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Abstract

In this paper, a fitted fourth-order tridiagonal finite difference scheme is presented for solving singularly perturbed two-
point boundary value problems with the boundary layer at one end (left or right) point. We have taken a fourth-order
tridiagonal finite difference scheme by M.M. Chawla [A fourth-order tridiagonal finite difference method for general non-
linear two-point boundary value problems with mixed boundary conditions, J. Inst. Maths Appl. 21 (1978) 83-93] and
introduced a fitting factor. The fitting factor is obtained from the theory of singular perturbations. Thomas Algorithm
is used to solve the system. To demonstrate the applicability of the present method, we have solved five linear problems
(three with left end and two with right end boundary layers). Solutions of these problems using the present fitted method
are compared with Chawla’s solutions. From the results, it is observed that the present method is stable and has better
approximation to the exact solution.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical solution of singular perturbation problems is currently a field in which active research is
going on. Singular perturbation problems are of common occurrence in fluid mechanics and other branches
of Applied Mathematics. For detailed analytical discussion on singular perturbation problems, one can refer
to Bender and Orsazag [1], Kevorkian and Cole [2], Nayfeh [7,8], O’'Mally [9] and Van Dyke [14]. More dis-
cussions on fitted and some other numerical methods for singular perturbation problems can be referred in
(3,6,10,12,13].

In this paper a fourth-order tridiagonal finite difference scheme is presented for solving singularly perturbed
two-point boundary value problems with the boundary layer at one end (left or right) point. We have intro-
duced a fitting factor in Chawla’s [5] fourth-order tridiagonal finite difference scheme. For further discussion
of the fourth-order tridiagonal finite difference method one can refer Chawla [5] and Jain [4, pp. 200-202].
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Thomas Algorithm is used to solve the system. To demonstrate the applicability of the method, we have solved
five linear problems (three with left end and two with right end boundary layers). Solutions of these problems
using the present fitted method are compared with solutions by Chawla’s method. From the results, it is
observed that the present method is stable and has better approximation to the exact solution.

2. Fitted fourth-order scheme

To describe the method, we first consider a linear singularly perturbed two-point boundary value problem
of the form

&"(x) + a(x)y'(x) + b(x)y(x) = f(x), x€][0,1] (1)
with y(0) = «, (2a)
and y(1) = p, (2b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, f§ are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0, 1]. Furthermore, we assume that b(x) <0,
a(x) = M > 0 throughout the interval [0, 1], where M is some positive constant. Under these assumptions,
(1) has a unique solution y(x) which in general, displays a boundary layer of width O(¢) at x = 0 for small
values of .

From the theory of singular perturbations it is known that the solution of (1) and (2) is of the form (cf. [9,
pp. 22-26])

1) =309 + 990 o opeh ()& o 3

a(x

~— =

where yo(x) is the solution of
a(x)yy(x) + b(x)yo(x) = f(x),  yo(1) = B.

By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and restricting to their first terms,
(3) becomes,

y(x) = po(x) + (@ = x,(0))e N ° )+ O(e). (4)
Now we divide the interval [0, 1] into N equal parts with constant mesh length /. Let 0 = x¢, x1,x2,...,xy = 1

be the mesh points. Then we have x; =ih; i =0,1,2,... N.
From (4) we have

a)_b0)

y(xi) = yo(x:) + (o _)’0(0))@7( ' “(0)))([ + O(e),

a0) _b(0)

ie., y(ih) =y,(ih) + (« —yO(O))ei( "(0)) g + O(e), (5)

B (a2 (o)ﬂ,h(o))
yi%)’(ih) =10(0) + (& = ¥9(0))e o Jip,

where p =4
Now let us rewrite Eq. (1) in the form
&) (x) = f(x) — a(x)y'(x) = b(x)y(x) = g(x,,)) (6)
with y(0 = «,
and y(1) = p.

Now we divide the interval [0,1] into N equal parts with constant mesh length /. Let
0=1x0,X1,X2,.0..... xy = | be the mesh points. Then we have x;=ih; i =0,1,2,...,N.
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Let us denote the exact solution y(x) at the grid points x; by y; similarly, y; = »/(x;).
Fori=1,2,...,N —1, let

- Vig1 — iz

Vi= o

- 3y — 4+
yi+1 - 2h ’
o TV A -3
yi—l - 2h 9

- ., h B
Vi =y - 20(g1+1 gi-1)-

Then for each x;, i =1,2,...,N — 1, (6) can be described as

1 -
E(gm +10g; +gi-1),
where g; = g(x;, v, 1),
and g1 = g(Xiu1, Via1s Vi )-

Using (7) and (9), terms of the right hand side expressions of (8) can be simplified as

1 i a; b,‘ a; a;
Eng:fﬂ—( +1+ +1> Yoy + 2l +1 +1

12 8h 12 6h ~1 T 24p”7 1

10_ (104 aais  adiy N ha;b;_, ai(ai1 + aiy) — 10b;
1257 \2an 48 16 24 )i 12 i
_ 10g; ala,ﬂ _haibiy aia;i ha; ha,
24h - 24 - 48 )yl‘+1 + f+ f+1 f 1y
1 i Clz 1 a1 + ai—| _E
281 = T T e Vit sy T e

Now substituting (10a)—(10c) in (8) we get

€ —aiy1 +10a;  ajaiy aai | haibiy aiy big
—Z(yi—l =2y, JFJ’H—l) = ( * = + - i

h 24k 48 16 24 8h 12
a1 ai(ai+1 + ai—l) — 10b; _ G
+ (6h + B 6h )

8h 12 24h 16 24 48 24h
(fi+1+10fi+fi 1 haz(fﬂ* - 1))
+ 4 .

aiyr by 10a; @i habiy aa; di-1
%12 2 16 - Vit

12 2
Introducing fitting factor a(p) in to Eq. (11), we get

a(p)e —ai +10a;  aa;  aaiy | habiy  aiy by
Vi1 — 2y, +yi+1) = < - = i

2 2n 48 16 24 Tsn 12 )M
a1 ai(a +ai) — 106, a;y
+ <6h + 2 on )V

8h 12 24h 16 24 48 ' 2ap )V

T (_ i1 biy1 _ 10a; _aiGip1 ha;b; _aiai-g ai—l)

N —-1.
12 2

Multiplying (12) by 4 and taking limit as # — 0, we get

tim % (v((i — 1)h) — 2p(ih) + y((i — 1)) = @ m(y((i = 1)) = y((i + Dh)).

h=0 p h—0

i (fi+l +10f; + fii _|_hai(fi+14—ﬁ1))7 1<i<

(10b)

(10c)
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By substituting (5) in to (13) we get

o (22))
fim = =790) {Sinh ( (a<o>z(—0;b<0)> g)} 7 (14)
.. We have
) Ba(o) sinh (("”i&ﬁ”w)) p) )

. a(0)>—eb(0) 2
simh ((455) )]
g given by (15) is the constant fitting factor.
From Eq. (12) we get the recurrence relation of the form

Eiyi—liFiyi+Giyi+1:Hi; i:15253a"'aN717 (16)
where
N 10a;  aiai | @aisy haibioy  a;- n bi
LR 24h 48 16 24 8h 127
280 ap —aig ai(aii1 + a;i-y) — 10b;
Fi=r oh 12 ’
G — g+ai+l biyi 10a; — a;_ habiyy  aai | aai
TRt 8h 12 24h 24 16 48
S H10f + fir | hai(fiy — fi1)
H,; = B + 2 .

To solve the tridiagonal system (16), we used Thomas Algorithm.
3. Numerical examples

In this section, to demonstrate the applicability of the present method we have chosen three linear singular
perturbation problems with left-end boundary layer which are widely discussed in literature. The approximate
solutions of these problems are used for comparison. The approximate solution is compared with the exact
solution.

Example 3.1. Consider the following homogeneous singular perturbation problem from Bender and Orsazag
[1, p. 480; problem 9.17 with o = 0]

&"(x) +/(x) = y(x) =0; x€[0,1]
with y(0) =1 and y(1)=1.
The exact solution is given by
B [(emz _ 1)emlx _|_ (1 _ eml)emzx]
y('x) - [emz _ e’"l]

where m; = (=1 4+ /1 +4¢)/(2¢) and my = (=1 — /1 +4¢)/(2¢).

The numerical results are given in Table la and b for ¢ = 1072 and 103, respectively.

)

Example 3.2. Let us consider the following non-homogeneous singular perturbation problem from fluid
dynamics for fluid of small viscosity, Reinhardt [11, example 2]

&'(x)+)y(x) =1+2x; x€]0,1]

with y(0) =0 and (1) =1. e
The exact solution is given by y(x) = x(x + 1 — 2¢) + %
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Table 1

Numerical results of Example 3.1

X Y(X) (fitted) Chawla’s solution Exact solution
Panel a: ¢ =102, h = 1072

0.00 1.0000000 1.0000000 1.0000000
0.01 0.6209159 0.6008961 0.6041336
0.02 0.4424902 0.4238589 0.4623245
0.03 0.3595471 0.3464715 0.4130807
0.04 0.3220527 0.3138159 0.3975782
0.05 0.3062052 0.3012550 0.3943904
0.06 0.3006817 0.2977365 0.3957127
0.07 0.3000962 0.2983025 0.3987026
0.08 0.3018866 0.3007292 0.4023249
0.09 0.3048346 0.3040194 0.4062027
0.10 0.3083609 0.3077259 0.4101991
0.20 0.3509845 0.3505355 0.4528673
0.30 0.4000615 0.3996136 0.5000052
0.40 0.4560010 0.4555634 0.5520498
0.50 0.5197623 0.5193467 0.6095114
0.60 0.5924392 0.5920602 0.6729541
0.70 0.6752784 0.6749543 0.7430004
0.80 0.7697008 0.7694545 0.8203378
0.90 0.8773260 0.8771855 0.9057249
1.00 1.0000000 1.0000000 1.0000000

Panel b: ¢ = 1073, h = 1072

0.00 1.0000000 1.0000000 1.0000000
0.01 0.3736567 —0.1525618 0.3719724
0.02 0.2884285 0.5115076 0.3756784
0.03 0.2795464 0.1378099 0.3794502
0.04 0.2814718 0.3570651 0.3832599
0.05 0.2849635 0.2376433 0.3871079
0.06 0.2887190 0.3117861 0.3909945
0.07 0.2925550 0.2754246 0.3949201
0.08 0.2964464 0.3022745 0.3988851
0.09 0.3003902 0.2930932 0.4028900
0.10 0.3043866 0.3045790 0.4069350
0.20 0.3473942 0.3448339 0.4496879
0.30 0.3964786 0.3939106 0.4969323
0.40 0.4524982 0.4499849 0.5491403
0.50 0.5164331 0.5140416 0.6068335
0.60 0.5894015 0.5872170 0.6705877
0.70 0.6726800 0.6708092 0.7410401
0.80 0.7677249 0.7663009 0.8188942
0.90 0.8761991 0.8753862 0.9049277
1.00 1.0000000 1.0000000 1.0000000

The numerical results are given in Table 2a and b for ¢ = 107> and 10>, respectively.

Example 3.3. Consider the following variable coefficient singular perturbation problem from Kevorkian and

Cole [2, p. 33; Egs. (2.3.26) and (2.3.27) with « = —1/2]

/! _ f ! _ l _ .
o/ () + (1-3)¥ @) =330 = 0: xe[0,1]

with »(0) =0 and y(1) = 1.
We have chosen to use uniformly valid approximation (which is obtained by the method given by Nayfeh
[8, p. 148; Eq. (4.2.32)]) as our ‘exact’ solution
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Table 2

Numerical results of Example 3.2

X Y(X) (fitted) Chawla’s solution Exact solution
Panel a: ¢ =102, h = 1072

0.00 0.0000000 0.00000000 0.0000000
0.01 —0.8245463 —0.8760144 —0.6095782
0.02 —1.2178808 —1.2670670 —0.8273715
0.03 —1.4017174 —1.4373831 —0.9009086
0.04 —1.4837021 —1.5071491 —0.9212507
0.05 —1.5160987 —1.5310333 —0.9218968
0.06 —1.5242823 —1.5339022 —0.9151708
0.07 —1.5205728 —1.5270667 —0.9056064
0.08 —1.5109519 —1.5156716 —0.8948712
0.09 —1.4983236 —1.5020572 —0.8835791
0.10 —1.4840981 —1.4872879 —0.8719556
0.20 —1.3158038 —1.3181360 —0.7440000
0.30 —1.1196603 —1.1217003 —0.5960001
0.40 —0.8968498 —0.8985986 —0.4280000
0.50 —0.6473734 —0.6488308 —0.2400000
0.60 —0.3712310 —0.3723968 —0.0320001
0.70 —0.0684225 —0.0692968 0.1960000
0.80 0.2610522 0.2604693 0.4439999
0.90 0.6171930 0.6169016 0.7119999
1.00 1.0000000 1.0000000 1.0000000

Panel b: ¢ = 1073, h = 1072

0.00 0.0000000 0.0000000 0.0000000
0.01 —1.3985754 —2.6077983 —0.9878747
0.02 —1.5879061 —1.0837667 —0.9776400
0.03 —1.6032392 —1.9400475 —0.9671600
0.04 —1.5933403 —1.4243878 —0.9564800
0.05 —1.5795872 —1.6988108 —0.9456000
0.06 —1.5650519 —1.5175732 —0.9345200
0.07 —1.5501759 —1.5984638 —0.9232400
0.08 —1.5350226 —1.5278976 —0.9117600
0.09 —1.5196011 —1.5441794 —0.9000800
0.10 —1.5039128 —1.5099998 —0.8882000
0.20 —1.3323622 —1.3437098 —0.7584000
0.30 —1.1341459 —1.1441001 —0.6086000
0.40 —0.9092641 —0.9177976 —0.4388001
0.50 —0.6577170 —0.6648292 —0.2490000
0.60 —0.3795043 —0.3851951 —0.0392001
0.70 —0.0746263 —0.0788951 0.1905999
0.80 0.2569171 0.2540707 0.4403999
0.90 0.6151260 0.6137024 0.7102000
1.00 1.0000000 1.0000000 1.0000000

1 1 >
- _ e lmx/A)/e
y('x) 2 —x 2e :

The numerical results are given in Table 3a and b for ¢ = 1072 and 1077, respectively.

4. Right-end boundary layer problems

Now let us discuss our present method for singularly perturbed two-point boundary value problems with
right-end boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation
problem of the form
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Table 3

Numerical results of Example 3.3

X Y(X) (fitted) Chawla’s solution Exact solution
Panel a: ¢ =102, h = 1072

0.00 0.0000000 0.0000000 0.0000000
0.01 0.1990452 0.2095716 0.3181124
0.02 0.2964433 0.3060890 0.4367028
0.03 0.3450344 0.3515598 0.4821542
0.04 0.3701083 0.3738933 0.5006725
0.05 0.3838162 0.3857052 0.5092342
0.06 0.3920188 0.3927225 0.5141078
0.07 0.3975543 0.3975565 0.5176194
0.08 0.4018025 0.4014028 0.5206365
0.09 0.4054370 0.4048115 0.5234846
0.10 0.4087878 0.4080370 0.5262867
0.20 0.4416590 0.4407397 0.5555555
0.30 0.4788066 0.4778685 0.5882353
0.40 0.5215091 0.5205625 0.6250000
0.50 0.5709993 0.5700607 0.6666667
0.60 0.6288814 0.6279783 0.7142857
0.70 0.6972787 0.6964532 0.7692308
0.80 0.7790488 0.7783682 0.8333333
0.90 0.8781180 0.8776891 0.9090909
1.00 1.0000000 1.0000000 1.0000000

Panel b: ¢ = 1073, h = 1072

0.00 0.0000000 0.0000000 0.0000000

0.01 0.3222527 0.5827496 0.5024893

0.02 0.3711521 0.2533934 0.5050505

0.03 0.3806959 0.4456725 0.5076142

0.04 0.3845032 0.3405810 0.5102041

0.05 0.3874857 0.4045970 0.5128205

0.06 0.3903733 0.3728183 0.5154639

0.07 0.3932768 0.3952281 0.5181347

0.08 0.3962137 0.3871669 0.5208333

0.09 0.3991872 0.3962768 0.5235602

0.10 0.4021985 0.3958319 0.5263158

0.20 0.4345494 0.4292463 0.5555555

0.30 0.4715418 0.4661086 0.5882353

0.40 0.5141674 0.5086559 0.6250000

0.50 0.5637082 0.5582095 0.6666667

0.60 0.6218457 0.6165099 0.7142857

0.70 0.6908247 0.6858976 0.7692308

0.80 0.7737027 0.7695873 0.8333333

0.90 0.8747349 0.8721039 0.9090909

1.00 1.0000000 1.0000000 1.0000000
&' (x) + a(x)y'(x) + b(x)y(x) = f(x), x€][0,1] (17)
with y(0) = «, (18a)
and y(1) = p, (18b)

where ¢ is a small positive parameter (0 < ¢ < 1) and o,  are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0, 1]. Furthermore, we assume that a(x) < M <0
throughout the interval [0, 1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 1.



A. Andargie, Y.N. Reddy | Applied Mathematics and Computation 192 (2007) 90100 97

From the theory of singular perturbations the solution of (17) and (18) is of the form

a(l (-

e =yo<x>+%<ﬁ—yo<1>>eﬁ< 9 o), (19)
where yo(x) is the solution of

a(x)yy(x) + b(xX)yo(x) = f(x),  »,(0) =a. (20)
By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘1°, (19) becomes,

(#L%Quﬂ>

y(x) = yo(x) + (B —yp(1))er " ° +O(e). (21)

Now we divide the interval [0, 1] into N equal parts with constant mesh length 4. Let 0 = xo,x1,x5,...,xy = 1

be the mesh points. Then we have x;=ih; i =0,1,2,...,N.
From (24) we have

(@—&}))u—ih)
W(ih) = yo(ih) + (B = po(1))e\ = +0(e).
Therefore
()
lim y(#) = 70(0) + (B — yo(1))e , (22)
where p =%

Now, we consider the fourth-order finite difference scheme (16) and introduce the fitting factor a(p)

a(p)e —aiy + 10a; @@y aaiy  habioy ai b
hz (ytfl yl+yl+1) < 24h 48 16 + 24 + 8/’! 12 Yic1
Ait1 ai(aH—l + ai—l) — 10b; _ Qi1
* <6h * 12 6h )
(% biyi 10a;  ajaiy  haibi  aia;i S
8h 12 24h 16 24 48 24h il
firt +10f; + fir | hai(fiqn — fi1) .
: e 1<i<N-1 23
* < B T ’ : (23)
Multiplying (23) by 4 and taking limit as 7 — 0, we get
.. a ) ) . a(0) .. . .
iy 2 (7 = 1)8) = 25(08) + (1 1)) = 2 imGo((¢ — D) — 5+ D) (24)

By substituting (22) in to (24) we get

L ()

. 0
lim — =

—0p 4 {sinh ((a(l)z(];b“)) g)r . (25)
.. We have
) 161(0) sinh ((a(l)j(—le)b(l)) p) 26)

2 2
: a(l)”—eb(1
s (45574 8
g given by (26) is the constant fitting factor.

From Eq. (23) we get the recurrence relation of the form

Eiyi—l_Fiyi+Giyi+1:Hi; i:15253a"'aN_17 (27)
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where
E — &0 Qip1 — 10a; = ajai | aai _ hab;_, _ Qi1 bi_y
e 24h 48 16 24 8h 12°
2e0  ap —ai | afam +ai2p) — 100,
Fi=""
= 6h T 12
G _ 80 iy biyr | 10a; — a;_ +haibi+1 aidiy1 | aidi
TR 8k 12 24h 48
St 2 10f; + fiy | hai(fir — fi1)
H; = .
! 12 + 24

To solve the tridiagonal system (27), we used Thomas Algorithm.

Table 4
Numerical results of Example 5.1

X

Y(X) (fitted)

Chawla’s solution

Exact solution

Panel a: ¢ = 1072, h = 1072
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Panel b: ¢ = 1073, h = 1072
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

1.0000000
0.9999987
0.9999979
0.9999968
0.9999957
0.9999945
0.9999934
0.9999922
0.9999905
0.9992620
0.9984906
0.9969020
0.9936300
0.9868909
0.9730108
0.9444227
0.8855410
0.7642649
0.5144774
0.0000000

1.0000000
1.0000007
1.0000014
1.0000021
1.0000029
1.0000036
1.0000042
1.0000049
1.0000056
1.0000063
1.0000063
1.0000063
1.0000052
0.9999978
0.9999454
0.9995803
0.9970394
0.9793568
0.8563052
0.0000000

1.0000000
0.9999990
0.9999978
0.9999967
0.9999956
0.9999945
0.9999934
0.9999923
0.9999911
0.9996110
0.9991565
0.9981574
0.9959612
0.9911329
0.9805182
0.9571823
0.9058793
0.7930915
0.5451316
0.0000000

1.0000000
0.9999998
0.9999994
0.9999992
0.9999991
0.9999991
0.9999991
0.9999990
0.9999828
0.9959657
1.0069994
0.9878500
1.0210843
0.9634053
1.0635089
0.8897761
1.1912943
0.6680008
1.5761919
0.0000000

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.9999546
0.9998766
0.9996645
0.9990881
0.9975212
0.9932621
0.9816844
0.9502131
0.8646653
0.6321224
0.0000000

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
0.9999546
0.0000000
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5. Examples with right-end boundary layer

99

Here we considered two singularly perturbed two-point boundary value problems with right-end boundary
layer and demonstrated the applicability of the present method. The approximate solution is compared with

the exact solution.

Example 5.1. Consider the following singular perturbation problem:

&' (x) =¥'(x) = 0;

with y(0) =1 and y(1) =

x € 0,1]
0.

Clearly, this problem has a boundary layer at x = 1. i.e.; at the right end of the underlying interval.

Table 5

Numerical results of Example 5.2

X

Y(X) (fitted)

Chawla’s solution

Exact solution

Panel a: ¢ = 1072, h = 1072
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Panel b: ¢ = 1073, h = 1072
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000001
1.0002503
1.0005190
1.0010762
1.0022316
1.0046275
1.0095955
1.0198973
1.0412594
1.0855559
1.1774099
1.3678794

1.0000000
1.0000008
1.0000014
1.0000021
1.0000029
1.0000036
1.0000043
1.0000050
1.0000057
1.0000063
1.0000064
1.0000066
1.0000070
1.0000099
1.0000292
1.0001637
1.0010985
1.0076034
1.0528704
1.3678794

1.0000000
0.9999990
0.9999978
0.9999967
0.9999956
0.9999945
0.9999934
0.9999923
0.9999913
1.0001296
1.0002966
1.0006640
1.0014719
1.0032481
1.0071530
1.0157380
1.0346119
1.0761057
1.1673287
1.3678794

1.0000000
0.9999998
0.9999994
0.9999992
0.9999992
0.9999992
0.9999992
0.9999992
1.0000051
1.0014830
0.9974239
1.0044686
0.9922423
1.0134614
0.9766351
1.0405481
0.9296253
1.1221349
0.7880290
1.3678794

1.0000000
0.9048374
0.8187308
0.7408183
0.6703200
0.6065307
0.5488117
0.4965853
0.4493290
0.4066108
0.4026370
0.3988287
0.3954040
0.3929622
0.3931504
0.4004903
0.4273985
0.5079660
0.7357938
1.3678794

1.0000000
0.9048374
0.8187308
0.7408183
0.6703200
0.6065307
0.5488117
0.4965853
0.4493290
0.4065697
0.4025242
0.3985191
0.3945537
0.3906278
0.3867410
0.3828929
0.3790830
0.3753111
0.3716217
1.3678794
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e(x—l)/l:_])
The numerical results are given in Table 4a and b for ¢ = 1072 and 103, respectively.

The exact solution is given by y(x) =

Example 5.2. Now we consider the following singular perturbation problem
&'(x) =y (x) = (1 +2)y(x) =0; x€[0,1]

with y(0) =1 +exp(—(1 +¢)/¢) and y(1) =1+ 1/e.
Clearly this problem has a boundary layer at x = 1. The exact solution is given by y(x) = el!*8(=1/2 4 e=x,
The numerical results are given in Table 5a and b for ¢ = 1072 and 1073, respectively.

6. Discussion and conclusions

We have presented a fitted fourth-order tridiagonal finite difference method for solving singularly perturbed
two-point boundary value problems with the boundary layer at one end (left or right) point. To demonstrate
the applicability of the method, we have solved several linear and nonlinear problems. Solutions of these prob-
lems using the present fitted method are compared with Chawla’s [S]. From the results, it is observed that the
present method is stable and has better approximation to the exact solution.
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