
Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

1-4244-0060-0/06/$20.00 ©2006 IEEE 
3048 

NON-MONOTONIC REASONING WITH CONNECTIONIST NETWORKS 
USING COARSE-CODED REPRESENTATIONS 

SRIRAM .G. SANJEEVI1, PUSHPAK BHATTACHARYYA2 

1Department of Computer Science & Engg., National Institute of Technology, Warangal 506004, India 
2Department of Computer Science & Engg., Indian Institute of Technology, Bombay, India 

E-MAIL: sgsanjeevi@yahoo.com, pb@cse.iitb.ac.in 

Abstract: 
This paper, describes a connectionist fault-tolerant 

non-monotonic reasoning system, which uses coarse-coded 
distributed representations. Distributed representations are 
known to give the advantages of fault tolerance, generalization 
and graceful degradation of performance under noise 
conditions. A semantic network is designed, using a novel 
approach, with connectionist networks using coarse-coded 
representations to perform non-monotonic reasoning. The 
system performs non-monotonic reasoning using the property 
of inheritance. The system also supports the feature of 
cancellation of inheritance, whereby more specific information 
associated with the nodes lower in the ‘isa’ hierarchy is given 
precedence over default information associated with the nodes 
higher in the hierarchy. System has exhibited good 
generalization ability on unseen test inputs. System’s 
performance with regard to its ability to exhibit fault 
tolerance under noise conditions is also studied. The system 
offers very good results of fault tolerance under noise 
conditions.  
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1. Introduction 

Traditionally reasoning systems using predicate logic 
have been implemented using symbolic methods of 
artificial intelligence. Connectionist methods of 
implementation of reasoning systems describe an 
alternative paradigm. There are two types of reasoning 1) 
Monotonic and 2) Non-monotonic. In a monotonic 
reasoning system adding new axioms to the system does not 
diminish the set of theorems that can be proved. In 
non-monotonic reasoning systems we make default 
inferences. These default inferences are assumed to be true 
in the absence of more specific information. If more 
specific information becomes available, the default 
inferences, which are contradictory with the specific 

information, will be with drawn. 
Among the connectionist systems two types of 

representational schemes can be used. These are 1) localist 
and 2) distributed representational schemes. Localist 
representational schemes represent each concept with an 
individual unit or neuron. In the distributed representational 
schemes, each unit or neuron is used in representation of 
multiple concepts and multiple units or neurons are used to 
represent a single concept. In the literature, some localist 
methods for reasoning using connectionist networks have 
been described. The connectionist inference system 
SHRUTI [1, 2], 3] described a localist method where 
temporal synchrony was used to create bindings between 
variables and entities they represent. A variable x of the 
predicate give (x, y, z) is getting bound to an entity d if the 
nodes representing them fire during the same phase of time 
p1 during the predicate p activation period T. The time 
period T is divided into three phases p1, p2 and p3 during 
which synchronous firing of variables x, y and z and entity 
nodes they bound respectively takes place. This method has 
used temporal synchrony as a mechanism to establish 
variable binding. CONSYDERR [4] described a localist 
method for variable binding and forward reasoning. It uses 
an assembly or a set of interconnected nodes to represent 
each predicate p (x1… xk). Each assembly contains one C 
node for storing the confidence value of the predicate p and 
k X nodes to store the binding values for k variables of the 
predicate p. A separate node is allocated for each variable of 
a predicate. Each such node, stores a value representing a 
particular object being bound with that variable. Different 
objects that can get bound to a variable will be given 
separate values. Both these systems used localist 
representations for the instantiated predicates and 
performed predicate logic reasoning. In our earlier works [5, 
6], and [7] we proposed and described predicate logic 
reasoning systems using neural networks which used 
coarse-coded distributed representations to represent 
instantiated predicates. In these works, we have described 
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the advantages of using the coarse-coded representations 
along with neural networks for doing predicate logic 
reasoning. The predicate logic reasoning is categorized as 
monotonic reasoning. Here, we propose to examine the use 
of the coarse-coded distributed representations along with 
the neural networks in the implementation of a 
non-monotonic reasoning system. A non-monotonic 
reasoning system makes default inferences in the absence 
of more specific information. It is investigated here, in this 
work, to examine the advantages gained by the 
non-monotonic reasoning system by using the distributed 
coarse-coded representations in a connectionist framework. 
Our motivation, is to make available, the advantages of 
distributed coarse-coded representations to the 
non-monotonic reasoning system. We also deal with the 
issue of how to override the default inferences, if more 
specific information became available in the system. 

2. Semantic network 

We implement the semantic network [8] shown in 
figure 1 to perform non-monotonic reasoning. A semantic 
network consists of a number of labeled nodes 
interconnected with labeled arcs. In the figure 1 each of the 
intersecting points between two or more lines is a node. The 
nodes are shown as dots in the fig.1.The line connecting 
any two nodes in the network is an arc. These arcs 
represent relationship between those nodes.  The 
relationship is shown as a label on the arc. In addition, from 
each of the nodes there are one or more labeled arcs which 
do not terminate in any node. The label on each of these 
arcs indicates the attribute name associated with that node. 
Each of these arcs terminates with an attribute value 
associated with the attribute mentioned on the labeled arc. 
For example, the node canary has two labeled arcs can and 
is. These arcs are terminated with attribute values sing and 
yellow respectively. Hence, the node canary is associated 
with the attribute values sing and yellow corresponding to 
the attributes can and is respectively. In addition, node 
canary inherits the attributes and corresponding attribute 
values of nodes higher in the hierarchy of the semantic 
network through the isa and instance links. Thus, it inherits 
attributes and corresponding attribute values of nodes bird, 
animal and living_thing. Hence, by the mechanism of 
inheritance, it is inferred that canary is a bird and that it can 
fly, canary is an animal and that it can move and canary is a 
living thing and that it can grow. Making inferences, by 
using property inheritance as described here is called 
non-monotonic reasoning. 

Our task is to construct the semantic network by using 
connectionist networks which use coarse-coded 

representations for information associated with each of the 
nodes in the semantic network and perform non-monotonic 
reasoning successfully by using the system.  

 

 
Figure 1. Semantic Network 

2.1. Description of data used by neural networks in 
the system 

Table 1. Shows a sample of input data for Neural Network 1 

bird ‘id’ code 

0 0 0 0 0 0 0 0 0 0     0 0 
0 0 0 0 0 0 0 0     0 0 0 0 
0 0 0 0 0 0     0 0 0 0      
0 0 0 0 0 0 0 0 0 0   0 0 0 0 
0 0 0 0 0 0 0   0 0 0 0 0 0 0 
0 0 0 0    0 0 0 0  0 0 0 0 
0  0 0 0 0 0  0 0 0 1 0 

Localist code 
representing  
attribute ‘can’ 

0 0 0 0 1 

Localist code 
representing    
attribute ‘is’ 

0 0 0 0 1 

Localist code 
representing   
‘inst’ 

0 0 0 0 1   

 
The nodes canary, parrot are members of the class 

bird. These relationships are indicated by instance links in 
figure 1. The nodes bird and forest_animal are sub-classes 
of the class animal. These relationships are indicated by isa 
links. Class animal is a sub-class of class living_thing. This 
relationship is also indicated by an isa link in the figure 1.  
In Tables 1 and 2 below we show samples of localist 
vectors that can be given as inputs and outputs of neural 
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network 1. Localist representations represent each concept 
with an individual unit or neuron. 

Since, this is a localist representation, the bird id code 
for different birds, will have a 1 at a different position in the 
code to identify the birds, in table 1. Attributes can, is and 
the inst link are each represented by a 1 in the 5th position 
of the 5 bit codes. 

 
Table 2. Shows a sample of output data for 

 Neural Network 1 
Localist Value for 
attribute ‘can’ 0 0 0 0 0  0 0 0 0 1 

Localist Value for   
attribute ‘is’ 0 0 0 0   0 0 0 0 1 

Localist Value for    
‘inst’ 0 0 0 0 1 

 
In table 2, the localist representation for the value of 

attribute can is 0000000001 and this encodes talk, localist 
representation for the value of attribute is is 000000001 and 
this encodes green and the localist representation for the 
value of inst is 00001 and it encodes bird. When given the 
input vector describing the identification code for a specific 
bird parrot and codes for attributes can, is and for the 
membership link inst, neural network 1 can be  trained to 
produce on its outputs the codes representing the values for 
the above attributes can, is and the inst link namely talk, 
green and bird respectively. This is a representation for 
information that parrot can talk, is green and is an instance 
of bird. Since, it is our objective to design and implement a 
semantic network with connectionist networks using 
coarse-coded representations, we convert the localist 
vectors shown above in tables 1 and 2 into coarse-coded 
vectors and use them to train the neural network 1. 

Below, we explain the process of obtaining the 
coarse-coded vectors from the localist vectors. 

 
2.2. Obtaining coarse-coded distributed representations 

 
Consider the following input localist vector from the 

table 1.  
‘0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 

0 0 0 0   0 0 0 0   0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 
0  0 0 0 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 
0 0 1 0  0 0 0 0 1  0 0 0 0 1  0 0 0 0 1’    

We view the above vector as being kept in overlapping 
coarse zones of length of 4 consecutive bits and encode the 
zone as 1 if there is at least one 1 bit in that zone or else as 
0. We then consider next coarse zone and encode it as 1 or 0 
following the above method. We do this process left to right 
starting from the left most bit. We do this encoding process 

for the above localist vector to get the following 
coarse-coded vector. 

‘0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 
0 0 0 0    0 0 0 0   0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 
0 0  0 0 0 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 0 0  0 0 0 0 0  
1 1 1 1 0  0 1 1 1 1  0 1 1 1 1  0 1 1 1 1’    

Coarse-coding can be applied when the number of 1’s 
in the original string is sufficiently sparse. If the number of 
1’s in the original string is not sufficiently sparse, then the 
coarse-coded string when decoded will not yield the 
original string. This is the reason, we have chosen a 5 bit 
string to denote each of the attributes can, is and inst (in 
which first 4 bits were kept as zeros) for the localist 
representation of input data of neural network 1. 
Coarse-coding increases the information capacity [9] by 
increasing the number of units active at a time compared to 
localist codes which have sparsely populated 1’s. The 
amount of information conveyed by a unit that has a 
probability ‘p’ of being ‘1’ is   

– plog (p) – (1 – p) log(1 – p). 
We obtain the coarse-coded representations of input 

and output vectors for all the neural networks used in the 
system, using the above described method. We show here a 
sample of the coarse-coded representations of the input and 
output vectors for neural network 1.  

Table 3. Shows a sample of coarse-coded input data for 
Neural Network 1 

bird ‘id’ code 

0 0 0 0 0 0 0 0 0 0     0 0 0 
0 0 0 0 0 0 0     0 0 0 0 0 0 
0 0 0 0     0 0 0 0        0 
0 0 0 0 0 0 0 0 0   0 0 0 0 0 
0 0 0 0 0 0   0 0 0 0 0 0 0 0 
0 0 0    0 0 0 0  0 0 0 0 0  
0 0 0 0 0  1 1 1 1 0 

Coarse-coded 
representation for  
attribute ‘can’ 

0 1 1 1 1 

Coarse-coded 
representation for  
attribute ‘is’ 

0 1 1 1 1 

Coarse-coded 
representation for  
attribute ‘inst’ 

0 1 1 1 1   

 
Table 4. Shows a sample of coarse-coded output data for 

Neural Network 1 
Coarse-coded value 
for  attribute ‘can’ 0 0 0 0 0  0 1 1 1 1 

Coarse-coded value 
for  attribute ‘is’ 0 0 0 0   0 1 1 1 1 

Coarse-coded value 
for  attribute    
‘inst’ 

0 1 1 1 1 
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3. Organization of Neural Networks in the 
Connectionist Non-monotonic Reasoning System  

The neural networks 1 to 8 in figure 2 accomplish the 
non-monotonic reasoning using the coarse-coded vectors. 
They generate non-monotonic inferences by using the 
mechanism of forward reasoning. Consider the neural 
network1 shown in figure 2. When impressed on its inputs, 
a coarse-coded vector vb containing the identification code 
for a bird, say parrot and codes for attributes can, is and 
membership link inst, neural network 1 produces on its 
outputs the coarse-coded representations for talk, green and 
bird respectively. The codes for talk and green are shown as 
v1 and v2 on the outputs of neural network 1. This is a 
representation for information that parrot can talk, is green 
and is an instance of bird. The coarse-coded representation 
for bird gets impressed on neural network 6 inputs along 
with codes for attributes has, has and size. This generates 
on the outputs of neural network 6 coarse-coded 
representations for feathers, wings, small and animal 
respectively. The codes for feathers, wings and small are 
shown as v1, v2 and v3 on the outputs of neural network 6. 
The coarse-coded representation for animal gets impressed 
on neural network 7 inputs along with the code for attribute 
has. This generates on the outputs of neural network 7 
coarse-coded representations for skin and living_thing 
respectively. The code for skin is shown as v1 on the 
outputs of neural network 7. The coarse-coded 
representation for living_thing gets impressed on inputs of 
neural network 8 along with the code for attributes can and 
is. This generates on the outputs of neural network 8 
coarse-coded representations for grow and living 
respectively. The codes for grow and living are shown as v1 
and v2 on the outputs of neural network 8. 

 
Figure 2. Neural networks for performing non-monotonic 

reasoning 

By noting, the inputs and outputs of neural networks 1, 
6, 7 and 8 we obtain the information that parrot is a bird, it 
can talk, it is green, it has feathers and wings, it is an 

animal, it has skin and also it is a living thing and it can 
grow and it is living. Both the information explicitly 
associated with the node parrot and the information that can 
be obtained through property inheritance in the semantic 
network was successfully obtained by the connectionist 
reasoning system. 

3.1. Cancellation of inheritance 

We have performed non-monotonic reasoning while 
implementing a semantic network in a connectionist 
environment using coarse-coded representations. A 
non-monotonic reasoning system makes default inferences 
in the absence of more specific information. In the semantic 
network shown in the figure 1 node forest_animal is 
associated with the attribute size. The value of this attribute 
is indicated as medium. However, the node elephant which 
is lower in the isa hierarchy has the attribute size associated 
with the value large. Here, we need to override the default 
inference that the size of the elephant is medium, with the 
more specific information available lower in the isa 
hierarchy, that the size of the elephant is large. This 
reasoning mechanism is referred to as the cancellation of 
inheritance. In our connectionist reasoning system, we 
override the information associated with an entity from 
higher in the isa hierarchy, with the relevant information 
available lower in the isa hierarchy. Therefore, we associate 
elephant with the size large. This information is available 
to the node elephant at the lowest point in the isa hierarchy, 
since the node elephant is directly connected to this value 
through the attribute arc size.  

4.  Testing 

Following, are the details of the neural networks used 
to do the above mentioned work. The neural networks in 
table 5 are feed forward neural networks [10] using the 
back-propagation algorithm. 

 
Table 5. Shows the details of neural networks used 

Neural 
Network

No. of 
input 
units 

No. of 
hidden 
units 

No. of 
output 
units 

1 126 70 24 
2 126 70 24 
3 100 60 24 
4 100 60 24 
5 20 18 15 
6 25 27 30 
7 10 8 10 
8 15 12 10 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on November 12,2024 at 06:34:49 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of  the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006 

3052 

The non-monotonic reasoning tasks were successfully 
accomplished to give the expected results. 

Table 6. Shows the details of test 1  
 No. of 

Training 
Patterns 

No. of 
Test 
Patterns 

No. of 
Patterns 
Corrected

Neural  
Network 1 108 108 105 

Table 7. Shows the details of test 2 
 No. of 

Training 
Patterns 

No. of 
Test 
Patterns 

No. of 
Patterns 
Corrected

Neural  
Network 4 81 81 80 

Table 8. Shows the details of test 3 
 No. of 

Training 
Patterns 

No. of 
unseen test 
patterns 

No. of patterns 
correctly 
generalized 

Neural 
Network 1 72 36 32 

Table 9. Shows the details of test 4 
 No. of 

Training 
Patterns 

No. of 
unseen test 
patterns  

No. of patterns 
correctly 
generalized 

Neural  
Network 4 51 30 30 

Secondly, the performance of the above coarse-coded 
non-monotonic reasoning system was tested for error 
tolerance under noise conditions. In the test 1, neural 
network 1 with 126 input units, 70 hidden units and 24 
output units was trained with 108 patterns. These, were 
made test patterns after introducing 1 bit error at a random 
location in each of these patterns. In the test 2, neural 
network 4 with 100 input units, 60 hidden units and 24 
output units was trained with 81 patterns. These 81 patterns 
were made test patterns after introducing 1 bit error at a 
random location, in each of these patterns. Results are as 
shown in tables 6 and 7. The coarse-coded non-monotonic 
reasoning system was found to be highly fault tolerant to 
errors as was indicated by the tests performed. In tests 3 
and 4, neural networks 1 and 4 were tested with 
coarse-coded patterns for generalization on unseen test 
patterns, after completing the training with a training set. 
The results are as shown in tables 8 and 9. 

5.  Conclusions 

We have developed and tested a connectionist 
non-monotonic reasoning system using distributed 
coarse-coded representations. The system has successfully 
performed the non-monotonic reasoning tasks. The system 
has displayed good generalization ability on unseen test 
patterns. The coarse-coded reasoning system exhibited high 
fault tolerance under noise conditions. These artificially 
introduced errors were simulating noise conditions.  
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