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Abstract

An exponentially fitted special second-order finite difference method is presented for solving singularly perturbed two-
point boundary value problems with the boundary layer at one end (left or right) point. A fitting factor is introduced in a
tri-diagonal finite difference scheme and is obtained from the theory of singular perturbations. Thomas Algorithm is used
to solve the system and its stability is investigated. To demonstrate the applicability of the method, we have solved several
linear and non-linear problems. From the results, it is observed that the present method approximates the exact solution
very well.
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1. Introduction

Singularly perturbed second-order two-point boundary value problems occur very frequently in fluid
mechanics and other branches of Applied Mathematics. These problems depend on a small positive parameter
in such away that the solution varies rapidly (called boundary layer region) in some part and varies slowly in
some other parts. The numerical treatment of singular perturbation problems is far from the trivial because of
the boundary layer behavior of the solution. There are a wide variety of techniques for solving singular per-
turbation problems (cf. [1-13]).

In this paper, an exponentially fitted special second-order finite difference method is presented for solving
singularly perturbed two-point boundary value problems with the boundary layer at one end (left or right)
point. A fitting factor is introduced in a tri-diagonal finite difference scheme and is obtained from the theory
of singular perturbations. Thomas Algorithm is used to solve the system and its stability is investigated. To
demonstrate the applicability of the method, we have solved several linear and non-linear problems. From
the results, it is observed that the present method approximates the exact solution very well.
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2. Special second-order finite difference method

Consider a linear singularly perturbed two-point boundary value problem of the form:

&)'(x) + a(x)y"(x) + b(x)y(x) = f(x), x€[0,1], (1)
with y(0) = o (2a)
and y(1) = p; (2b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, f§ are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0,1]. Further more, we assume that b(x) < 0,
a(x) = M >0 throughout the interval [0, 1], where M is some positive constant.

A finite difference scheme is often a convenient choice for the numerical solution of two point boundary
value problems. Through out the discussion the symbols u, 0 denote the usual central difference operators
and E and D denote the shift (displacement) and the differential operators, respectively. We divide the interval
[0,1] in to N equal subintervals of uniform mesh size 4. Consider a typical pivotal point in the mesh, at
x = x; + gh. The following expression can be written for y, )/, y":

Ve = y(xi + gh) = E*y(x:), (3)
Ve =Dy, (4)
Vi =D, (5)
The shift operator
E =¢" (6)
can be related to the central difference operators p, ¢ by using the following expressions:
1 1
hD = pd — —ud® + —pud* + - - - 7
O — G HO” +Zmpd” (7)
1 1
oy sz L e
WD =8 — 50" g0 e (8)
h3D3:u53—%u55+-.., (9)
1
h4D4:64—656+~--. (10)
By substituting (6)—(10) into (3)—(5), we get
2 1 2(o2 _ 1
o= [14guo+ 884 Le(g -1y + £ ~Dgey ] (11)
& 2 6 24
o1 3g2—1 ot
T R e et LA (12)
h 6 12
" 1 6g2 —1 ,ués
Ve =3 |6 +gud’ + 3 +g(2g =3) -+ | (13)
h 12 6
By substituting Eqgs. (11)—~(13) with g =1/2 in to Eq. (1) we get:
€ ai 3 i + 6 i~ Vi .
?O’m =2ty + 4;11/2 Wie1 =) + bivip (%) =firr; 1 <i<N-1 (14)

3. Exponentially fitted special second-order finite difference scheme

A difference scheme with a fitting factor containing exponential functions is known as exponentially fitted
difference scheme.
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To describe the method, we first consider a linear singularly perturbed two-point boundary value problem
of the form:

&' (x) +a(x)y'(x) + b(x)y(x) = f(x), x€0,1], (1)
with y(0) = «, (2a)
and y(1) = f; (2b)

where ¢ is a small positive parameter (0 < ¢ < 1) and o, ff are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that b(x) <0,
a(x) = M > 0 throughout the interval [0, 1], where M is some positive constant. Under these assumptions,
Eq. (1) has a unique solution y(x) which in general, displays a boundary layer of width O(¢) at x = 0 for small
values of e.

From the theory of singular perturbations it is known that the solution of (1) and (2) is of the form (cf.
O’Malley [8, pp. 22-26])

o) = 300)+ 2 a0 (=) o0 (15)
where y,(x)is the solution of
a(x)yy(x) + bx)yo(x) = £ (x), yo(1) = B. (16)
By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘0’, (15) becomes,
_ e )
y(x) = yo(x) + (& = yy(0))e +0(e). (17)

Now we divide the interval [0,1] into N equal parts with constant mesh length 4. Let 0 = x,, xy, x5, ...,
xy = 1 be the mesh points. Then we have x; = ih; i =0,1,2,... N.
From (17) we have

a(0) _b(0)

y(xi) = yolx) + (o — yo(O)){( "“’))x" +0(e)

FONORW

i.e. y(ih) = yo(ih) + (2 — y,(0))e (_’ﬁ)h +0(e).
Therefore
a~ (0[1)&];:[7(0)) ip

lim y(ih) = (0) + (= —yo(O))ﬁ;( (18)

where p =
Now, we consider the special second-order finite difference scheme (14) and introduce the fitting factor a(p):

ea(p aiv1/2 3y + Oy — v
( )(J’m =2y, +y)+ ( J;l/ ) + bit1) (%) = fir1)2;

b
&

hz
1<i<N-1; (19)

Yo = a; yy = f; where a(p) is a fitting factor which is to be determined in such a way that the solution of (19)
converges uniformly to the solution of (1) and (2).
Multiplying (19) by 4 and taking the limit as 2 — 0; we get

. [a(p
}E»% [% Vi1 = 20+ yim1) + @i p (Vi — yi):| =0

if fivi2 — bisip2 (W%) is bounded.
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lim [6(;0)

——= (v(ih 4 h) = 2y(ih) 4 y(ih — h)) + a(ih + h/2)(y(ih + h) — y(ih))| = 0, (20)

p
2
a%(0)—eb(0)
[1 o ei( a(0) )/’

g 1
lim — = —a(0) . (21)
h—0 4 . a(02—eb(0 2
! jsinh ((*557)3)
[1 B e_ (az(oa)(?];;b(o)> p]
p
We have o = =a(0) , (22)
4 : a(0)>—eb(0 2
o (559
g given by (22) is the constant fitting factor.
From (19) we have
ea(p a; 3V + 6y, — i .
%(J’Hl =2y +yi)+ +Tl/2(yz'+1 —y)+ bi+1/2 (J}H8y1> :fi+1/2§ i=1,2,...,N-1
g0 biiip 260 a2 6biyip eo 3bii1p .
<F_ g )%1 - <7+ n g ittty ) =fin i=12,...,N-1 (23)
where the fitting factor ¢ is given by (22).
The equivalent three term recurrence relation of Eq. (23) is given by:
Ey,—Fy+Gy=H; i=123... N-1 (24)
where
e b(x;+h/2)
E; = 2o 8 (25a)
2¢0  a(x;+h/2) 6b(x;+h/2)
Fj = /5 - 3 25b
e h 8 (25b)
eo  3b(x;+h/2)
Gi= gt (25¢)
H;=f(x;+h/2). (25d)

This gives us the tri-diagonal system which can be solved easily by Thomas Algorithm described in the next
section.

4. Thomas algorithm

A brief discussion on solving the tri-diagonal system using Thomas algorithm is presented as follows:
Consider the scheme:

Ey,\—Fy,+Gy,, =H; i=123...,N-1 (26)
subject to the boundary conditions

yo=y(0) = (27a)

yy=x(1) =8 (27b)
We set

yi=Wy+T;, fori=N-1, N-2,...2,1. (28)

where W; = W(x;) and T; = T(x;) which are to be determined.
From (28), we have

Vig =Wy +Tin (29)
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By substituting (29) in (26), we get
E(Wis1y; + Tit) = Fiy; + Gy = Hi.

Gi EiTifl - Hf
= )y, kit 30
i (Fi — EiWil)yl+l * (F,» - E,-W,-1> 0
By comparing (30) and (28), we get the recurrence relations
G

Wy==——F"—], 31

Qi&m) Gla)
ET: | —H,

7= (=), 31b
<Fi —E; Wi—l> (310)
To solve these recurrence relations fori =0, 1,2, 3, ..., N — 1, we need the initial conditions for W, and T,.

For this we takey, = o = Wy, + To. We choose W, = 0 so that the value of Ty = «. With these initial values,
we compute W;and T;fori=1,2,3,..., N—1 from (31) in forward process, and then obtain y; in the back-
ward process from (28) and (27b).

5. Stability analysis

We will now show that the algorithm is computationally stable. By stability, we mean that the effect of an
error made in one stage of the calculation is not propagated into larger errors at later stages of the calcula-
tions. Let us now examine the recurrence relation given by (31a). Suppose that a small error ¢; | has been
made in the calculation of W;_; then, we have

Wi_y = W,_i +e,_; and we are actually calculating

W, = <L> (32)
Fi—EW;,

From (32) and (31a), we have

o — G; B G;
o F,—E(Wi_i+e_) F,—EW,

G,‘Eiel‘,l W?El (33)
— = €
(Fi—E(W.\ +e1)(Fi—EW, ) G, '

under the assumption that the error is small initially. From the assumptions made earlier that a(x) > 0 and
b(x) < 0, we have

F1>E1+G17 i:172737"'7N_1

Form (31a) we have

G .
WI:—1<1, since F| > G
Fy
G, G .
W, = < ; W, <1,
2TF_EwW, F,—E Chem
G )
<—F——=1; since F, 2 E,+G
Er+ Gy —E; 22 B2t O
successively, it follows that
2 |Ei .
le;| = |73 e le,1| < |ei—1| since |E;| < |Gil.

Therefore the recurrence relation (31a) is stable. Similarly we can prove that the recurrence relation (31b) is
also stable. Finally the convergence of the Thomas Algorithm is ensured by the condition |[W,;| < 1,i = 1,2, 3,
. ,N—1.
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6. Numerical examples

In this section, to demonstrate the applicability of the present method we have chosen three linear singular
perturbation problems with left-end boundary layer which are widely discussed in literature. The approximate
solutions of these problems are used for comparison. The approximate solution is compared with the exact
solution.

Example 6.1. Consider the following homogeneous singular perturbation problem from Bender and Orszag
([1, pp. 480]; problem 9.17 with o = 0)

&"(x) +/(x) = y(x) =0;  x€[0,1]
with y(0) =1 and y(1)=1.
The exact solution is given by
B [(emz _ l)emlx + (1 _ eml)emzx]
y(x) = o —em]

where m; = (=1 + /1 +4¢)/(2¢) and my = (=1 — V1 +4¢)/(2¢).

The numerical results are given in Tables la and 1b for ¢ = 10~ and 10~ respectively.

3

Example 6.2. Let us consider the following non-homogeneous singular perturbation problem from fluid
dynamics for fluid of small viscosity, Reinhardt ([10], example 2)

&' (x) +)/(x) =1+ 2xx € [0,1]

with y(0) =0 and y(1) = I.
The exact solution is given by

(26— 1)(1 — e )
(1—c)

The numerical results are given in Tables 2a and 2b for ¢ = 10~* and 10~*, respectively.

yx)=x(x+1-2¢) +

Example 6.3. Consider the following variable coefficient singular perturbation problem from Kevorkian and
Cole ([4, pp. 33]; Egs. (2.3.26) and (2.3.27) with o = —1/2)

/() + (1 -2)() — 330 = 0x € 0,1

Table la

Numerical results of Example 6.1, ¢ = 1073, h=10"2

x y(x) Exact solution
0.00 1.0000000 1.0000000
0.01 0.3723905 0.3719724
0.02 0.3753125 0.3756784
0.04 0.3828933 0.3832599
0.06 0.3906282 0.3909945
0.08 0.3985194 0.3988851
0.10 0.4065700 0.4069350
0.20 0.4493294 0.4496879
0.30 0.4965857 0.4969323
0.40 0.5488120 0.5491403
0.50 0.6065310 0.6068335
0.60 0.6703203 0.6705877
0.70 0.7408184 0.7410401
0.80 0.8187310 0.8188942
0.90 0.9048376 0.9049277

1.00 1.0000000 1.0000000
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Table 1b

Numerical results of Example 6.1, ¢ = 107*, h =107

X y(x) Exact solution
0.00 1.0000000 1.0000000
0.01 0.3723643 0.3716134
0.02 0.3753144 0.3753479
0.04 0.3828952 0.3829296
0.06 0.3906302 0.3906645
0.08 0.3985214 0.3985557
0.10 0.4065720 0.4066062
0.20 0.4493313 0.4493649
0.30 0.4965876 0.4966201
0.40 0.5488138 0.5488445
0.50 0.6065326 0.6065609
0.60 0.6703218 0.6703468
0.70 0.7408197 0.7408404
0.80 0.8187319 0.8187470
0.90 0.9048380 0.9048464
1.00 1.0000000 1.0000000
Table 2a

Numerical results of Example 6.2, ¢ = 107%, h = 1072

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 —0.9898533 —0.9878747
0.02 —0.9795987 —0.9776400
0.04 —0.9583987 —0.9564800
0.06 —0.9363987 —0.9345200
0.08 —0.9135987 —0.9117600
0.10 —0.8899987 —0.8882000
0.20 —0.7599989 —0.7584000
0.30 —0.6099989 —0.6086000
0.40 —0.4399991 —0.4388001
0.50 —0.2499992 —0.2490000
0.60 —0.0399993 —0.0392001
0.70 0.1900005 0.1905999
0.80 0.4400004 0.4403999
0.90 0.7100002 0.7102000
1.00 1.0000000 1.0000000

with »(0) =0 and y(1) = 1.
We have chosen to use uniformly valid approximation which is obtained by the method given by Nayfeh

([7, pp. 148], equation 4.2.32) as our ‘exact’ solution:
1 1 _

2—x 2
The numerical results are given in Tables 3a and 3b for ¢ = 107> and 10, respectively.

X7x2 &
y(x) = (=x*/4)/e

7. Non-linear problems

Non-linear singular perturbation problems were converted as a sequence of linear singular perturbation
problems by using Quasilinearization (Replacing the non-linear problem by a sequence of linear problems)
method. The outer solution (the solution of the given problem by putting ¢ = 0) is taken to be the initial
approximation.
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Table 2b

Numerical results of Example 6.2, ¢ = 1074, h =107

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 —0.9898996 —0.9897020
0.02 —0.9795996 —0.9794040
0.04 —0.9583996 —0.9582080
0.06 —0.9363996 —0.9362120
0.08 —0.9135996 —0.9134160
0.10 —0.8899996 —0.8898200
0.20 —0.7599996 —0.7598400
0.30 —0.6099995 —0.6098601
0.40 —0.4399996 —0.4398801
0.50 —0.2499996 —0.2499000
0.60 —0.0399997 —0.0399201
0.70 0.1900003 0.1900600
0.80 0.4400002 0.4400398
0.90 0.7100001 0.7100199
1.00 1.0000000 1.0000000
Table 3a

Numerical results of Example 6.3, ¢ = 1073, h=10"2

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 0.5021808 0.5024893
0.02 0.5050551 0.5050505
0.04 0.5102089 0.5102041
0.06 0.5154687 0.5154639
0.08 0.5208381 0.5208333
0.10 0.5263206 0.5263158
0.20 0.5555605 0.5555555
0.30 0.5882403 0.5882353
0.40 0.6250049 0.6250000
0.50 0.6666715 0.6666667
0.60 0.7142904 0.7142857
0.70 0.7692348 0.7692308
0.80 0.8333368 0.8333333
0.90 0.9090930 0.9090909
1.00 1.0000000 1.0000000

The approximate solution is compared with the exact solution.
8. Non-linear examples
We considered three non-linear singular perturbation problems with left-end boundary layer to demon-

strate the applicability of the present method.

Example 8.1. Consider the following singular perturbation problem from Bender and Orszag ([1, pp. 463];
equations: 9.7.1)

& (x) + 2/ (x) +&¥ =0; x€]0,1]

with y(0) =0 and y(1) = 0.
The linear problem concerned to this example is

o)+ 20+ ) = () o (57) 1
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Table 3b

Numerical results of Example 6.3, ¢ = 107*, h =107

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 0.5022034 0.5025126
0.02 0.5050550 0.5050505
0.04 0.5102088 0.5102041
0.06 0.5154686 0.5154639
0.08 0.5208380 0.5208333
0.10 0.5263205 0.5263158
0.20 0.5555604 0.5555555
0.30 0.5882401 0.5882353
0.40 0.6250048 0.6250000
0.50 0.6666714 0.6666667
0.60 0.7142903 0.7142857
0.70 0.7692348 0.7692308
0.80 0.8333365 0.8333333
0.90 0.9090929 0.9090909
1.00 1.0000000 1.0000000

We have chosen to use Bender and Orszag’s uniformly valid approximation ([1, pp. 463], equation: 9.7.6) for
comparison,

o 2 —2x/¢
o) = tog, () - (log.2)e >

For this example, we have boundary layer of thickness O(¢) at x = 0 (cf. Bender and Orszag [1]).
The numerical results are given in Tables 4a and 4b for ¢ = 10~ and 10~*, respectively.

Example 8.2. Let us consider the following singular perturbation problem from Kevorkian and Cole ([4, pp.
56], Eq. (2.5.1))
&y (x) + y(x)y'(x) = y(x) = 0; x €[0,1]

with y(0) = —1 and y(1) = 3.9995.
The linear problem concerned to this example is

&y (x) + (x +2.9995))/ (x) = x + 2.9995.

Table 4a

Numerical results of Example 8.1, ¢ = 1073, h=10"2

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 0.6840518 0.6831968
0.02 0.6733397 0.6733446
0.04 0.6539229 0.6539265
0.06 0.6348748 0.6348783
0.08 0.6161829 0.6161861
0.10 0.5978339 0.5978370
0.20 0.5108232 0.5108256
0.30 0.4307811 0.4307829
0.40 0.3566736 0.3566750
0.50 0.2876811 0.2876821
0.60 0.2231429 0.2231436
0.70 0.1625185 0.1625189
0.80 0.1053602 0.1053605
0.90 0.0512932 0.0512933

1.00 0.0000000 0.0000000
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Table 4b

Numerical results of Example 8.1, ¢ = 1074, h =107

X y(x) Exact solution
0.00 0.0000000 0.0000000
0.01 0.6840518 0.6831968
0.02 0.6733397 0.6733446
0.04 0.6539229 0.6539265
0.06 0.6348748 0.6348783
0.08 0.6161829 0.6161861
0.10 0.5978339 0.5978370
0.20 0.5108232 0.5108256
0.30 0.4307811 0.4307829
0.40 0.3566736 0.3566750
0.50 0.2876811 0.2876821
0.60 0.2231429 0.2231436
0.70 0.1625185 0.1625189
0.80 0.1053603 0.1053605
0.90 0.0512932 0.0512933
1.00 0.0000000 0.0000000

We have chosen to use the Kivorkian and Cole’s uniformly valid approximation ([4, pp. 57-58], Egs. (2.5.5),
(2.5.11) and (2.5.14)) for comparison,

o= (9) ()

where ¢; = 2.9995 and ¢, = (1/c1)log,[(c; — 1)/(c; + 1)].

For this example also we have a boundary layer of width O(¢) at x = 0 (cf. Kevorkian and Cole [4, pp. 56—
66)).

The numerical results are given in Tables 5a and 5b for ¢ = 107> and 10~ respectively.

Example 8.3. Consider the following singular perturbation problem from O’Malley ([8, pp. 9], Equation (1.10)
case 2):

&' (x) —yx)y'(x) =0; xe[-1,1].
With y(—1) =0 and y(1) = —1.

Table 5a

Numerical results of Example 8.2, ¢ = 1073, h=10"2

X y(x) Exact solution
0.00 —1.0000000 —1.0000000
0.01 3.0095010 3.0095000
0.02 3.0195010 3.0195000
0.04 3.0395010 3.0395000
0.06 3.0595009 3.0595000
0.08 3.0795009 3.0795000
0.10 3.0995009 3.0994999
0.20 3.1995008 3.1995001
0.30 3.2995007 3.2995000
0.40 3.3995006 3.3994999
0.50 3.4995005 3.4995000
0.60 3.5995004 3.5994999
0.70 3.6995003 3.6995001
0.80 3.7995002 3.7995000
0.90 3.8995001 3.8994999

1.00 3.9995000 3.9995000
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Table 5b

Numerical results of Example 8.2, ¢ = 107*, h =107

X y(x) Exact solution
0.00 —1.0000000 —1.0000000
0.01 3.0095010 3.0095000
0.02 3.0195010 3.0195000
0.04 3.0295010 3.0295000
0.06 3.0395010 3.0395000
0.08 3.0495009 3.0495000
0.10 3.0595009 3.0595000
0.20 3.0695009 3.0695000
0.30 3.0795009 3.0795000
0.40 3.0895009 3.0895000
0.50 3.0995009 3.0994999
0.60 3.1995008 3.1995001
0.70 3.2995007 3.2995000
0.80 3.3995006 3.3994999
0.90 3.4995005 3.4995000
1.00 3.5995004 3.5994999
0.70 3.6995003 3.6995001
0.80 3.7995002 3.7995000
0.90 3.8995001 3.8994999
1.00 3.9995000 3.9995000

The linear problem concerned to this example is
& (x) +1/(x) = 0.
We have chosen to use O’Malley’s approximate solution ([8, pp. 9-10], Egs. (1.13) and (1.14)) for comparison,
(1 — e bere)

y(x) = (1 4 e=G+D/) :
Table 6a
Numerical results of Example 8.3, ¢ = 1073, h=10"
X y(x) Exact solution
—1.00 0.0000000 0.0000000
—0.90 —1.0000000 —1.0000000
—0.80 —1.0000000 —1.0000000
—0.70 —1.0000000 —1.0000000
—0.60 —1.0000000 —1.0000000
—0.50 —1.0000000 —1.0000000
—0.40 —1.0000000 —1.0000000
—0.30 —1.0000000 —1.0000000
—0.20 —1.0000000 —1.0000000
—0.10 —1.0000000 —1.0000000
0.00 —1.0000000 —1.0000000
0.10 —1.0000000 —1.0000000
0.20 —1.0000000 —1.0000000
0.30 —1.0000000 —1.0000000
0.40 —1.0000000 —1.0000000
0.50 —1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000
0.70 —1.0000000 —1.0000000
0.80 —1.0000000 —1.0000000
0.90 —1.0000000 —1.0000000

1.00 —1.0000000 —1.0000000
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Table 6b
Numerical results of Example 8.3, ¢ = 1074, h =107
X y(x) Exact solution
—1.00 0.0000000 0.0000000
-0.90 —1.0000000 —1.0000000
—0.80 —1.0000000 —1.0000000
-0.70 —1.0000000 —1.0000000
—0.60 —1.0000000 —1.0000000
-0.50 —1.0000000 —1.0000000
—0.40 —1.0000000 —1.0000000
-0.30 —1.0000000 —1.0000000
—0.20 —1.0000000 —1.0000000
—0.10 —1.0000000 —1.0000000
0.00 —1.0000000 —1.0000000
0.10 —1.0000000 —1.0000000
0.20 —1.0000000 —1.0000000
0.30 —1.0000000 —1.0000000
0.40 —1.0000000 —1.0000000
0.50 —1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000
0.70 —1.0000000 —1.0000000
0.80 —1.0000000 —1.0000000
0.90 —1.0000000 —1.0000000
1.00 —1.0000000 —1.0000000

For this example, we have a boundary layer of width O(e) at x = —1 (cf. O’Malley [8, pp. 9-10], Egs. (1.10),
(1.13), (1.14), case 2).
The numerical results are given in Tables 6a and 6b for ¢ = 10~ and 10~ respectively.

9. Right-end boundary layer problems

Now let us discuss our present method for singularly perturbed two point boundary value problems with
right-end boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation
problem of the form:

&' (x) + a(x)y'(x) + b(x)y(x) = f(x), x€][0,1] (34)
With y(0) = o, (35a)
and y(1) = p, (35b)

where ¢ is a small positive parameter (0 < ¢ < 1) and o,  are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0, 1]. Furthermore, we assume that a(x)< M < 0
throughout the interval [0, 1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 1.

From the theory of singular perturbations the solution of (34) and (35) is of the form

ab)_b)

y(x) = yolx) +%(ﬁyo(1))eﬁ ( “(‘”) +0(), (36)

where y,(x)is the solution of
a(x)yo(x) + b(xX)yo(x) = f(x),  »,(0) = ot (37)
By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘1°, (36) becomes,

a(l) (1)

Y(x) = yo(x) + (B —yo<1>>e( Ss)aen (). (38)
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Now we divide the interval [0,1] into N equal parts with constant mesh length /. Let 0 = xq,x1, x>,
....xy = 1 be the mesh points. Then we have x; = ik; i=0,1,2,...,N.
From (38) we have

a(l)_b(1)

W(ih) = yo(ih) + (B — y0<1>>e(T’W)“”"” +0(e).

Therefore
. . (az(l)—;,h(])) (—ip)
lim y(ih) = y(0) + (B — yo(1))et 7/ (39)
where p =%
Now, we consider the special second-order finite difference scheme (14) and introduce the fitting factor a(p):
ea(p a; 3y 6y, —yi :
%O’iﬂ =2y +yi) + +Tl/2(yf+1 — i) + by (%) =firiy 1<iSN -1 (40)

Yo = a; ¥y = P; where a(p) is a fitting factor which is to be determined in such a way that the solution of (40)
converges uniformly to the solution of (35) and (36).
Multiplying (40) by h and taking the limit as 7 — 0; we get

.o
},Lmo [% (yi+1 -2y +J’i71) + aiv12 ()’i+1 _J’i)] =0,
ift fiv1/2 = bip1)2 (%) is bounded.

limy,_o {@ ((ih 4+ h) = 2y(ih) + y(ih — h)) + a(ih + h/2)(y(ih + h) — y(ih))| = 0. (41)

Substituting (39) in (41) and simplifying, we get

a2(1)—eb(1)
[l—e( )’

.o 1
fim > =790) o () ) (42)
We have:
ll —e (W) p]
o ="La(0) (43)

- a(1’—eb(1) 2’
sint ((*455) )]

o given by (43) is the constant fitting factor.
From (40) we have

ea(p ait1)2 3y + 6y — v :
( )(J’H-l =2y +yi1) ++7/(J/i+1 =) +bi+1/2(y+1yyl) =finypy i=1,2,...,N—1

h? h 8
g6 biiip 260 aiy 6bip eo 3bi1p )
<?_ ] )yil_ <7+ h - ] y1+ FJ’_ ] yi+]:ﬁ+l/2; l:1727"'5N_1 (44)

where the fitting factor o is given by (43).
An equivalent three term recurrence relation for Eq. (40) is:

Eiyifl_Fiyi+Giyi+1:Hi; i:15253a"'7N_17 (45)

where
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e b(x;+h/2)

Ei—__ )
" 8
P _2e0 a(xi+h/2) 6b(xi+h/2)
[ h2 h 8 bl
ea  3b(x;+h/2)
G =5+ ————,
" 8
H[ :f(x,+h/2)

Thomas Algorithm is used to solve the tri-diagonal system (45).
10. Examples with right-end boundary layer
Here we considered two singularly perturbed two point boundary value problems with right-end boundary

layer and demonstrated the applicability of the present method. The approximate solution is compared with
the exact solution.

Table 7a

Numerical results of Example 10.1, ¢ = 1073, h=10"2

X y(x) Exact solution
0.00 1.0000000 1.0000000
0.10 1.0000005 1.0000000
0.20 1.0000011 1.0000000
0.30 1.0000017 1.0000000
0.40 1.0000023 1.0000000
0.50 1.0000029 1.0000000
0.60 1.0000035 1.0000000
0.70 1.0000041 1.0000000
0.80 1.0000046 1.0000000
0.90 1.0000052 1.0000000
0.92 1.0000054 1.0000000
0.94 1.0000055 1.0000000
0.96 1.0000056 1.0000000
0.98 1.0000057 1.0000000
0.99 0.9999605 0.9999546
1.00 0.0000000 0.0000000
Table 7b

Numerical results of Example 10.1, ¢ = 1074, h=1072

x y(x) Exact solution
0.00 1.0000000 1.0000000
0.10 1.0000000 1.0000000
0.20 1.0000000 1.0000000
0.30 1.0000000 1.0000000
0.40 1.0000000 1.0000000
0.50 1.0000000 1.0000000
0.60 1.0000000 1.0000000
0.70 1.0000000 1.0000000
0.80 1.0000000 1.0000000
0.90 1.0000000 1.0000000
0.92 1.0000000 1.0000000
0.94 1.0000000 1.0000000
0.96 1.0000000 1.0000000
0.98 1.0000000 1.0000000
0.99 1.0000000 1.0000000

1.00 1.0000000 1.0000000
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Example 10.1. Consider the following singular perturbation problem:
&'(x) =y'(x) =0; x€[0,1]

with y(0) =1 and y(1) = 0.
Clearly, this problem has a boundary (lqyg; at)x = 1. i.e., at the right end of the underlying interval.
The exact solution is given by y( ) = e v
The numerical results are given in Tdb‘es 7a’and 7b for ¢ = 107 and 10*, respectively.

Example 10.2. Now we consider the following singular perturbation problem
& (x) =y (x) = (1 +e)y(x) =0; x€[0,1]

with y(0) =1 +exp(—(1 +¢)/e); and y(1) =1+ 1/e.
Clearly this problem has a boundary layer at x = 1.
The exact solution is given by y(x) = el *a(=1/¢ 4 e=x,
The numerical results are given in Tables 8a and 8b for ¢ = 10~ and 10~%, respectively.

Table 8a

Numerical results of Example 10.2, ¢ = 1073, h=1072

X y(x) Exact solution
0.00 1.0000000 1.0000000
0.10 0.9056407 0.9048374
0.20 0.8201851 0.8187308
0.30 0.7427930 0.7408183
0.40 0.6727035 0.6703200
0.50 0.6092277 0.6065307
0.60 0.5517415 0.5488117
0.70 0.4996795 0.4965853
0.80 0.4525301 0.4493290
0.90 0.4098296 0.4065697
0.92 0.4017858 0.3985191
0.94 0.3938998 0.3906278
0.96 0.3861686 0.3828929
0.98 0.3786025 0.3753111
0.99 0.3712000 0.3716217
1.00 1.3678794 1.3678794
Table 8b

Numerical results of Example 10.2, ¢ = 1074, h=1072

X y(x) ?7>Exact solution
0.00 1.0000000 1.0000000
0.10 0.9057209 0.9048374
0.20 0.8203305 0.8187308
0.30 0.7429905 0.7408183
0.40 0.6729421 0.6703200
0.50 0.6094978 0.6065307
0.60 0.5520348 0.5488117
0.70 0.4999894 0.4965853
0.80 0.4528508 0.4493290
0.90 0.4101565 0.4065697
0.92 0.4021133 0.3985191
0.94 0.3942279 0.3906278
0.96 0.3864971 0.3828929
0.98 0.3789316 0.3753111
0.99 0.3714887 0.3716217

1.00 1.3678794 1.3678794
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11. Discussion and conclusions

We have presented an exponentially fitted special second-order finite difference method for solving singu-
larly perturbed two-point boundary value problems. We have implemented the present method on three linear
examples, three non-linear examples, with left-end boundary layer and two examples with right-end boundary
layer by taking different values of ¢. Numerical results are presented in tables and compared with the exact
solutions. It can be observed from the tables that the present method approximates the exact solution very
well.
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