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Abstract

In this paper, a fitted fourth-order tridiagonal finite difference scheme is presented for solving singularly perturbed two-
point boundary value problems with the boundary layer at one end (left or right) point. We have taken a fourth-order
tridiagonal finite difference scheme by M.M. Chawla [A fourth-order tridiagonal finite difference method for general non-
linear two-point boundary value problems with mixed boundary conditions, J. Inst. Maths Appl. 21 (1978) 83–93] and
introduced a fitting factor. The fitting factor is obtained from the theory of singular perturbations. Thomas Algorithm
is used to solve the system. To demonstrate the applicability of the present method, we have solved five linear problems
(three with left end and two with right end boundary layers). Solutions of these problems using the present fitted method
are compared with Chawla’s solutions. From the results, it is observed that the present method is stable and has better
approximation to the exact solution.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical solution of singular perturbation problems is currently a field in which active research is
going on. Singular perturbation problems are of common occurrence in fluid mechanics and other branches
of Applied Mathematics. For detailed analytical discussion on singular perturbation problems, one can refer
to Bender and Orsazag [1], Kevorkian and Cole [2], Nayfeh [7,8], O’Mally [9] and Van Dyke [14]. More dis-
cussions on fitted and some other numerical methods for singular perturbation problems can be referred in
[3,6,10,12,13].

In this paper a fourth-order tridiagonal finite difference scheme is presented for solving singularly perturbed
two-point boundary value problems with the boundary layer at one end (left or right) point. We have intro-
duced a fitting factor in Chawla’s [5] fourth-order tridiagonal finite difference scheme. For further discussion
of the fourth-order tridiagonal finite difference method one can refer Chawla [5] and Jain [4, pp. 200–202].
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Thomas Algorithm is used to solve the system. To demonstrate the applicability of the method, we have solved
five linear problems (three with left end and two with right end boundary layers). Solutions of these problems
using the present fitted method are compared with solutions by Chawla’s method. From the results, it is
observed that the present method is stable and has better approximation to the exact solution.
2. Fitted fourth-order scheme

To describe the method, we first consider a linear singularly perturbed two-point boundary value problem
of the form
ey00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð1Þ
with yð0Þ ¼ a; ð2aÞ
and yð1Þ ¼ b; ð2bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0, 1]. Furthermore, we assume that bðxÞ 6 0,
aðxÞP M > 0 throughout the interval [0,1], where M is some positive constant. Under these assumptions,
(1) has a unique solution y(x) which in general, displays a boundary layer of width O(e) at x = 0 for small
values of e.

From the theory of singular perturbations it is known that the solution of (1) and (2) is of the form (cf. [9,
pp. 22–26])
yðxÞ ¼ y0ðxÞ þ
að0Þ
aðxÞ ða� y0ð0ÞÞe

�
R x

0

aðxÞ
e �

bðxÞ
aðxÞ

� �
dx
þOðeÞ; ð3Þ
where y0(x) is the solution of
aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð1Þ ¼ b:
By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and restricting to their first terms,
(3) becomes,
yðxÞ ¼ y0ðxÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
x
þOðeÞ: ð4Þ
Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 0 ¼ x0; x1; x2; . . . ; xN ¼ 1
be the mesh points. Then we have xi = ih; i ¼ 0; 1; 2; . . . ;N .

From (4) we have
yðxiÞ ¼ y0ðxiÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
xi þOðeÞ;

i:e:; yðihÞ ¼ y0ðihÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
ih
þOðeÞ;

) lim
h!0

yðihÞ ¼ y0ð0Þ þ ða� y0ð0ÞÞe
� a2ð0Þ�ebð0Þ

að0Þ

� �
iq;

ð5Þ
where q ¼ h
e.

Now let us rewrite Eq. (1) in the form
ey00ðxÞ ¼ f ðxÞ � aðxÞy 0ðxÞ � bðxÞyðxÞ ¼ gðx; y; y0Þ ð6Þ
with yð0 ¼ a;

and yð1Þ ¼ b:
Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let
0 ¼ x0; x1; x2; . . . . . . :xN ¼ 1 be the mesh points. Then we have xi = ih; i ¼ 0; 1; 2; . . . ;N .
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Let us denote the exact solution y(x) at the grid points xi by yi; similarly, y0i ¼ y 0ðxiÞ.
For i ¼ 1; 2; . . . ;N � 1, let
�y 0i ¼
yiþ1 � yi�1

2h
; ð7aÞ

�y 0iþ1 ¼
3yiþ1 � 4yi þ yi�1

2h
; ð7bÞ

�y 0i�1 ¼
�yiþ1 þ 4yi � 3yi�1

2h
; ð7cÞ

��y 0i�1 ¼ �y 0i �
h

20
ð�giþ1 � �gi�1Þ: ð7dÞ
Then for each xi, i ¼ 1; 2; . . . ;N � 1, (6) can be described as
e

h2
d2yi ¼

1

12
ð�giþ1 þ 10��gi þ �gi�1Þ; ð8Þ

where ��gi ¼ gðxi; yi; ��y
0
iÞ; ð9aÞ

and �gi�1 ¼ gðxi�1; yi�1; �y
0
i�1Þ: ð9bÞ
Using (7) and (9), terms of the right hand side expressions of (8) can be simplified as
1

12
�giþ1 ¼

fiþ1

12
� aiþ1

8h
þ biþ1

12

� �
yiþ1 þ

aiþ1

6h
yi �

aiþ1

24h
yi�1; ð10aÞ

10

12
��gi ¼

10ai

24h
� aiaiþ1

48
� aiai�1

16
þ haibi�1

24

� �
yi�1 þ

aiðaiþ1 þ ai�1Þ � 10bi

12

� �
yi

þ � 10ai

24h
� aiaiþ1

16
� haibiþ1

24
� aiai�1

48

� �
yiþ1 þ

10

12
fi þ

hai

24
fiþ1 �

hai

24
fi�1; ð10bÞ

1

12
�gi�1 ¼

fi�1

12
þ ai�1

24h
yiþ1 �

ai�1

6h
yi þ

ai�1

8h
� bi�1

12

� �
yi�1: ð10cÞ
Now substituting (10a)–(10c) in (8) we get
e

h2
ðyi�1 � 2yi þ yiþ1Þ ¼

�aiþ1 þ 10ai

24h
� aiaiþ1

48
� aiai�1

16
þ haibi�1

24
þ ai�1

8h
� bi�1

12

� �
yi�1

þ aiþ1

6h
þ aiðaiþ1 þ ai�1Þ � 10bi

12
� ai�1

6h

� �
yi

þ � aiþ1

8h
� biþ1

12
� 10ai

24h
� aiaiþ1

16
� haibiþ1

24
� aiai�1

48
þ ai�1

24h

� �
yiþ1

þ fiþ1 þ 10f i þ fi�1

12
þ haiðfiþ1 � fi�1Þ

24

� �
: ð11Þ
Introducing fitting factor r(q) in to Eq. (11), we get
rðqÞe
h2
ðyi�1 � 2yi þ yiþ1Þ ¼

�aiþ1 þ 10ai

24h
� aiaiþ1

48
� aiai�1

16
þ haibi�1

24
þ ai�1

8h
� bi�1

12

� �
yi�1

þ aiþ1

6h
þ aiðaiþ1 þ ai�1Þ � 10bi

12
� ai�1

6h

� �
yi

þ � aiþ1

8h
� biþ1

12
� 10ai

24h
� aiaiþ1

16
� haibiþ1

24
� aiai�1

48
þ ai�1

24h

� �
yiþ1

þ fiþ1 þ 10f i þ fi�1

12
þ haiðfiþ1 � fi�1Þ

24

� �
; 1 6 i 6 N � 1: ð12Þ
Multiplying (12) by h and taking limit as h! 0, we get
lim
h!0

r
q
ðyðði� 1ÞhÞ � 2yðihÞ þ yðði� 1ÞhÞÞ ¼ að0Þ

2
lim
h!0
ðyðði� 1ÞhÞ � yððiþ 1ÞhÞÞ: ð13Þ
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By substituting (5) in to (13) we get
lim
h!0

r
q
¼ 1

4
að0Þ

sinh að0Þ2�ebð0Þ
að0Þ

� �
q

� �

sinh að0Þ2�ebð0Þ
að0Þ

� �
q
2

� �h i2
: ð14Þ
) We have
r ¼ q
4

að0Þ
sinh að0Þ2�ebð0Þ

að0Þ

� �
q

� �

sinh að0Þ2�ebð0Þ
að0Þ

� �
q
2

� �h i2
: ð15Þ
r given by (15) is the constant fitting factor.
From Eq. (12) we get the recurrence relation of the form
Eiyi�1 � F iyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1; ð16Þ

where
Ei ¼
er

h2
þ aiþ1 � 10ai

24h
þ aiaiþ1

48
þ aiai�1

16
� haibi�1

24
� ai�1

8h
þ bi�1

12
;

F i ¼
2er

h2
þ aiþ1 � ai�1

6h
þ aiðaiþ1 þ ai�1Þ � 10bi

12
;

Gi ¼
er

h2
þ aiþ1

8h
þ biþ1

12
þ 10ai � ai�1

24h
þ haibiþ1

24
þ aiaiþ1

16
þ aiai�1

48
;

H i ¼
fiþ1 þ 10f i þ fi�1

12
þ haiðfiþ1 � fi�1Þ

24
:

To solve the tridiagonal system (16), we used Thomas Algorithm.

3. Numerical examples

In this section, to demonstrate the applicability of the present method we have chosen three linear singular
perturbation problems with left-end boundary layer which are widely discussed in literature. The approximate
solutions of these problems are used for comparison. The approximate solution is compared with the exact
solution.

Example 3.1. Consider the following homogeneous singular perturbation problem from Bender and Orsazag
[1, p. 480; problem 9.17 with a = 0]
ey00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�

with y(0) = 1 and y(1) = 1.

The exact solution is given by
yðxÞ ¼ ½ðe
m2 � 1Þem1x þ ð1� em1Þem2x�

½em2 � em1 � ;
where m1 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p

Þ=ð2eÞ and m2 ¼ ð�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p

Þ=ð2eÞ.
The numerical results are given in Table 1a and b for e ¼ 10�2 and 10�3, respectively.

Example 3.2. Let us consider the following non-homogeneous singular perturbation problem from fluid
dynamics for fluid of small viscosity, Reinhardt [11, example 2]
ey00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1�

with y(0) = 0 and y(1) = 1.

The exact solution is given by yðxÞ ¼ xðxþ 1� 2eÞ þ ð2e�1Þð1�e�x=eÞ
ð1�e�1=eÞ .



Table 1
Numerical results of Example 3.1

X Y(X) (fitted) Chawla’s solution Exact solution

Panel a: e ¼ 10�2, h ¼ 10�2

0.00 1.0000000 1.0000000 1.0000000
0.01 0.6209159 0.6008961 0.6041336
0.02 0.4424902 0.4238589 0.4623245
0.03 0.3595471 0.3464715 0.4130807
0.04 0.3220527 0.3138159 0.3975782
0.05 0.3062052 0.3012550 0.3943904
0.06 0.3006817 0.2977365 0.3957127
0.07 0.3000962 0.2983025 0.3987026
0.08 0.3018866 0.3007292 0.4023249
0.09 0.3048346 0.3040194 0.4062027
0.10 0.3083609 0.3077259 0.4101991
0.20 0.3509845 0.3505355 0.4528673
0.30 0.4000615 0.3996136 0.5000052
0.40 0.4560010 0.4555634 0.5520498
0.50 0.5197623 0.5193467 0.6095114
0.60 0.5924392 0.5920602 0.6729541
0.70 0.6752784 0.6749543 0.7430004
0.80 0.7697008 0.7694545 0.8203378
0.90 0.8773260 0.8771855 0.9057249
1.00 1.0000000 1.0000000 1.0000000

Panel b: e ¼ 10�3, h ¼ 10�2

0.00 1.0000000 1.0000000 1.0000000
0.01 0.3736567 �0.1525618 0.3719724
0.02 0.2884285 0.5115076 0.3756784
0.03 0.2795464 0.1378099 0.3794502
0.04 0.2814718 0.3570651 0.3832599
0.05 0.2849635 0.2376433 0.3871079
0.06 0.2887190 0.3117861 0.3909945
0.07 0.2925550 0.2754246 0.3949201
0.08 0.2964464 0.3022745 0.3988851
0.09 0.3003902 0.2930932 0.4028900
0.10 0.3043866 0.3045790 0.4069350
0.20 0.3473942 0.3448339 0.4496879
0.30 0.3964786 0.3939106 0.4969323
0.40 0.4524982 0.4499849 0.5491403
0.50 0.5164331 0.5140416 0.6068335
0.60 0.5894015 0.5872170 0.6705877
0.70 0.6726800 0.6708092 0.7410401
0.80 0.7677249 0.7663009 0.8188942
0.90 0.8761991 0.8753862 0.9049277
1.00 1.0000000 1.0000000 1.0000000
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The numerical results are given in Table 2a and b for e ¼ 10�2 and 10�3, respectively.

Example 3.3. Consider the following variable coefficient singular perturbation problem from Kevorkian and
Cole [2, p. 33; Eqs. (2.3.26) and (2.3.27) with a = �1/2]
ey00ðxÞ þ 1� x
2

� �
y0ðxÞ � 1

2
yðxÞ ¼ 0; x 2 ½0; 1�
with y(0) = 0 and y(1) = 1.
We have chosen to use uniformly valid approximation (which is obtained by the method given by Nayfeh

[8, p. 148; Eq. (4.2.32)]) as our ‘exact’ solution



Table 2
Numerical results of Example 3.2

X Y(X) (fitted) Chawla’s solution Exact solution

Panel a: e ¼ 10�2, h ¼ 10�2

0.00 0.0000000 0.00000000 0.0000000
0.01 �0.8245463 �0.8760144 �0.6095782
0.02 �1.2178808 �1.2670670 �0.8273715
0.03 �1.4017174 �1.4373831 �0.9009086
0.04 �1.4837021 �1.5071491 �0.9212507
0.05 �1.5160987 �1.5310333 �0.9218968
0.06 �1.5242823 �1.5339022 �0.9151708
0.07 �1.5205728 �1.5270667 �0.9056064
0.08 �1.5109519 �1.5156716 �0.8948712
0.09 �1.4983236 �1.5020572 �0.8835791
0.10 �1.4840981 �1.4872879 �0.8719556
0.20 �1.3158038 �1.3181360 �0.7440000
0.30 �1.1196603 �1.1217003 �0.5960001
0.40 �0.8968498 �0.8985986 �0.4280000
0.50 �0.6473734 �0.6488308 �0.2400000
0.60 �0.3712310 �0.3723968 �0.0320001
0.70 �0.0684225 �0.0692968 0.1960000
0.80 0.2610522 0.2604693 0.4439999
0.90 0.6171930 0.6169016 0.7119999
1.00 1.0000000 1.0000000 1.0000000

Panel b: e ¼ 10�3, h ¼ 10�2

0.00 0.0000000 0.0000000 0.0000000
0.01 �1.3985754 �2.6077983 �0.9878747
0.02 �1.5879061 �1.0837667 �0.9776400
0.03 �1.6032392 �1.9400475 �0.9671600
0.04 �1.5933403 �1.4243878 �0.9564800
0.05 �1.5795872 �1.6988108 �0.9456000
0.06 �1.5650519 �1.5175732 �0.9345200
0.07 �1.5501759 �1.5984638 �0.9232400
0.08 �1.5350226 �1.5278976 �0.9117600
0.09 �1.5196011 �1.5441794 �0.9000800
0.10 �1.5039128 �1.5099998 �0.8882000
0.20 �1.3323622 �1.3437098 �0.7584000
0.30 �1.1341459 �1.1441001 �0.6086000
0.40 �0.9092641 �0.9177976 �0.4388001
0.50 �0.6577170 �0.6648292 �0.2490000
0.60 �0.3795043 �0.3851951 �0.0392001
0.70 �0.0746263 �0.0788951 0.1905999
0.80 0.2569171 0.2540707 0.4403999
0.90 0.6151260 0.6137024 0.7102000
1.00 1.0000000 1.0000000 1.0000000
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yðxÞ ¼ 1

2� x
� 1

2
e�ðx�x2=4Þ=e:
The numerical results are given in Table 3a and b for e ¼ 10�2 and 10�3, respectively.
4. Right-end boundary layer problems

Now let us discuss our present method for singularly perturbed two-point boundary value problems with
right-end boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation
problem of the form



Table 3
Numerical results of Example 3.3

X Y(X) (fitted) Chawla’s solution Exact solution

Panel a: e ¼ 10�2, h ¼ 10�2

0.00 0.0000000 0.0000000 0.0000000
0.01 0.1990452 0.2095716 0.3181124
0.02 0.2964433 0.3060890 0.4367028
0.03 0.3450344 0.3515598 0.4821542
0.04 0.3701083 0.3738933 0.5006725
0.05 0.3838162 0.3857052 0.5092342
0.06 0.3920188 0.3927225 0.5141078
0.07 0.3975543 0.3975565 0.5176194
0.08 0.4018025 0.4014028 0.5206365
0.09 0.4054370 0.4048115 0.5234846
0.10 0.4087878 0.4080370 0.5262867
0.20 0.4416590 0.4407397 0.5555555
0.30 0.4788066 0.4778685 0.5882353
0.40 0.5215091 0.5205625 0.6250000
0.50 0.5709993 0.5700607 0.6666667
0.60 0.6288814 0.6279783 0.7142857
0.70 0.6972787 0.6964532 0.7692308
0.80 0.7790488 0.7783682 0.8333333
0.90 0.8781180 0.8776891 0.9090909
1.00 1.0000000 1.0000000 1.0000000

Panel b: e ¼ 10�3, h ¼ 10�2

0.00 0.0000000 0.0000000 0.0000000
0.01 0.3222527 0.5827496 0.5024893
0.02 0.3711521 0.2533934 0.5050505
0.03 0.3806959 0.4456725 0.5076142
0.04 0.3845032 0.3405810 0.5102041
0.05 0.3874857 0.4045970 0.5128205
0.06 0.3903733 0.3728183 0.5154639
0.07 0.3932768 0.3952281 0.5181347
0.08 0.3962137 0.3871669 0.5208333
0.09 0.3991872 0.3962768 0.5235602
0.10 0.4021985 0.3958319 0.5263158
0.20 0.4345494 0.4292463 0.5555555
0.30 0.4715418 0.4661086 0.5882353
0.40 0.5141674 0.5086559 0.6250000
0.50 0.5637082 0.5582095 0.6666667
0.60 0.6218457 0.6165099 0.7142857
0.70 0.6908247 0.6858976 0.7692308
0.80 0.7737027 0.7695873 0.8333333
0.90 0.8747349 0.8721039 0.9090909
1.00 1.0000000 1.0000000 1.0000000
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ey00ðxÞ þ aðxÞy 0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð17Þ
with yð0Þ ¼ a; ð18aÞ
and yð1Þ ¼ b; ð18bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that a(x) 6M < 0
throughout the interval [0,1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 1.
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From the theory of singular perturbations the solution of (17) and (18) is of the form
yðxÞ ¼ y0ðxÞ þ
að1Þ
aðxÞ ðb� y0ð1ÞÞe

R 1

x

aðxÞ
e �

bðxÞ
aðxÞ

� �
dx
þOðeÞ; ð19Þ
where y0(x) is the solution of
aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð0Þ ¼ a: ð20Þ

By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘1’, (19) becomes,
yðxÞ ¼ y0ðxÞ þ ðb� y0ð1ÞÞe
að1Þ

e �
bð1Þ
að1Þ

� �
ð1�xÞ
þOðeÞ: ð21Þ
Now we divide the interval [0, 1] into N equal parts with constant mesh length h. Let 0 ¼ x0; x1; x2; . . . ; xN ¼ 1
be the mesh points. Then we have xi = ih; i ¼ 0; 1; 2; . . . ;N .

From (24) we have
yðihÞ ¼ y0ðihÞ þ ðb� y0ð1ÞÞe
að1Þ

e �
bð1Þ
að1Þ

� �
ð1�ihÞ

þOðeÞ:

Therefore
lim
h!0

yðihÞ ¼ y0ð0Þ þ ðb� y0ð1ÞÞe

�
a2ð1Þ�ebð1Þ

að1Þ

��
1
e�iq

�
; ð22Þ
where q ¼ h
e.

Now, we consider the fourth-order finite difference scheme (16) and introduce the fitting factor r(q)
rðqÞe
h2
ðyi�1 � 2yi þ yiþ1Þ ¼

�aiþ1 þ 10ai

24h
� aiaiþ1

48
� aiai�1

16
þ haibi�1

24
þ ai�1

8h
� bi�1

12

� �
yi�1

þ aiþ1

6h
þ aiðaiþ1 þ ai�1Þ � 10bi

12
� ai�1

6h

� �
yi

þ � aiþ1

8h
� biþ1

12
� 10ai

24h
� aiaiþ1

16
� haibiþ1

24
� aiai�1

48
þ ai�1

24h

� �
yiþ1

þ fiþ1 þ 10f i þ fi�1

12
þ haiðfiþ1 � fi�1Þ

24

� �
; 1 6 i 6 N � 1 ð23Þ
Multiplying (23) by h and taking limit as h! 0, we get
lim
h!0

r
q
ðyðði� 1ÞhÞ � 2yðihÞ þ yðði� 1ÞhÞÞ ¼ að0Þ

2
lim
h!0
ðyðði� 1ÞhÞ � yððiþ 1ÞhÞÞ ð24Þ
By substituting (22) in to (24) we get
lim
h!0

r
q
¼ 1

4
að0Þ

sinh að1Þ2�ebð1Þ
að1Þ

� �
q

� �

sinh að1Þ2�ebð1Þ
að1Þ

� �
q
2

� �h i2
: ð25Þ
) We have
r ¼ 1

4
að0Þ

sinh að1Þ2�ebð1Þ
að1Þ

� �
q

� �

sinh að1Þ2�ebð1Þ
að1Þ

� �
q
2

� �h i2
ð26Þ
r given by (26) is the constant fitting factor.
From Eq. (23) we get the recurrence relation of the form
Eiyi�1 � F iyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1; ð27Þ
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where
Table
Nume

X

Panel

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Panel

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
Ei ¼
er

h2
þ aiþ1 � 10ai

24h
þ aiaiþ1

48
þ aiai�1

16
� haibi�1

24
� ai�1

8h
þ bi�1

12
;

F i ¼
2er

h2
þ aiþ1 � ai�1

6h
þ aiðaiþ1 þ ai�1Þ � 10bi

12
;

Gi ¼
er

h2
þ aiþ1

8h
þ biþ1

12
þ 10ai � ai�1

24h
þ haibiþ1

24
þ aiaiþ1

16
þ aiai�1

48
;

Hi ¼
fiþ1 þ 10f i þ fi�1

12
þ haiðfiþ1 � fi�1Þ

24
:

To solve the tridiagonal system (27), we used Thomas Algorithm.
4
rical results of Example 5.1

Y(X) (fitted) Chawla’s solution Exact solution

a: e ¼ 10�2, h ¼ 10�2

1.0000000 1.0000000 1.0000000
0.9999987 0.9999990 1.0000000
0.9999979 0.9999978 1.0000000
0.9999968 0.9999967 1.0000000
0.9999957 0.9999956 1.0000000
0.9999945 0.9999945 1.0000000
0.9999934 0.9999934 1.0000000
0.9999922 0.9999923 1.0000000
0.9999905 0.9999911 1.0000000
0.9992620 0.9996110 0.9999546
0.9984906 0.9991565 0.9998766
0.9969020 0.9981574 0.9996645
0.9936300 0.9959612 0.9990881
0.9868909 0.9911329 0.9975212
0.9730108 0.9805182 0.9932621
0.9444227 0.9571823 0.9816844
0.8855410 0.9058793 0.9502131
0.7642649 0.7930915 0.8646653
0.5144774 0.5451316 0.6321224
0.0000000 0.0000000 0.0000000

b: e ¼ 10�3, h ¼ 10�2

1.0000000 1.0000000 1.0000000
1.0000007 0.9999998 1.0000000
1.0000014 0.9999994 1.0000000
1.0000021 0.9999992 1.0000000
1.0000029 0.9999991 1.0000000
1.0000036 0.9999991 1.0000000
1.0000042 0.9999991 1.0000000
1.0000049 0.9999990 1.0000000
1.0000056 0.9999828 1.0000000
1.0000063 0.9959657 1.0000000
1.0000063 1.0069994 1.0000000
1.0000063 0.9878500 1.0000000
1.0000052 1.0210843 1.0000000
0.9999978 0.9634053 1.0000000
0.9999454 1.0635089 1.0000000
0.9995803 0.8897761 1.0000000
0.9970394 1.1912943 1.0000000
0.9793568 0.6680008 1.0000000
0.8563052 1.5761919 0.9999546
0.0000000 0.0000000 0.0000000
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5. Examples with right-end boundary layer

Here we considered two singularly perturbed two-point boundary value problems with right-end boundary
layer and demonstrated the applicability of the present method. The approximate solution is compared with
the exact solution.

Example 5.1. Consider the following singular perturbation problem:
Table
Numer

X

Panel

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Panel

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
ey00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1�

with y(0) = 1 and y(1) = 0.

Clearly, this problem has a boundary layer at x = 1. i.e.; at the right end of the underlying interval.
5
ical results of Example 5.2

Y(X) (fitted) Chawla’s solution Exact solution

a: e ¼ 10�2, h ¼ 10�2

1.0000000 1.0000000 1.0000000
1.0000000 0.9999990 0.9048374
1.0000000 0.9999978 0.8187308
1.0000000 0.9999967 0.7408183
1.0000000 0.9999956 0.6703200
1.0000000 0.9999945 0.6065307
1.0000000 0.9999934 0.5488117
1.0000000 0.9999923 0.4965853
1.0000001 0.9999913 0.4493290
1.0002503 1.0001296 0.4066108
1.0005190 1.0002966 0.4026370
1.0010762 1.0006640 0.3988287
1.0022316 1.0014719 0.3954040
1.0046275 1.0032481 0.3929622
1.0095955 1.0071530 0.3931504
1.0198973 1.0157380 0.4004903
1.0412594 1.0346119 0.4273985
1.0855559 1.0761057 0.5079660
1.1774099 1.1673287 0.7357938
1.3678794 1.3678794 1.3678794

b: e ¼ 10�3, h ¼ 10�2

1.0000000 1.0000000 1.0000000
1.0000008 0.9999998 0.9048374
1.0000014 0.9999994 0.8187308
1.0000021 0.9999992 0.7408183
1.0000029 0.9999992 0.6703200
1.0000036 0.9999992 0.6065307
1.0000043 0.9999992 0.5488117
1.0000050 0.9999992 0.4965853
1.0000057 1.0000051 0.4493290
1.0000063 1.0014830 0.4065697
1.0000064 0.9974239 0.4025242
1.0000066 1.0044686 0.3985191
1.0000070 0.9922423 0.3945537
1.0000099 1.0134614 0.3906278
1.0000292 0.9766351 0.3867410
1.0001637 1.0405481 0.3828929
1.0010985 0.9296253 0.3790830
1.0076034 1.1221349 0.3753111
1.0528704 0.7880290 0.3716217
1.3678794 1.3678794 1.3678794
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The exact solution is given by yðxÞ ¼ eðx�1Þ=e�1ð Þ
ðe�1=e�1Þ .

The numerical results are given in Table 4a and b for e ¼ 10�2 and 10�3, respectively.

Example 5.2. Now we consider the following singular perturbation problem
ey00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1�

with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ and yð1Þ ¼ 1þ 1=e.

Clearly this problem has a boundary layer at x = 1. The exact solution is given by yðxÞ ¼ eð1þeÞðx�1Þ=e þ e�x.
The numerical results are given in Table 5a and b for e ¼ 10�2 and 10�3, respectively.
6. Discussion and conclusions

We have presented a fitted fourth-order tridiagonal finite difference method for solving singularly perturbed
two-point boundary value problems with the boundary layer at one end (left or right) point. To demonstrate
the applicability of the method, we have solved several linear and nonlinear problems. Solutions of these prob-
lems using the present fitted method are compared with Chawla’s [5]. From the results, it is observed that the
present method is stable and has better approximation to the exact solution.
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