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ABSTRACT

The flow of a couple stress fluid generated by performing longitudinal and torsional oscillations of a porous
circular cylinder subjected to constant suction at the surface of the cylinder is studied. A finite difference method is
proposed to analyze the velocity components, in an infinite expanse of an incompressible couple stress fluid under
vanishing couple stresses of type A condition or super adherence condition of type B on the boundary. The effects of
couple stress parameter, Reynolds number and the ratio of couple stress viscosities parameter on transverse and axial
velocity components are studied. The drag force acting on the wall of the cylinder is derived and effects of couple stress

parameters on drag are shown graphically.

Keywords: couple stress fluid, longitudinal and torsional oscillations, drag, suction, injection.

1. INTRODUCTION

In numerous technological applications, the fluids
in use do not obey the commonly assumed linear
relationship between the stress and the rate of strain at a
point and their accurate flow behavior cannot be predicted
by the classical Newtonian theory. Such fluids are
recognized as non-Newtonian fluids. In particular, the
interest in non-Newtonian fluids has grown considerably,
due largely to the demand of such diverse areas as
biorheology, geophysics and chemical and petroleum
industries. For this reason several models have been
proposed to predict the non-Newtonian behavior of
various types of fluids. One class of fluids which has
gained considerable attention in recent years is the couple
stress fluid. Couple stresses are a consequence of the
assumption that the interraction of one part of a body on
another, across a surface, is equivalent to a force and
moment distribution. Couple stress fluids consist of rigid,
randomly oriented particles suspended in a viscous
medium such as blood fluids, electro-rheological fluids
and synthetic fluids. The main feature of couple stress
fluid is that the stress tensor is anti-symmetric. Stokes [1]
generalized the classical model to include the effect of the
presence of the couple stresses and this couple stress
model has been widely used because of its relative
Mathematical simplicity compared with the other models
developed for effects of the couple stresses. This fluid
theory is discussed in detail by Stokes himself in his
treatise “Theories of Fluids with Microstructure” [2]
wherein he also presented a long list of problems
discussed by researchers with reference to this theory.
Recently, the study of couple stress fluid flows has been
the subject of great interest, due to its widespread
industrial and scientific applications in pumping fluids,
such as synthetic fluids, polymer-thickened oils, liquid
crystals and animal bloods. Other important fields where
couple stress fluids have applications are squeezing and
lubrication theory.

The motion of fluids through porous permeable
surfaces at low Reynolds numbers has long been an
important subject in the field of chemical, biomedical, and
environmental engineering and science. This phenomenon
is fundamental in nature and is of great practical
importance in many diverse applications like production of
oil and gas from geological structures, the gasification of
coal, the retorting of shale oil, filtration, surface catalysis
of chemical reactions, adsorption, coalescence, drying, ion
exchange and chromatography.

Starting from Couette flows, the flow generated
in fluids by the motion of surfaces have been attracting the
researchers. Among them, the study of flow due to
longitudinal and torsional oscillations presents some
interest in different engineering areas like Oceanography,
the technology of vibrations on machinery, the process of
certain polymer liquid crystals, and the offshore drilling of
oil. There are three physical situations in which the study
of the longitudinal and torsional oscillations can be
applied. The first application is in lubrication theory. The
cylindrical bearings containing a non-Newtonian fluid
lubricant are subject to longitudinal and torsional
vibrations on the machinery. A second application is the
flow of polymer liquid crystals made of dumbbell like
molecules processed inside a circular cylinder which is
subject to longitudinal and torsional oscillations. And
finally, a possible third application is the flow of mud in
the drillstring of an offshore oil drilling unit which is
subjected to oscillations due to oceanic waves.

The motion of a classical viscous fluid due to the
rotation of an infinite cylindrical rod immersed in the fluid
was first described by Stokes [3]. Later following the
work, many flow problems due to the motion of bodies
were solved. Some flow problems related to the motion of
a cylindrical rod performing longitudinal and torsional
oscillations are given below. Casarella et al., [4] studied
the external flow due to longitudinal and torsional
oscillations of a rod in a Newtonian fluid and obtained an
exact solution for the same. Rajagopal [S5] studied the
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same problem for the case of a second grade fluid.
Ramkissoon and Majumdar [6] studied the internal flow
due to longitudinal and torsional oscillations of a viscous
fluid and they derived an analytical expression for
velocities, shear stresses and drag on the cylinder.
Ramkissoon et al., [7] obtained an exact solution for an
infinite rod undergoing both longitudinal and torsional
oscillations in a polar fluid and they have presented the
effect of micropolar parameters on the microrotation and
velocity fields graphically. Calmelet-Eluhu et al., [8]
studied the internal flow of a micropolar fluid inside a
circular cylinder subject to longitudinal and torsional
oscillations and they have shown the effect of micropolar
fluid on two components velocity field through graphs.
Owen and Rahaman [9] studied the same type of flow with
an Oldroyd-B liquid.

A large number of theoretical investigations
dealing with steady incompressible laminar flow with
either injection or suction at the boundaries have appeared
during the last few decades. Several authors, to mention
some [10-13] have studied the steady laminar flow of an
incompressible viscous fluid in a two-dimensional channel
with parallel porous walls. Soundalgekar et al, [14]
studied the effects of couple stresses on the oscillatory
flow past porous, infinite, flat plate when the free stream
velocity oscillates in magnitude about a constant mean.
Eldabe et al., [15] have studied the effect of couple
stresses on an unsteady MHD Eyring Powell model of
non-Newtonian fluid flow between two parallel fixed
porous plates under a uniform external magnetic field.
They have shown the effects of couple stress parameters
and Hartmann number on velocity distributions through
graphs. Dewakar et al., [16] studied the Stokes’ first and
second problems for an incompressible couple stress fluid
by using the condition that couple stresses vanish on the
boundary. They have plotted the velocity profiles for
different times and different values of couple stress
Reynolds number. Srinivasacharya et al., [17] studied the
laminar flow of a couple stress fluid in a porous channel
with expanding or contracting walls with symmetric
injection or suction along the uniformly expanding porous
walls by using similarity transformation. They have
presented graphs for velocity components and temperature
distribution for different values of the fluid and geometric
properties. Ramana Murthy et al., [18] studied the steady
MHD flow of a micropolar fluid through a porous circular
pipe with constant suction/injection. They have shown the
effects of skin friction with respect to micropolar
parameters and Hartmann number through graphs. To the
extent of the knowledge of the authors, very few
literatures are available on the flow due to oscillations of a
rod in couple stress fluids. The problems mentioned in [7]
and [8] are some examples in this direction. Hence, in this
paper we consider the flow of couple stress fluid generated
by a porous circular cylinder performing longitudinal and
torsional oscillations and subjected to suction velocity at
the surface.

2. FORMULATION OF THE PROBLEM

Consider a porous circular cylinder of radius ‘@’
in an infinite expansion of a couple stress fluid. The
cylinder is subjected to torsional oscillations, Exp (i@ f)
and longitudinal oscillations, Exp (iaf) with amplitudes
qosinPy, gocos Py along the respective directions where @,
is the frequency of the torsional oscillations, @, is the
frequency of the longitudinal oscillations, ¢y is the
magnitude of the oscillations and B, is the angle between
the direction of torsional oscillations and the base vector
ep. 1.¢., the cylinder oscillates with velocity as given by the
expression
0, = qO(Sin B,e " e, +CosP,e " e. )
uy is a suction or injection velocity on the surface of the
porous cylinder. Cylindrical polar coordinate system is
considered with the Z-axis along the axis of the cylinder
and origin on the axis. Let R, 6 and Z denote the radial,
azimuthal and axial coordinates respectively of a point in
the region of flow. Now we consider the flow generated in
the couple stress fluid due to the oscillations of the
cylinder. The physical model illustrating the problem
under consideration is shown in Figure-1.

Fy
@Z wirh Exp{igyt)
Q#r = 1

wvelr} Expiio:t)

ll

«“ ¢ [+ TS

g

Figure-1. Geometrical representation of
the problem: non-dimensional form.

After neglecting body forces and body couples,
the condition of incompressibility and the equation motion
for a couple stress fluid, as given by Stokes [1] are:

vV, -0 =0 (1)

P(aﬁ_SJFQ'VlQ) ==V @-u V,xV;xQ
—n VxV xV xV,xQ (2)

Where Q is velocity vector, P is fluid pressure, p is

density, 7 is time, u is viscosity and 77is couple stress

viscosity coefficients, V, is the dimensional gradient. By

52



VOL. 5, NO. 5, MAY 2010

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

=n
©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. @

www.arpnjournals.com

nature of the flow, the velocity components are axially
symmetric and depend only on radial distance and time.
Hence the velocity vector is taken of the form

Q=U(R) e, +V(R1) e, + W(R7)e. 3)
Let us introduce the following non dimensional scheme

w,a w,a R P
0.1:_90-2:_:r__9q:g,p: =

90 4, a 9 P4

q U V
t= or,nl O,u:—,v:—,wzﬂ 4)
q q 9 ')

By the non-dimensional scheme (4) in (1) and (2), the
equations for the flow are transformed to the following
non-dimensional form.

V.g =0 5)
oq
Re 5+q.Vq =—ReVp—- VxVxyq

- SVxVxVxVxgq (6)

n

2

P40e Reynolds number and S =
Hu Ha

= couple stress parameter.

Now to match with the oscillating boundary, the velocity

in (3) is assumed in the form

where Re =

iot i)t

q= u(r)er+ v(r) e’ e,+ w(r)e
The equation (6) will give raise to the following three
scalar equations in the directions of base vectors

e 0

z

2 2
dp nl 1% 2iot
P ®)
r r r

Re(ial 1 +ﬂ(v'+ZD:—SD4v+D2v 9)
r r

: n 1
Re(zazw+—lw'j :(— w'+ w”)
r r

v 2 e 1 " 1 '
=S =W wt—w (10)

r r r
where
1 1
2
Dv=v"+—v'——v and
r r
w2 3 3 3
4
Dv=v" + =" ——V"+—V'——v
r r r r

Using D’v and Dv in the equation (9), we get

v 2 3
vzv +—V'”+ a, - V”
r r

+(a—2+%jv’+(a3+a—4—i4)v=0 an
r r r r

1 Ren, —1 Reio,
ay=——5,0, = sz = an
S S S

Ren, +1
a, =
S
Similarly we write (10) as
w" +2w”’+(b] —12) w”+(bz+ljj w+b, w=0 (12)
r r ror
where
1 Ren, —1 Reio
by=——,b,=—"— and b, = :
S S

Now the equations (11) and (12) are solved for v and w
under the no slip condition and type A condition or type B
condition on the boundary. These conditions are given as
follows.

3. BOUNDARY CONDITIONS

No slip condition
The velocity of the fluid on the boundary is equal
to the velocity of the boundary. It is explicitly given by

Q . = Velocity of T" =

io) T . iw, T
9 (cosBOe e, + sinf3,e” ez)

It takes the following in non-dimensional form

q |r=l = cosP,e
This condition can be explicitly written as in the following
equations

v(l) = cosP, And w(l) = sinf, (13)

io; io,t

e

z

t .
e,+sinf3 e

Type A condition

Type A-condition represents vanishing of couple
stress tensor on the boundary. The constitutive equation
for couple stress tensor M is given by
M =ml + 27 V,(V,xQ)+ 2" [V,(V,xQ)]" (14)
Taking

r

equation (14), we get the expression for M as
M = m(e, e, +eye, +ezez) +

. Vv . )
Vxgqg=—-we""e,+ (v' + —je“"t e_ in the

2 2n'q, 1 _
(_ ’72% WN + anO _er emzt eree
a a r
2n' 2 1 ;
+ [_ ’7qu w' o+ 7]qu _W/j etazt eqe,
a a r
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2 - 2n' -
+ 772q0 DZV elo’lt erez + n ZQ() DZV ezalt eze,.
a a

If M vanishes on the boundary, we get the conditions that
!

D’ =0and w”—elw'z 0 where ezn—onr=l (15)

r n

Type B condition

Type B-condition is the super adherence
condition on the boundary. This condition requires that
angular velocity of the fluid particle on the boundary is
equal to angular velocity of the boundary. ie.,

1
o = 5 V, X Q) this implies that

.., =—20,And i(rv) .1 =0
dr

wi,_
(16)
As r — oo, the fluid is at rest and boundary conditions can
be taken as

v=w=D= 1 =i(rv)=0 on r=w(17)

w'—e—w'=0
r dr

4. FINITE DIFFERENCE METHOD OF
SOLUTION

In view of the complicated nature of two
equations (11) and (12), the analytical solution for v and w
seems to be beyond reach. The details of finite difference
method used here can be studied from Ref. [19], for
obtaining the solution for v and w. We take 50 units of
distance from origin is very large representing infinity.
Hence we discretise the interval [1, 50] into » subintervals
with n+ 1 node. Each node is represented by r; =1 + i A,
with i = 49/n the step length, starting from first node o= 1
to the last node », = 50. The values of the functions v, w at
r; are given by v; and w;. The symmetric derivative
formulae at the i’th node are given as below:

o Vier = Vil )
! 2h

by Vi —2v, +v,

1

v!'=
1 hz >
e Vieo -2V, +2V, =V,
Vi = 3 (18)
2h
V= Vi =4V, +6v,—4v,  +v,,
i h4

Substituting these derivatives given in (18), in the equation
(11) we get

LyVigtt v+, v+t v+, v, ,=0(19)

where

t,=1'=hr
t, , =—4r'+2hr’ +h’ (al rt=3r%)
3
3
~(a, +3Vi)7

y 26”1'4 _th(al ’/}4 _3’/}2)
+la,r! +a, 7 =3)h*

ty==4r' =2r hh (a,r’ =377)

3
+ ( a,r] +3r, )_
2
ty, =r'+hr’ (20)
The finite difference form of (12) is as the following:

S1,i Wiy 8, Wi +83,; W,
+Sy: Wi +85; Wiy =0 (21)
si=1 —hr

N
s, =—4r' +2hr? + 07 (b —r7)
3

h
_(bz ’”53 +ri)7
s,=67" =207 (b’ =17 )+b, r'h*
S ==4n' =20 e b (b 1! = r7)
(b )2
ss,=r'+hr’ (22)

Type A solution for velocities v and w
We take the following boundary conditions

Vv, = v(l): cosB, =n,, v,=0,
Dzv‘ =0 andDzv‘ =0 (23)
Evaluating (19) for different values of i we obtain
i=0:
LoVl yvytl, v tis ¢V, =15 4V

i=1:
Loy v+l v+l v+t vy =—1,,V,
i=2:
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L+l vy +t, vyt v, =—1, ,V,
1=3:
Ly +Ht, vyt syt v+t ;v =0

i=n-1:

Lot Vis Ty Vi Hls 0y Vo Hs o iVn =V
i=n:
tl,n vn—Z +t2,n Vn—l +t4,n VVH-l +t5,n—1 vn+2 :_t3,n Vn

(24)

Thus the system of equations (24) represents n+ 1
equation in n+3 unknowns. Hence we require two more
equations. These can be obtained from

D’v| . _,= 0And DV ,_, =0 25)
Using the boundary conditions (25), then we have

Lv,+t,v=t;vpand t, v,  +t; v, =t v, (26)

Where
hr, hr,
t=rg ——2, t, =1, +—2° Jt3= 210+ 1,

n

r hr
t,=r] ——2,t,=r’+—= and t,=2r"+W
2 2
Expressing the equations (24) and (26) in matrix form as
A] Xl = B1 (27)

where the matrices A;, X; and B; are given in the
appendix. B; contains vy and v, which are the value of v on
the boundary and X; consists of values of v in the region.
Solving the system (27) we get the solution for v.

Now we find solution for w by applying the boundary
conditions

w, :w(l):sinf)o =\1-n; =n,, w,= 0,

1 " 1 ' _
w'—e—w|, _ =0and W —€—W =0

r r r=00

(28)

Evaluating (21) for different values of i we obtain
1=0:
SpoWot Sy oWy tS, oW +850W,==5;,W,
i=1:

Sy W Sy WS, W +85 W =—8, 1 W,
1=2:
S, oWy TS, Wy +8, , Wy +85 , W, =—5, W,
1=3:

S sW S, Wy +S; swyts, cw, +855 ,w, =0

1=n-1:

SUnt Waez 782 p g Wy 783 g Wiy 85 500 Wan

= _S4,n—1 w,
i=n:
Sl,n Wn—Z +S2,n Wn—l +S4,n Wn+1 +S5,n—1 Wn+2
= =83, W, (29)

Thus the system of equations (29) represents n+1 equation
in n+3 unknowns. Hence we require two more equations
which are obtained from the boundary conditions

1" 1 ’
w —e—w
r

1
=0 and W' —e—w' =0,
r

r=l1 r=00

then we have

s, W, +5,w =27 w, and

S; W, +Ss, W, =2rw, (30)
Where s, =7, +eh S, =71 ch
eres, = —_—, =r, ——,
1 0 2 2 0 2

eh
s, =r,+——and 5, =r, ———
2 2
Expressing the equations (29)-(30) in matrix form as

A, X, =B, (3D
where the matrices A,, X, and B, are given in the
appendix. B, contains wy and w, which are the value of w
on the boundary and X, consists of values of w in the
region. Solving the system (31) we get the solution for w

Type B solution for velocities v and w

We take the following boundary conditions

2 =v(l)=cos[30 =n,, vu» = 0, i(rv) - and
dr r=1
d
= =0
dr (rv) o
. » d
Using the boundary conditions — (rv) =0
dr .
d
and— (rv) =0, we get
dl" r=w
2h 2h
v,-v=—v, And v _, -V  =—V, (32)
7'0 rn

From (19) substituting i =0, 1, 2.....n—1, n and from (32),
writing in matrix we get as

A3X1 :Bj (33)

where Aj, B; are given in appendix.
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Similarly we use the following boundary conditions for
velocity w as

w, :w(l):sinbzwll—nzz =n; ,w,=0,

w| =-20, and w'| =0
r=om

r=1

Using the conditions w'|r_1 =—20, and W'|r_qC =0, we
get

w,—w =40h and w,_,-w,_, =0 (34)

From (21) substituting i = 0, 1, 2.....n—1, n and from (34),
writing in matrix we get as

A4 X2 = B4 (35 )
where A4 and By are given in the appendix. On solving

(35), we get the solution for X,, the values of axial
velocity w .

5. DRAG ON THE CYLINDER
The drag D acting on a cylinder of length L is
given by

2mn
D::aLI(Tmam[Lf+TmﬂnB0ﬁ9
0

(36)
The stress component in (36) and Couple stress tensor M
are defined by the following constitutive equation for
couple stress fluids (Stokes [1]).

T =—PI+1(V,-Q)I

y

+ (V1Q+(V1Q)T)+% Ix(V,-M)  (37)

M=ml+mV (V,xQ)+2'[V,(V,xQ)]"  (38)

The stress components 73; and 7»; on the cylinder can be
calculated as

1 1 .
T, - H, [w'+S (w"'+—w'——wj}e”’<”

2

a r r
(39)
2 1 1 .
Tz] :luqo |:V'—X+S(V”!+—V”——2V,+—3V):lemlt
a r v ad 7
(40)

Applying the finite difference scheme for (39) and (40),
the non-dimensional form of stress components are
calculated as

2 2
T31=’uq‘3’ —Ew_2+ L +S+ﬁ+Sh w,
ah 2

28h [h2
—— W+ —-5+
7, 2

oy M9 S
Fa=e 7{3

Sk kB’ 4Sh h’ 2Sh Sk’ S
T — | St — 5 v+ =V,
7, 7, 7, 2 7, 27, 2

The non-dimensional drag can be calculated from (36) as

D'"=T, cos B, + T, sin B, (41)
Dh’
Where D' =——
2Lmpg,
6. RESULTS AND DISCUSSIONS
The analytical expressions for the non-

dimensional velocity components v, w and drag are given
by the equations (11), (12) and (41) respectively. These
values depend on the values of By, if By = 0, we get only
torsional oscillations and if By = w/2, we get only axial
(Longitudinal) oscillations.

The numerical results are presented in the form of
graphs for § =10, Re=0.1, 01=0.25, ©0,=0.5, By=0.7,
n1=0.6, t=x. The Figures for type A boundary condition
are shown on left column and the Figures for type B
conditions are on the right column. The velocities v and w
at different Reynolds number with type A and type B
boundary conditions are shown in Figures 2-5. We notice
that as Reynolds number Re increases both the velocities v
and w decrease. The velocities v and w at different non-
dimensional times are shown in Figures 6-9. We observe
that the transverse and axial velocity components near the
cylinder are developing and fluctuating around zero with
the same frequency as the cylinder. At the start of a cycle,
the flow has its maximum velocities located at the surface
of cylinder, with a gradual decrease toward zero in the
region away from the cylinder. As the cycle continues, the
velocities decrease with the maximum values no longer at
the cylinder surface but inside the flow field. From Figures
10-13, we see that as the couple stress parameter S
increases, the transverse velocity v decrease for type A
condition and increases for type B condition and the axial
velocity w increases for type A condition, while it
decreases for type B condition. Type B boundary
condition doesn’t involve the parameter e, which is the
ratio of couple stress viscosity coefficients # and 7' In
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type A condition, as it can be seen from Figures 14-15
both the axial and transverse velocities are insignificant

with e.

The non-dimensional drag is calculated
numerically for different values of non-dimensional time
in multiples of /o at fixed values of oy, 0> and the results
are shown in the Figures 16-17. In the equations of
motion, local acceleration term dominates if oy, o, are
large. To have all terms of LHS in the same order in
equations (9) and (10), the frequency parameters oy, o are
to be small. Hence we take both |oi|, |03 | < 1. In the

calculation of drag also we observe that if |oy[<1, |o» | < 1,
the drag will be within reasonable values. From Figures

16-17, it can be seen that as the couple stress parameter S
increases, the amplitude of oscillations for drag increases
for both the type A and type B conditions. It can be seen
for both the type A and type B conditions as o increase,

the variation in drag at the cylinder wall are changing in
amplitude and frequency (Figures 18-19). From Figure-20
and Figure-21, it is observed that the drag is insignificant
to the variations in o3 for type a condition and for type B
condition the drag oscillates irregularly as o, increases.
From Figures 22-23, we note that as Reynolds number Re
increases magnitude of drag increases for small values of
suction; but for higher values of suction drag increases for
small values of Reynolds number and then decreases at

higher values and almost constant for very high values of
suction rate. From Figure-24, we note that drag is

insignificant to the variation in e, for type a condition and
type B condition is independent of e.

7. CONCLUSIONS
We have observed that:

i. The flow is sensitive with respect to couple stress
parameter S and type A and type B conditions show
opposite trend. i.e., the transverse velocity v decreases
for type A condition, it increases for type B condition;

ii. The drag increases as S increases i.e. the drag offered
by viscous fluids is less than that of couple stress

fluids; and wlr :
iii. Suction on the cylinder decreases the drag. ol i
-l 1 1 1 1 1 1 1 1 1
nx I : - : . . I T T a] 3 1o 1% I .:!l o 33 40 43
=1 Re=0.1— Figure-5. Type B variation of w with r.
né - .

Re = 0.4 |

Vo Re=0.7-
ol Rf: = 0.9 o

Figure-2. Type A variation of v with 7.
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Appendix
The matrices A;, X;, By ; Ay, X5, By; Az, B3 and Ay, By
defined earlier in the equations (27), (31), (33) and (35)

are given by the following expressions.

The coefficient matrix A; given in (27) is defined as:
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0 4 4 0 ]
ho bo Lo I
t] 1 t3 1 t4,1 t5,l
Ly by, L, L, 0
by by Ly Lz I
AH
bus bz Gus lLaus bs
0 bua bpo Lo L,
b b L L
by L lLa L,
0 t, £ 0
The solution vector X for velocity v at different points is given by
Xi=[Voa Vo, Vi, Vo, V3 Ve Vo5, Vids Vs Vizs Vot Vi Vasls Varz] |
and the vector B, for the boundary values is given by
By =1[t;vo, —t30ve, =12, 1 Vo, — 11, 2Vg, Ouervieeeene 0, =15 n2 Viy =ty nt Vo — 13,0 Vi bs v,,]T

The matrices A,, X,, B, defined in equation (31) are as follows. The coefficient matrix A, is given by

0 s s 0
S0 %o %o S
S S s S
S2 82 Sy S 0

Sz S3 0 K3 N3 53

Sz D3 S3u3 Sups Ssus
0 Sz D2 S S

St S S S5m

Sl,n S2,n S4,n S5,n
0o s s 0

The solution vector X, for velocity w at different points is given by
Xy =[Wop Woi, Wi, Wa, W3, Wy, W5 e Wiis, Wty W3, Wyio, Wity Wy, Wirt, Wya2] T

and the vector B, for the boundary values is given by
— T
Bz = [21’0W0, — 830 Wo, — 82,1 Wo, — 81,2 Wo, 00, =S85, n2Wn — S84, n-1Wn — 83 nWhn, ZVan]

The coefficient matrix A; defined in equation (33) is given by
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0 1 -1 0 ]
ho Ly Ly Iy
hy G L, L,
Ly, L, L, I, 0
Ly Ly Ly L; s
A=
tl n=3 tZ,n—3 t3 =3 t4,n—3 t5,n—3
O t],n—Z tZ,n—2 t3,n—2 t4,n—2
t],rhl tZ,rH t3,W1 zL5,rrl
t] i t2 n t4 i t5 F
0 1 -1
and the vector B; for the boundary values is given by
— T
B3 = [(2h/ro)vo, =130 Vo, —t2.1 Vo, —t12 V0, 0, ..., 0, —ts 12 Vo, —tan1 Vi, —t3.0 Vi, (2R/70) V0]
The coefficient matrix A4 defined in equation (35) is given by
0 1 -1 0
S0 S0 S40 Ssp
Sir S0 Sar Ssy
2 B2 S S 0
Si3 S5 8330 %3 S5
A4 =
Sin3 3 B3 Suns S5us
0 Sina Sop2 a2 Sepo
Sl -1 SZ - S3 - S5 -l
SI,n S2,n S4,n
0 1 -1
and the vector B, for the boundary values is given by
— T
B4 - [4Ulha 753,0 Wo, 752,1 Wo, 751,2 Wo, 07 ---------- 903 *85,11,2 Wh, 7S4,n71 Wy, *53’11 Wmo]
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