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Optimal Power Flow (OPF) is used for developing corrective strategies and to perform least cost dis-
patches. In order to guide the decision making of power system operators a more robust and faster
OPF algorithm is needed. OPF can be solved for minimum generation cost, that satisfies the power bal-
ance equations and system constraints. But, cost based OPF solutions usually result in unattractive sys-
tem losses and voltage profiles. In the present paper the OPF problem is formulated as a multi-objective
optimization problem, where optimal control settings for simultaneous minimization of fuel cost and
loss, loss and voltage stability index, fuel cost and voltage stability index and finally fuel cost, loss and
voltage stability index are obtained. The present paper combines a new Decoupled Quadratic Load Flow
(DQLF) solution with Enhanced Genetic Algorithm (EGA) to solve the OPF problem. A Strength Pareto Evo-
lutionary Algorithm (SPEA) based approach with strongly dominated set of solutions is used to form the
pareto-optimal set. A hierarchical clustering technique is employed to limit the set of trade-off solutions.
Finally a fuzzy based approach is used to obtain the optimal solution from the tradeoff curve. The pro-
posed multi-objective evolutionary algorithm with EGA–DQLF model for OPF solution determines diverse
pareto optimal front in just 50 generations. IEEE 30 bus system is used to demonstrate the behavior of the
proposed approach. The obtained final optimal solution is compared with that obtained using Particle
Swarm Optimization (PSO) and Fuzzy satisfaction maximization approach. The results using EGA–DQLF
with SPEA approach show their superiority over PSO–Fuzzy approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Optimal Power Flow (OPF) was first discussed by Carpentier in
1962 [1]. In the past two decades, OPF problem has received much
attention, because of its ability to solve for the optimal solution
that takes account of the security of the system. OPF is important
software in Energy Management Systems (EMS).

OPF is a nonlinear, non-convex, large-scale, static optimization
problem with both continuous and discrete control variables [2].
Even in the absence of discrete control variables, the OPF problem
is non-convex due to the existence of the nonlinear (AC) power
flow equality constraints.

To guide the decision making of the power system operator, the
OPF solution should not be sensitive to selected starting points.
Complexity of OPF problem must be reduced. OPF programs must
be user friendly. Therefore, there is a need for more robust and fas-
ter OPF algorithm.

OPF can be used periodically to determine the optimal settings
of the control variables to minimize the generation cost, minimiza-
ll rights reserved.
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tion of losses in the transmission system. For a secure operation of
the power system, it is also important to maintain required level of
security margin. Therefore, the security indices related to bus volt-
age magnitudes can be derived and optimal control settings to
minimize the security indices can also be determined.

When an optimization problem involves more than one objec-
tive function, the task of finding one or more optimum solutions
is known as multi-objective optimization [3]. Since classical search
and optimization algorithms use a point by point approach, the
outcome of using a classical approach is a single optimized
solution.

Evolutionary Algorithms (EA) such as Genetic Algorithms (GA)
have become the method of choice for optimization problems that
are too complex to be solved using deterministic techniques such
as linear programming or gradient (Jacobian) methods. Because
of their universality, ease of implementation, and fitness for paral-
lel computing, EAs often take less time [4] to find the optimal solu-
tion than gradient methods. However, most real world problems
involve simultaneous optimization of several often mutually con-
current objectives. Multi-objective EAs are able to find optimal
trade-offs in order to get a set of solutions that are optimal in an
overall sense. However, multi-objective EAs inherit all of the favor-
able properties from their single objective relatives.
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GAs has been successfully applied for solution of OPF problem
as single objective optimization approaches [2], [5], [6]. Ref. [2]
presents an Enhanced Genetic Algorithm (EGA) for solution of
OPF. Particle Swarm Optimization (PSO) is also used to solve OPF
[7] with different objectives that reflect fuel cost minimization
and Voltage profile improvement. But the problem used the
weighted sum of the objectives.

For multi-objective optimization the preference based approach
requires multiple runs as many times as the number of desired
optimal solutions. Ref. [8] presents a multi-objective Strength
Pareto Evolutionary Algorithm (SPEA) for Optimal VAR dispatch
problem considering simultaneous optimization of system trans-
mission loss and bus voltage deviations.

In the present paper multi-objective optimization of three con-
flicting objectives: (i) generation costs (ii) system transmission loss
and (iii) system voltage stability index is considered. OPF problem
is formulated as simultaneous minimization of: (i) system genera-
tion cost and transmission loss (ii) generation cost and voltage sta-
bility index (iii) system transmission loss and voltage stability
index and (iv) fuel cost, loss and voltage stability index. Enhanced
Genetic Algorithm with Decoupled Quadratic Load Flow [12] solu-
tion is used to solve OPF. A Strength Pareto Evolutionary Algorithm
(SPEA) [3] with strong-dominated solutions is used to form the
pareto optimal set. A fuzzy based approach [8] is used to extract
the best compromise solution from the tradeoff front. IEEE 30
bus system is considered to demonstrate the multi-objective opti-
mization approach. Different cases have been studied with differ-
ent combinations of above mentioned three objectives and the
best compromise solution is reported.
2. Problem formulation

The Optimal Power Flow (OPF) problem is to optimize the set-
tings of control variables in terms of one or more objective func-
tions while satisfying several equality and inequality constraints.
In multi-objective OPF we have two or more objective functions
to be optimized at the same time. As a consequence, there is no un-
ique solution to multi-objective optimization problems, but we
aim to find all of the trade-off solutions available (called as pare-
to-optimal set). The problem can be formulated as:

Minimize Jiðx;uÞ i ¼ 1; . . . ;Nobj ð1Þ
Subjected to : gðx; uÞ ¼ 0 ð2Þ
hðx; uÞ � 0 ð3Þ

where Ji is the ith objective function, and Nobj is the number of
objectives. g is the equality constraints, represent the nonlinear
power flow equations. h is the system operating constraints that in-
clude functional operating constraints and limits on control vari-
ables. ‘x’ is the vector of dependent variables consisting of load
bus voltage magnitude limits, reactive capabilities of generators,
slack bus active power and branch flow limits.

XT ¼ ½VL1 . . . VLNL;Q G1 . . . Q GNG; PGslack; SL1 . . . SLnl� ð4Þ

where NL, NG and nl are number of load buses, number of generator
buses and number of transmission lines, respectively.

u is the vector of control or independent variables consisting of
generator-bus voltage magnitudes, active power generations,
transformer-tap settings and reactive shunt compensators.

UT ¼ ½VG1 . . . VGNG; PG2 . . . PGNG; T1 . . . TNT;Q c1 . . . Q cNC� ð5Þ

where NT and NC are the number of regulating transformers and
shunt compensators, respectively.

The minimization function (objective function) can take different
forms.
2.1. Objective functions

2.1.1. Case 1: generation cost or fuel cost (FC)

J ¼
XNG

i¼1

Fi ð6Þ

Fi ¼ ai þ biPGi þ ciP
2
Gi ð7Þ

where ai, bi, ci are cost coefficients of unit i, PGi is real power gener-
ation of unit ‘i’.

2.1.2. Case 2: real power losses (PLoss)

J ¼
Xnl

i¼1

Lossi ð8Þ

where nl is the number of branches, Lossi is the power loss in
branch i. Power loss in each branch is calculated from the power
flow solution using the active power flow through the line.

2.1.3. Case 3: voltage stability enhancement index (VSEI)
To monitor the voltage stability in power system L-index [9] of

the load buses is considered. This L-index uses the information
from a normal load flow and is in the range of 0 (no load of the sys-
tem) to 1 (voltage collapse). The control against voltage collapse is
based on minimizing the sum of squared L-indices (index) for a gi-
ven system operating condition.

J ¼
Xn

j¼NGþ1

L2
j ð9Þ

where NG is the number of generator buses, n is the total number of
buses in the system.

Lj ¼ 1�
XNG

i¼1

Fji
V i

Vj

�����
����� j ¼ NGþ 1; . . . ;n ð10Þ

All quantities with in the sigma in the RHS of (10) are complex
quantities. The values Fji are obtained from Y bus matrix. The L-indi-
ces for the given load condition are computed for all load buses and
the maximum of L-indices gives the proximity of the system to volt-
age collapse.

2.1.4. The multi-objective OPF problem is defined as, simultaneous
optimization of

Case 4: FC, PLoss
Case 5: FC, VSEI
Case 6: PLoss, VSEI and
Case 7: FC, PLoss, VSEI
2.2. Problem constraints

2.2.1. Equality constraints
These constraints are typical load flow equations

0 ¼ PGi � PDi � Vi

Xn

j¼1

VjðGij cos dij þ Bij sin dijÞ ð11Þ

0 ¼ Q Gi � QDi � Vi

Xn

j¼1

VjðGij sin dij � Bij cos dijÞ ð12Þ

i = 1. . .n. where n is the number of buses in the system. PGi and QGi

are active and reactive power generations at bus i, PDi and QDi are
corresponding active and reactive load demands. The present paper
solves the equality constraints using a Decoupled Quadratic Load
flow approach (DQLF), [11] which is proved to be very fast and reli-
able for well behaved and ill-conditioned power systems.
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2.2.2. Inequality constraints
These constraints represent system operating limits.
(a) Generator constraints: generator voltage magnitudes VG, Gen-

erator active power PG and reactive power QG are restricted by their
lower and upper limits.

Vmin
Gi � VG � Vmax

Gi ; i ¼ 1; . . . ;NG ð13Þ
Q min

Gi � QG � Q max
Gi ; i ¼ 1; . . . ;NG ð14Þ

Pmin
Gi � PG � Pmax

Gi ; i ¼ 1; . . . ;NG ð15Þ

(b) Transformer constraints: transformer taps have minimum and
maximum setting limits.

Tmin
i � Ti � Tmax

i ; i ¼ 1; . . . ;NT ð16Þ

(c) Switchable VAR sources: the switchable VAR sources have restric-
tions as follows

Q min
ci � Q ci � Q max

ci ; i ¼ 1; . . . ; :NC ð17Þ

(d) Security constraints: these include the limits on the load bus volt-
age magnitudes and line flow limits.

Vmin
Li � VLi � Vmax

Li ; i ¼ 1; . . . ;NL ð18Þ
SLi � Smax

Li ; i ¼ 1; . . . ;nl ð19Þ

A penalty function [5] is added to the objective function, if the func-
tional operating constraints violate any of the limits. The initial val-
ues of the penalty weights are considered as in [10].

3. Multi-objective optimization, strength Pareto Evolutionary
Algorithm (SPEA)

EAs are heuristics that use natural selection as their search en-
gine to solve problems. One of the emergent areas in which EAs
have become increasingly popular is multi-objective optimization.

For a multi-objective optimization problem, any two solutions
x1 and x2 can have one of the two possibilities-one dominates
the other or none dominates the other. In a minimization prob-
lem x1 is said to dominate x2 if following two conditions are
satisfied.

8i 2 f1;2; . . . ;Nobjg : Jiðx1Þ � Jiðx2Þ ð20Þ
9j 2 f1;2; . . . ;Nobjg : Jjðx1Þ < Jjðx2Þ ð21Þ

If x1 dominates x2, x1 is called the non-dominated solution. The
solutions that are non-dominated with in the entire search space
are called pareto-optimal set.

In the present paper a strong dominated set of solutions is used
to form pareto-optimal set. The solution is a strong-dominated
solution if the following condition is satisfied.

8j 2 f1;2; . . . ;Nobjg : Jjðx1Þ < Jjðx2Þ ð22Þ

Zitzler and Thiele (1998) proposed an elitist evolutionary algorithm,
called Strength Pareto EA (SPEA) [3]. The features of the algorithm
are as follows:

1) This algorithm introduces elitism by explicitly maintaining
an external population.

2) This external population stores a fixed number of solutions.
3) It uses a clustering technique on external population mem-

bers to maintain the size of the external set.
4) SPEA also uses these elites to participate in the genetic oper-

ations along with current population.
3.1. Multi-objective SPEA algorithm

Step 1: Initialize a population of chromosomes ‘N’ and create an
empty external pareto-optimal set N.
Step 2: Search the population for strong-dominated solutions
and copy them to the external set.
Step 3: If the size of the external set exceeds its maximum size
N, apply hierarchical clustering technique to reduce the size to
maximum size.
Step 4: Assign fitness (called strength) to population members
and external set members using SPEA[3] fitness assignment
technique. The strength of each external member is propor-
tional to the number ni of the current population members that
an external member dominates.
Si ¼
ni

N þ 1
ð23Þ

The fitness of current population member j is assigned as one
more than the sum of the strength values of all external mem-
bers which weakly dominate j:

Fj ¼ 1þ
X

i2Paretoset^i�j

Si ð24Þ

This method of fitness assignment suggests that a solution with
smallest fitness is better.

Step5: Combine the external population and the population
members. Use the assigned fitness values, apply tournament
selection, a crossover and mutation operator to create new pop-
ulation of size N from combined population.
Step6: Repeat steps 2–5 until stopping criterion is reached.
3.2. Best compromise solution

Upon having the pareto-optimal set of non-dominated solution,
the proposed approach [8] presents a best compromise solution to
the decision maker. Due to the imprecise nature of the decision
maker’s judgement, the ith objective function Ji is represented by
a membership function li defined as

li ¼
1 Ji � Jmin

i fracJmax
i � JiJ

max
i � Jmin

i Jmin
i < Ji < Jmax

i

0 Ji � Jmax
i

(
ð25Þ

where Jmax
i and Jmin

i are the maximum and minimum values of the
ith objective function among all non-dominated solutions.

For each non-dominated solution k, the normalized member-
ship function lk is calculated as

lk ¼

PNobj

i¼1
lk

i

PM
k¼1

PNobj

i¼1
lk

i

ð26Þ

where M is the number of non-dominated solutions. The best com-
promise solution is that having the maximum value of lk.

4. Multi-objective spea implementation

The OPF problem with different objectives is formulated as a
multi-objective optimization problem. SPEA using EGA–DQLF
model has been developed for simultaneous minimization of fuel
cost and Transmission loss, fuel cost and voltage stability index
and finally Transmission loss and voltage stability index. The
developed SPEA uses population size of 200 chromosomes, and a
pareto optimal set size of 30 chromosomes. A set of strong-domi-
nated solutions is selected from a population of 200 chromosomes
to form the pareto-optimal set. If the pareto set size exceeds max-
imum size, a hierarchical clustering technique is used to limit its
size. Tournament selection is applied on the combined population
members, and uniform crossover with a probability of 1.0 and
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mutation with a probability of 0.006 were used on all optimization
runs. Maximum number of generations selected was 50.
5. PSO–Fuzzy satisfaction maximization approach

In order to validate the results obtained using EGA–DQLF–SPEA
approach PSO–Fuzzy satisfaction maximization approach [13] is
used. Various steps involved are presented in the flow chart shown
in Fig. 1. The PSO parameters used are: Swarm size 60, Size of par-
ticle: 24, Maximum number of iterations: 100, acceleration con-
stants C1 = C2 = 2.05, Inertia weight w = 1.2 and constriction
factor ‘v’ = 0.7295.
6. Results and discussions

The proposed approach is demonstrated on IEEE 30-bus, 41-
branch system. The system data is taken from [5]. It has a total
of 24 control variables as follows: Five unit active power outputs,
six generator-bus voltage magnitudes, four transformer-tap set-
tings, nine bus shunt admittances. The gene length for unit power
outputs is 12 bits, generator voltage magnitude is eight bits, and
they are both treated as continuous controls. The transformer-tap
settings can take 17 discrete values, each one is encoded using five
bits. The lower and upper limits are 0.9 p.u. and 1.1 p.u respec-
tively, and the step size is 0.0125 p.u. The bus shunt admittances
can take six discrete values, each one is encoded using three bits,
the lower and upper limits are 0.0 and 0.05 p.u., respectively, and
the step size is 0.01 p.u. (on system MVA basis). The lower and
upper limits of load bus voltages are 0.95 and 1.05 p.u. respec-
tively. The generator-bus voltage magnitude limits considered
are 0.95 p.u and 1.1 p.u.

The problem is initially solved as single objective optimization
and a comparison in the performance of the algorithms is made
considering Simple Genetic Algorithms (SGA), Enhanced Genetic
Fig. 1. Flow chart for PSO–Fuzzy satisfaction maximization approach.
Algorithms (EGA) and Particle Swarm Optimization (PSO) tech-
niques. It is observed that [12] Enhanced Genetic Algorithm
(EGA) [2] with advanced and problem specific operators provides
better optimal solution, both in terms of objective function values
and convergence characteristics. Decoupled Quadratic Load Flow
model (DQLF) [11] has been used for solution of equality con-
straints. String length of 155 bits, population size of 200 chromo-
somes was considered. Roulette wheel parent selection technique
is used for reproduction. Uniform crossover with probability of
0.95, elitism index of 0.15, and mutation probability of 0.001 is
used. However, for small population sizes ranging from 40 to 60,
large mutation probabilities are recommended. The algorithm is
stopped when all the population members assume similar fitness
values. The results shown are the best values obtained over 20
runs.

Table 1 shows the control settings and objective function values
for base case (without any optimization objective) and with single
objective optimization using EGA–DQLF. In Tables 1–5, the bold
values indicate the optimum value of the considered objective
function for single objective and multi objective optimization cases.

Case 1: Minimization of fuel cost causes the system losses to in-
crease to its maximum. The control settings corresponding to cost
based OPF result in a reduction of 11.45% in fuel costs but causes
the system losses to increase by 40.77% of base case values. The
system stability index is reduced by 51.74%.

Case 2: Minimization of loss as objective in OPF results in reduc-
tion of 48.19% in losses, but the generation cost increased by 7.19%
over the base case. The voltage stability index is reduced by 47.05%.

Case 3: Control settings based on Stability enhancement as
objective in OPF results in a reduction of 54.78% in stability index,
but results in loss reduction of only 1.39%. The fuel costs experi-
ence slight variation. Therefore, cost based OPF solutions are not
attractive solutions from system stability or loss minimization
point of view. Therefore such optimization objectives cannot be
treated independently.

For Multi-objective SPEA with a population of 200 chromo-
somes and Pareto set size of 30 was considered for the study.
Table 1
Control variables for base case and single objective optimization.

Control variable Base case EGA–DQLF

Case 1 Case 2 Case 3

PG2 (MW) 80.0 48.11 80 79.94
PG5 (MW) 50.0 21.28 50 50
PG8 (MW) 20.0 20.93 35 35
PG11 (MW) 20.0 12.5 30 10.31
PG13 (MW) 20.0 12.0 40 12.0
VG1(p.u.) 1.0 1.1 1.0435 1.0618
VG2(p.u.) 1.0 1.081 1.04353 1.053
VG5(p.u.) 1.0 1.053 1.02470 1.053
VG8(p.u.) 1.0 1.062 1.03470 1.014
VG11(p.u.) 1.0 1.095 1.07 1.0258
VG13(p.u.) 1.0 1.088 1.043 1.046
T 6,9(p.u.) 1.0 0.95 1.0375 0.9125
T 6,10(p.u.) 1.0 1.0375 0.925 0.9
T 4,12(p.u.) 1.0 1.0 0.975 0.9
T 28,27(p.u.) 1.0 0.9750 0.975 0.925
bsh10(p.u.) 0.00 0.04 0.05 0.0
bsh12(p.u.) 0.00 0.02 0.03 0.0
bsh15(p.u.) 0.00 0.05 0.0 0.0
bsh17(p.u.) 0.00 0.0 0.01 0.03
bsh20(p.u.) 0.00 0.02 0.04 0.02
bsh21(p.u.) 0.00 0.04 0.02 0.05
bsh23(p.u.) 0.00 0.04 0.05 0.02
bsh24(p.u.) 0.00 0.03 0.05 0.05
bsh29(p.u.) 0.00 0.01 0.05 0.03
FC ($/h) 902.9 799.56 967.86 898.817
Loss (MW) 6.178 8.697 3.2008 6.092
VSEI 0.230 0.111 0.12178 0.10402
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The fuzzy approach explained in III.B presents a best compromise
solution to the operator from the obtained pareto optimal front.
Fig. 2. Pareto optimal front of loss and fuel cost.

Fig. 3. Pareto optimal front of index and fuel cost.

Fig. 4. Pareto optimal front loss and index.
Case 4: Fuel cost and loss minimization:
Fig. 2 shows the pareto optimal front for fuel cost and loss min-

imization. The best compromise solution obtained is 822.9$/h and
5.613 MW, which shows 8.9% reduction in FC and 9.15% reduction
in losses.

Case 5: Fuel cost and index minimization:
Fig. 3 shows the pareto optimal front obtained with fuel cost

and voltage stability Index minimization. The best compromise
solution obtained is 802.06$/h and 0.10567, which shows 11.2%
reduction in fuel cost and 54% reduction in index. The fuel cost
and Index both are very close to the optimized values using single
objective optimization.

Case 6: Loss and index minimization:
Fig. 4 shows the pareto optimal front obtained for loss and In-

dex minimization. The best compromise solution obtained is
3.158 MW and 0.10490, which shows 48.9% reduction in loss and
54.4% reduction in index. The best compromise solution is almost
Table 2
Control variables for best compromise solution using multi-objective SPEA with
strong dominated sorting.

Control variable Case 4 Case 5 Case 6 Case 7

PG2(MW) 49.5 48.586 79.98 48.55
PG5(MW.) 30.06 21.33 49.96 41.11
PG8(MW) 34.98 21.55 34.95 34.0
PG11(MW) 23.96 12.13 30 20.95
PG13(MW) 21.374 12.00 39.96 12.19
V1(p.u.) 1.096 1.1 1.1 1.1
V2(p.u.) 1.0806 1.096 1.1 1.0994
V5(p.u.) 1.058 1.077 1.0865 1.0806
V8(p.u.) 1.065 1.0917 1.1 1.1
V11(p.u.) 1.053 1.1 1.1 1.1
V13(p.u.) 1.094 1.1 1.0994 1.1
T6,9(p.u.) 0.9875 0.925 0.9125 0.9125
T6,10(p.u.) 0.9625 0.9 0.9125 0.9
T4,12(p.u.) 1.0125 0.9 0.9 0.9
T28,27(p.u.) 1.0125 1.0125 1.0125 1.0125
bsh10(p.u.) 0.04 0.03 0.03 0.03
bsh12(p.u.) 0.03 0.03 0.05 0.01
bsh15(p.u.) 0.0 0.01 0.05 0.02
bsh17(p.u.) 0.04 0.02 0.0 0.04
bsh20(p.u.) 0.05 0.03 0.02 0.03
bsh21(p.u.) 0.05 0.01 0.01 0.02
bsh23(p.u.) 0.03 0.05 0.02 0.02
bsh24(p.u.) 0.05 0.04 0.05 0.02
bsh29(p.u.) 0.05 0.04 0.02 0.03
FC ($/h) 822.87 802.06 844.5
Loss(MW) 5.613 3.1581 5.69
VSEI 0.1056 0.1049 0.1084

Fig. 5. Pareto optimal front of three objective minimization.



Table 3
Comparison of OPF control variables for single objective optimization using PSO.

Control variable Base case Case 1 PSO Case 2 PSO Case 3 PSO

PG2(MW) 80.0 48.706 79.06 55.0
PG5(MW) 50.0 22.21 50 37.858
PG8(MW) 20.0 23.93 35 29.02
PG11(MW) 20.0 12.58 29.53 19.586
PG13(MW) 20.0 12.0 36.134 16.92
VG1(p.u.) 1.0 1.0 1.0 1.00
VG2(p.u.) 1.0 0.989 0.996 1.034
VG5(p.u.) 1.0 0.966 0.978 1.046
VG8(p.u.) 1.0 0.973 0.98 1.02
VG11(p.u.) 1.0 1.062 1.032 1.0117
VG13(p.u.) 1.0 1.0708 1.0415 1.0528
T6,9(p.u.) 1.0 0.9 0.9 0.9
T6,10(p.u.) 1.0 0.9625 1.0 0.95
T4,12(p.u.) 1.0 0.9625 0.95 0.925
T28,27(p.u.) 1.0 0.9 0.9375 0.925
bsh10(p.u.) 0.00 0.04 0.05 0.04
bsh12(p.u.) 0.00 0.04 0.05 0.04
bsh15(p.u.) 0.00 0.04 0.03 0.03
bsh17(p.u.) 0.00 0.02 0.04 0.05
bsh20(p.u.) 0.00 0.05 0.05 0.01
bsh21(p.u.) 0.00 0.01 0.02 0.04
bsh23(p.u.) 0.00 0.03 0.02 0.02
bsh24(p.u.) 0.00 0.05 0.06 0.04
bsh29(p.u.) 0.00 0.02 0.04 0.01
FC ($/h) 902.923 802.19 956.45 837.06
Loss (MW) 6.1787 10.083 3.6294 8.8209
VSEI 0.230974 0.12256 0.1286 0.11055

Table 4
Optimal objective function values and control variables for multi-objective optimi-
zation using PSO and fuzzy satisfaction maximization approach.

Control variable Case 4 Case 5 Case 6 Case 7

PG2(MW) 59.88 47.283 53.94 66.56
PG5(MW) 34.62 21.387 47.66 29.8
PG8(MW) 33.40 18.8 25.08 27.42
PG11(MW) 30.0 14.53 24.87 21.59
PG13(MW) 23.56 20.67 34.81 24.27
VG1(p.u.) 1.000 1.0 1.0 1.01
VG2(p.u.) 0.996 1.017 1.007 1.006
VG5(p.u.) 0.979 1.024 0.998 0.993
VG8(p.u.) 0.989 1.045 1.018 1.015
VG11(p.u.) 1.0535 1.069 1.0362 1.083
VG13(p.u.) 1.0302 1.083 1.06 1.0574
T6,9(p.u.) 0.9 0.9 0.9 0.9
T6,10(p.u.) 1.0125 0.95 0.9 0.9625
T4,12(p.u.) 0.9625 0.9 0.9 0.9
T28,27(p.u.) 0.9625 0.9375 0.9625 0.9325
bsh10(p.u.) 0.01 0.03 0.04 0.04
bsh12(p.u.) 0.03 0.04 0.05 0.03
bsh15(p.u.) 0.04 0.03 0.03 0.02
bsh17(p.u.) 0.06 0.02 0.04 0.05
bsh20(p.u.) 0.02 0.05 0.04 0.05
bsh21(p.u.) 0.06 0.05 0.02 0.04
bsh23(p.u.) 0.02 0.04 0.03 0.05
bsh24(p.u.) 0.03 0.03 0.05 0.03
bsh29(p.u.) 0.04 0.03 0.05 0.01
FC ($/h) 847.011 809.79 836.96
Loss (MW) 5.6658 5.5779 7.2207
VSEI 0.1146 0.1140 0.10910

Table 5
Comparison of best compromise solution obtained using SPEA EGA–DQLF and PSO–Fuzzy

FC & Loss FC & VSEI

FC ($/h) Loss (MW) FC ($/h) VSEI

SPEA using EGA–DQLF 822.9 5.613 802.06 0.1057
PSO–Fuzzy 847.01 5.666 809.79 0.1146
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close to the optimized values with single objective approach. The
minimum loss obtained is less than what is obtained in case 2.
Observation of the Tables 1 and 2 reveal the fact that, a better sys-
tem voltage profile (at generator buses and also at load buses) is
observed when the index and loss are minimized simultaneously,
than in loss minimization case alone. However, the reduction in
loss and increase in index from the single objective optimization
case are marginal. The results and corresponding control settings
are shown in Table 2.

Case 7: Fuel cost, loss and index minimization:
With simultaneous minimization of all the objectives fuel cost

is reduced by 6.46%, the transmission loss is reduced by 7.89%
and voltage stability index is reduced by 52.8% from the base case
values. Fig. 5 shows the optimized pareto optimal front. The opti-
mized objective function values and corresponding control settings
are shown in Table 2.

Now Particle Swarm Optimization (PSO) is used to solve OPF as
a single objective optimization problem. Table 3 presents the opti-
mal control settings and objective function values obtained when
OPF is treated as single objective optimization problem.

Multi-objective OPF is then solved using PSO–Fuzzy satisfaction
maximization approach. The results obtained are presented in
Table 4. Table 5 provides comparison between the results obtained
with EGA–DQLF–SPEA and PSO–Fuzzy approaches.

The results reveal that SPEA using EGA–DQLF model provides
better optimal solution compared to PSO–Fuzzy approach for mul-
ti-objective OPF solution.
7. Conclusions

The purpose of the OPF is to calculate recommended set points
for power system controls that are a tradeoff between security and
economy. Optimizing the network for costs alone will result in in-
creased system losses. Because all the optimization objectives are
inter related, system controls cannot be recommended based on
individual optimizations alone. In the present paper an attempt
is made to simultaneously optimize all the conflicting objectives,
and suggest the power system operator a set of controls which
are the best compromise controls with respect to all the objectives.
System voltage stability index, (L-index) has been formulated as an
objective and sum squared L-indices is minimized to improve sys-
tem stability margin. Multi-objective SPEA has been successfully
applied on the three conflicting objectives. EGA with new DQLF
algorithm is proposed to determine optimal control settings. Fur-
ther, SPEA is implemented considering strong-dominated solu-
tions. The algorithm presents a diverse pareto-optimal set in just
50 generations.

SPEA using EGA–DQLF provides a better optimal solution when
compared to PSO–Fuzzy satisfaction maximization approach. The
proposed algorithm can act as decision supporting tool for power
system operators. Though the paper concentrated on the steady
state network cost, loss and voltage stability index minimization,
the dynamic and transient stability constraints can also be in-
cluded into the multi-objective optimization problem and can be
taken up as future work.
approaches for multi-objective optimization.

Loss & VSEI FC, Loss & VSEI

Loss (MW) VSEI FC ($/h) Loss (MW) VSEI

3.158 0.1049 844.5 5.69 0.1084
5.578 0.1140 836.96 7.22 0.1091
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