to be true
in the absence of more specific information. If more
specific information becomes available, the default
inferences, which are contradictory with the specific
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information, will be with drawn.

Among the connectionist systems two types of
representational schemes can be used. These are 1) localist
and 2) distributed representational schemes. Localist
representational schemes represent each concept with an
individual unit or neuron. In the distributed representational
schemes, each unit or neuron is used in representation of
multiple concepts and multiple units or neurons are used to
represent a single concept. In the literature, some localist
methods for reasoning using connectionist networks have
been described. The connectionist inference system
SHRUTI [1, 2], 3] described a localist method where
temporal synchrony was used to create bindings between
variables and entities they represent. A variable x of the
predicate give (x, y, z) is getting bound to an entity d if the
nodes representing them fire during the same phase of time
pl during the predicate p activation period 7. The time
period T is divided into three phases p/, p2 and p3 during
which synchronous firing of variables x, y and z and entity
nodes they bound respectively takes place. This method has
used temporal synchrony as a mechanism to establish
variable binding. CONSYDERR [4] described a localist
method for variable binding and forward reasoning. It uses
an assembly or a set of interconnected nodes to represent
each predicate p (x;... xk). Each assembly contains one C
node for storing the confidence value of the predicate p and
k X nodes to store the binding values for & variables of the
predicate p. A separate node is allocated for each variable of
a predicate. Each such node, stores a value representing a
particular object being bound with that variable. Different
objects that can get bound to a variable will be given
separate values. Both these systems used localist
representations for the instantiated predicates and
performed predicate logic reasoning. In our earlier works [5,
6], and [7] we proposed and described predicate logic
reasoning systems using neural networks which used
coarse-coded distributed representations to represent
instantiated predicates. In these works, we have described
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the advantages of using the coarse-coded representations
along with neural networks for doing predicate logic
reasoning. The predicate logic reasoning is categorized as
monotonic reasoning. Here, we propose to examine the use
of the coarse-coded distributed representations along with
the neural networks in the implementation of a
non-monotonic reasoning system. A non-monotonic
reasoning system makes default inferences in the absence
of more specific information. It is investigated here, in this
work, to examine the advantages gained by the
non-monotonic reasoning system by using the distributed
coarse-coded representations in a connectionist framework.
Our motivation, is to make available, the advantages of
distributed  coarse-coded  representations to  the
non-monotonic reasoning system. We also deal with the
issue of how to override the default inferences, if more
specific information became available in the system.

2. Semantic network

We implement the semantic network [8] shown in
figure 1 to perform non-monotonic reasoning. A semantic
network consists of a number of labeled nodes
interconnected with labeled arcs. In the figure 1 each of the
intersecting points between two or more lines is a node. The
nodes are shown as dots in the fig.1.The line connecting
any two nodes in the network is an arc. These arcs
represent relationship between those nodes. The
relationship is shown as a label on the arc. In addition, from
each of the nodes there are one or more labeled arcs which
do not terminate in any node. The label on each of these
arcs indicates the attribute name associated with that node.
Each of these arcs terminates with an attribute value
associated with the attribute mentioned on the labeled arc.
For example, the node canary has two labeled arcs can and
is. These arcs are terminated with attribute values sing and
yellow respectively. Hence, the node canary is associated
with the attribute values sing and yellow corresponding to
the attributes can and is respectively. In addition, node
canary inherits the attributes and corresponding attribute
values of nodes higher in the hierarchy of the semantic
network through the isa and instance links. Thus, it inherits
attributes and corresponding attribute values of nodes bird,
animal and living thing. Hence, by the mechanism of
inheritance, it is inferred that canary is a bird and that it can
fly, canary is an animal and that it can move and canary is a
living thing and that it can grow. Making inferences, by
using property inheritance as described here is called
non-monotonic reasoning.

Our task is to construct the semantic network by using
connectionist  networks  which use coarse-coded

representations for information associated with each of the
nodes in the semantic network and perform non-monotonic
reasoning successfully by using the system.

living_thing

roots
plant animal

feathers A

inst

elephant

size

large

Figure 1. Semantic Network

2.1. Description of data used by neural networks in
the system

Table 1. Shows a sample of input data for Neural Network 1

0000000000 00
00000000 0000
000000 0000

0000000000 0000
0000000 0000000
0000 0000 0000
0 00000 00010

bird ‘id’ code

Localist code
representing
attribute ‘can’

00001

Localist code
representing
attribute ‘is’

00001

Localist code
representing
‘inst’

00001

The nodes canary, parrot are members of the class
bird. These relationships are indicated by instance links in
figure 1. The nodes bird and forest _animal are sub-classes
of the class animal. These relationships are indicated by isa
links. Class animal is a sub-class of class living thing. This
relationship is also indicated by an isa link in the figure 1.
In Tables 1 and 2 below we show samples of localist
vectors that can be given as inputs and outputs of neural
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network 1. Localist representations represent each concept
with an individual unit or neuron.

Since, this is a localist representation, the bird id code
for different birds, will have a / at a different position in the
code to identify the birds, in table 1. Attributes can, is and
the inst link are each represented by a I in the 5" position
of the 5 bit codes.

Table 2. Shows a sample of output data for
Neural Network 1

Localist Value for

attribute ‘can’ 00000 00001

Localist Value for
attribute ‘is’
Localist Value for
‘inst’

0000 00001

00001

In table 2, the localist representation for the value of
attribute can is 0000000001 and this encodes talk, localist
representation for the value of attribute is is 000000001 and
this encodes green and the localist representation for the
value of inst is 00001 and it encodes bird. When given the
input vector describing the identification code for a specific
bird parrot and codes for attributes can, is and for the
membership link inst, neural network 1 can be trained to
produce on its outputs the codes representing the values for
the above attributes can, is and the inst link namely talk,
green and bird respectively. This is a representation for
information that parrot can talk, is green and is an instance
of bird. Since, it is our objective to design and implement a
semantic network with connectionist networks using
coarse-coded representations, we convert the localist
vectors shown above in tables I and 2 into coarse-coded
vectors and use them to train the neural network 1.

Below, we explain the process of obtaining the
coarse-coded vectors from the localist vectors.

2.2. Obtaining coarse-coded distributed representations

Consider the following input localist vector from the
table 1.

‘0000000000 0000000000 000000
0000 0000 0000000000 00000OOO0OO
0 00000000000 0000 00000 00000 O
0010 00001 00001 0OOOOY

We view the above vector as being kept in overlapping
coarse zones of length of 4 consecutive bits and encode the
zone as [ if there is at least one / bit in that zone or else as
0. We then consider next coarse zone and encode it as / or 0
following the above method. We do this process left to right
starting from the left most bit. We do this encoding process

for the above localist vector to get the following
coarse-coded vector.

‘0000000000 0000000000 000000
0000 0000 0000000000 000000000
00 00000000000 0000 00000 000O0O
11110 01111 01111 01117

Coarse-coding can be applied when the number of I’s
in the original string is sufficiently sparse. If the number of
I’s in the original string is not sufficiently sparse, then the
coarse-coded string when decoded will not yield the
original string. This is the reason, we have chosen a 5 bit
string to denote each of the attributes can, is and inst (in
which first 4 bits were kept as zeros) for the localist
representation of input data of neural network 1.
Coarse-coding increases the information capacity [9] by
increasing the number of units active at a time compared to
localist codes which have sparsely populated 7’s. The
amount of information conveyed by a unit that has a
probability ‘p’ of being ‘1’ is

—plog (p) — (1 —p) log(1 —p).

We obtain the coarse-coded representations of input
and output vectors for all the neural networks used in the
system, using the above described method. We show here a
sample of the coarse-coded representations of the input and
output vectors for neural network 1.

Table 3. Shows a sample of coarse-coded input data for
Neural Network 1

0000000000 000
0000000 000000
0000 0000 0

bird ‘id’ code 000000000 00000
000000 00000000
000 0000 00000

00000 11110

Coarse-coded
representation for
attribute ‘can’
Coarse-coded
representation for
attribute ‘is’
Coarse-coded
representation for
attribute ‘inst’

01111

01111

01111

Table 4. Shows a sample of coarse-coded output data for
Neural Network 1

Coarse-coded value
for attribute ‘can’ 00000 01111
Coarse-coded value
for attribute ‘is’
Coarse-coded value
for attribute
‘inst’

0000 01111

01111
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3. Organization of Neural Networks in the
Connectionist Non-monotonic Reasoning System

The neural networks 1 to 8 in figure 2 accomplish the
non-monotonic reasoning using the coarse-coded vectors.
They generate non-monotonic inferences by using the
mechanism of forward reasoning. Consider the neural
networkl shown in figure 2. When impressed on its inputs,
a coarse-coded vector v, containing the identification code
for a bird, say parrot and codes for attributes can, is and
membership link inst, neural network 1 produces on its
outputs the coarse-coded representations for falk, green and
bird respectively. The codes for talk and green are shown as
vl and v2 on the outputs of neural network 1. This is a
representation for information that parrot can talk, is green
and is an instance of bird. The coarse-coded representation
for bird gets impressed on neural network 6 inputs along
with codes for attributes has, has and size. This generates
on the outputs of neural network 6 coarse-coded
representations for feathers, wings, small and animal
respectively. The codes for feathers, wings and small are
shown as v/, v2 and v3 on the outputs of neural network 6.
The coarse-coded representation for animal gets impressed
on neural network 7 inputs along with the code for attribute
has. This generates on the outputs of neural network 7
coarse-coded representations for skin and [living thing
respectively. The code for skin is shown as v/ on the
outputs of neural network 7. The coarse-coded
representation for /iving thing gets impressed on inputs of
neural network 8 along with the code for attributes can and
is. This generates on the outputs of neural network 8
coarse-coded representations for grow and [living
respectively. The codes for grow and /living are shown as v/
and v2 on the outputs of neural network 8.
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Figure 2. Neural networks for performing non-monotonic
reasoning

By noting, the inputs and outputs of neural networks 1,
6, 7 and 8 we obtain the information that parrot is a bird, it
can talk, it is green, it has feathers and wings, it is an

animal, it has skin and also it is a living thing and it can
grow and it is [living. Both the information explicitly
associated with the node parrot and the information that can
be obtained through property inheritance in the semantic
network was successfully obtained by the connectionist
reasoning system.

3.1. Cancellation of inheritance

We have performed non-monotonic reasoning while
implementing a semantic network in a connectionist
environment using coarse-coded representations. A
non-monotonic reasoning system makes default inferences
in the absence of more specific information. In the semantic
network shown in the figure 1 node forest animal is
associated with the attribute size. The value of this attribute
is indicated as medium. However, the node elephant which
is lower in the isa hierarchy has the attribute size associated
with the value large. Here, we need to override the default
inference that the size of the elephant is medium, with the
more specific information available lower in the isa
hierarchy, that the size of the elephant is large. This
reasoning mechanism is referred to as the cancellation of
inheritance. In our connectionist reasoning system, we
override the information associated with an entity from
higher in the isa hierarchy, with the relevant information
available lower in the isa hierarchy. Therefore, we associate
elephant with the size large. This information is available
to the node elephant at the lowest point in the isa hierarchy,
since the node elephant is directly connected to this value
through the attribute arc size.

4. Testing

Following, are the details of the neural networks used
to do the above mentioned work. The neural networks in
table 5 are feed forward neural networks [10] using the

back-propagation algorithm.

Table 5. Shows the details of neural networks used

Neural No. of No. of No. of
Network  input hidden output
units units units

1 126 70 24
2 126 70 24
3 100 60 24
4 100 60 24
5 20 18 15
6 25 27 30
7 10 8 10
8 15 12 10
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The non-monotonic reasoning tasks were successfully
accomplished to give the expected results.

Table 6. Shows the details of test 1

No. of No. of No. of
Training Test Patterns
Patterns Patterns Corrected
Neural
Network 1 108 108 105

Table 7. Shows the details of test 2

No. of No. of No. of
Training Test Patterns
Patterns Patterns Corrected
Neural
Network 4 81 81 80

Table 8. Shows the details of test 3

No.of  No. of No. of patterns
Training unseen test correctly
Patterns  patterns generalized
Neural
Network 1 2 36 32

Table 9. Shows the details of test 4

No. of No. of No. of patterns
Training unseen test correctly
Patterns  patterns generalized
Neural
Network 4 31 30 30

Secondly, the performance of the above coarse-coded
non-monotonic reasoning system was tested for error
tolerance under noise conditions. In the test I, neural
network 1 with 126 input units, 70 hidden units and 24
output units was trained with /08 patterns. These, were
made test patterns after introducing / bit error at a random
location in each of these patterns. In the test 2, neural
network 4 with 100 input units, 60 hidden units and 24
output units was trained with 8/ patterns. These 8/ patterns
were made test patterns after introducing / bit error at a
random location, in each of these patterns. Results are as
shown in tables 6 and 7. The coarse-coded non-monotonic
reasoning system was found to be highly fault tolerant to
errors as was indicated by the tests performed. In tests 3
and 4, neural networks 1 and 4 were tested with
coarse-coded patterns for generalization on unseen test
patterns, after completing the training with a training set.
The results are as shown in fables 8 and 9.

5. Conclusions

We have developed and tested a connectionist
non-monotonic  reasoning system using distributed
coarse-coded representations. The system has successfully
performed the non-monotonic reasoning tasks. The system
has displayed good generalization ability on unseen test
patterns. The coarse-coded reasoning system exhibited high
fault tolerance under noise conditions. These artificially
introduced errors were simulating noise conditions.
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