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Abstract

An exponentially fitted special second-order finite difference method is presented for solving singularly perturbed two-
point boundary value problems with the boundary layer at one end (left or right) point. A fitting factor is introduced in a
tri-diagonal finite difference scheme and is obtained from the theory of singular perturbations. Thomas Algorithm is used
to solve the system and its stability is investigated. To demonstrate the applicability of the method, we have solved several
linear and non-linear problems. From the results, it is observed that the present method approximates the exact solution
very well.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Singularly perturbed second-order two-point boundary value problems occur very frequently in fluid
mechanics and other branches of Applied Mathematics. These problems depend on a small positive parameter
in such away that the solution varies rapidly (called boundary layer region) in some part and varies slowly in
some other parts. The numerical treatment of singular perturbation problems is far from the trivial because of
the boundary layer behavior of the solution. There are a wide variety of techniques for solving singular per-
turbation problems (cf. [1–13]).

In this paper, an exponentially fitted special second-order finite difference method is presented for solving
singularly perturbed two-point boundary value problems with the boundary layer at one end (left or right)
point. A fitting factor is introduced in a tri-diagonal finite difference scheme and is obtained from the theory
of singular perturbations. Thomas Algorithm is used to solve the system and its stability is investigated. To
demonstrate the applicability of the method, we have solved several linear and non-linear problems. From
the results, it is observed that the present method approximates the exact solution very well.
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2. Special second-order finite difference method

Consider a linear singularly perturbed two-point boundary value problem of the form:
ey00ðxÞ þ aðxÞy 00ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1�; ð1Þ
with yð0Þ ¼ a ð2aÞ
and yð1Þ ¼ b; ð2bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0, 1]. Further more, we assume that b(x) 6 0,
a(x) P M > 0 throughout the interval [0, 1], where M is some positive constant.

A finite difference scheme is often a convenient choice for the numerical solution of two point boundary
value problems. Through out the discussion the symbols l, d denote the usual central difference operators
and E and D denote the shift (displacement) and the differential operators, respectively. We divide the interval
[0,1] in to N equal subintervals of uniform mesh size h. Consider a typical pivotal point in the mesh, at
x ¼ xi þ gh. The following expression can be written for y, y 0; y00:
yg ¼ yðxi þ ghÞ ¼ EgyðxiÞ; ð3Þ
y 0g ¼ Dyg; ð4Þ
y 00g ¼ D2yg: ð5Þ
The shift operator
E ¼ ehD ð6Þ

can be related to the central difference operators l, d by using the following expressions:
hD ¼ ld� 1

6
ld3 þ 1

30
ld5 þ � � � ; ð7Þ

h2D2 ¼ d2 � 1

12
d4 þ 1

90
d6 þ � � � ; ð8Þ

h3D3 ¼ ld3 � 1

4
ld5 þ � � � ; ð9Þ

h4D4 ¼ d4 � 1

6
d6 þ � � � : ð10Þ
By substituting (6)–(10) into (3)–(5), we get
yg ¼ 1þ gldþ g2

2
d2 þ 1

6
gðg2 � 1Þld3 þ g2ðg2 � 1Þ

24
d4 þ � � �

� �
yi; ð11Þ

y 0g ¼
1

h
ldþ gd2 þ ð3g2 � 1Þ

6
ld3 þ gð2g2 � 1Þ d

4

12
þ � � �

� �
yi; ð12Þ

y 00g ¼
1

h2
d2 þ gld3 þ 6g2 � 1

12
d4 þ gð2g2 � 3Þ ld5

6
þ � � �

� �
yi: ð13Þ
By substituting Eqs. (11)–(13) with g = 1/2 in to Eq. (1) we get:
e

h2
ðyiþ1 � 2yi þ yi�1Þ þ

aiþ1=2

h
ðyiþ1 � yiÞ þ biþ1=2

3yiþ1 þ 6yi � yi�1

8

� �
¼ fiþ1=2; 1 6 i 6 N � 1 ð14Þ
3. Exponentially fitted special second-order finite difference scheme

A difference scheme with a fitting factor containing exponential functions is known as exponentially fitted

difference scheme.
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To describe the method, we first consider a linear singularly perturbed two-point boundary value problem
of the form:
ey00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1�; ð1Þ
with yð0Þ ¼ a; ð2aÞ
and yð1Þ ¼ b; ð2bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that b(x) 6 0,
a(x) P M > 0 throughout the interval [0, 1], where M is some positive constant. Under these assumptions,
Eq. (1) has a unique solution y(x) which in general, displays a boundary layer of width O(e) at x = 0 for small
values of e.

From the theory of singular perturbations it is known that the solution of (1) and (2) is of the form (cf.
O’Malley [8, pp. 22–26])
yðxÞ ¼ y0ðxÞ þ
að0Þ
aðxÞ ða� y0ð0ÞÞe

�
R x

0

aðxÞ
e �

bðxÞ
aðxÞ

� �
dx
þOðeÞ; ð15Þ
where y0ðxÞis the solution of
aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð1Þ ¼ b: ð16Þ
By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘0’, (15) becomes,
yðxÞ ¼ y0ðxÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
x
þOðeÞ: ð17Þ
Now we divide the interval [0,1] into N equal parts with constant mesh length h. Let 0 ¼ x0, x1, x2, . . .,
xN ¼ 1 be the mesh points. Then we have xi ¼ ih; i ¼ 0; 1; 2; . . . ;N :

From (17) we have
yðxiÞ ¼ y0ðxiÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
xi þOðeÞ
i.e. yðihÞ ¼ y0ðihÞ þ ða� y0ð0ÞÞe
� að0Þ

e �
bð0Þ
að0Þ

� �
ih
þOðeÞ.

Therefore
lim
h!0

yðihÞ ¼ y0ð0Þ þ ða� y0ð0ÞÞe
� a2ð0Þ�ebð0Þ

að0Þ

� �
iq

ð18Þ
where q ¼ h
e.

Now, we consider the special second-order finite difference scheme (14) and introduce the fitting factor rðqÞ:
erðqÞ
h2
ðyiþ1 � 2yi þ yi�1Þ þ

aiþ1=2

h

� �
þ biþ1=2

3yiþ1 þ 6yi � yi�1

8

� �
¼ fiþ1=2;

1 6 i 6 N � 1; ð19Þ
y0 ¼ a; yN ¼ b; where rðqÞ is a fitting factor which is to be determined in such a way that the solution of (19)
converges uniformly to the solution of (1) and (2).

Multiplying (19) by h and taking the limit as h! 0; we get
lim
h!0

rðqÞ
q
ðyiþ1 � 2yi þ yi�1Þ þ aiþ1=2ðyiþ1 � yiÞ

� �
¼ 0
if fiþ1=2 � biþ1=2
3yiþ1þ6yi�yi�1

8

� �
is bounded.
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) lim
h!0

rðqÞ
q
ðyðihþ hÞ � 2yðihÞ þ yðih� hÞÞ þ aðihþ h=2Þðyðihþ hÞ � yðihÞÞ

� �
¼ 0; ð20Þ

lim
h!0

r
q
¼ 1

4
að0Þ

1� e
� a2ð0Þ�ebð0Þ

að0Þ

� �
q

" #

sinh að0Þ2�ebð0Þ
að0Þ

� �
q
2

� �h i2
: ð21Þ

) We have r ¼ q
4

að0Þ
1� e

� a2ð0Þ�ebð0Þ
að0Þ

� �
q

" #

sinh að0Þ2�ebð0Þ
að0Þ

� �
q
2

� �h i2
; ð22Þ
r given by (22) is the constant fitting factor.
From (19) we have
erðqÞ
h2
ðyiþ1 � 2yi þ yi�1Þ þ

aiþ1=2

h
ðyiþ1 � yiÞ þ biþ1=2

3yiþ1 þ 6yi � yi�1

8

� �
¼ fiþ1=2; i ¼ 1; 2; . . . ;N � 1

er

h2
� biþ1=2

8

� �
yi�1 �

2er

h2
þ aiþ1=2

h
� 6biþ1=2

8

� �
yi þ

er

h2
þ 3biþ1=2

8

� �
yiþ1 ¼ fiþ1=2; i ¼ 1; 2; . . . ;N � 1 ð23Þ
where the fitting factor r is given by (22).
The equivalent three term recurrence relation of Eq. (23) is given by:
Eiyi�1 � F iyi þ Giyiþ1 ¼ H i; i ¼ 1; 2; 3; . . . ;N � 1 ð24Þ

where
Ei ¼
er

h2
� bðxi þ h=2Þ

8
; ð25aÞ

F i ¼
2er

h2
þ aðxi þ h=2Þ

h
� 6bðxi þ h=2Þ

8
; ð25bÞ

Gi ¼
er

h2
þ 3bðxi þ h=2Þ

8
; ð25cÞ

H i ¼ f ðxi þ h=2Þ: ð25dÞ
This gives us the tri-diagonal system which can be solved easily by Thomas Algorithm described in the next
section.

4. Thomas algorithm

A brief discussion on solving the tri-diagonal system using Thomas algorithm is presented as follows:
Consider the scheme:
Eiyi�1 � F iyi þ Giyiþ1 ¼ H i; i ¼ 1; 2; 3; . . . ;N � 1 ð26Þ

subject to the boundary conditions
y0 ¼ yð0Þ ¼ a; ð27aÞ
yN ¼ yð1Þ ¼ b: ð27bÞ
We set
yi ¼ W iyiþ1 þ T i for i ¼ N � 1; N � 2; . . . 2; 1: ð28Þ

where W i ¼ W ðxiÞ and T i ¼ T ðxiÞ which are to be determined.

From (28), we have
yi�1 ¼ W i�1yi þ T i�1 ð29Þ
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By substituting (29) in (26), we get
EiðW i�1yi þ T i�1Þ � F iyi þ Giyiþ1 ¼ H i:

) yi ¼
Gi

F i � EiW i�1

� �
yiþ1 þ

EiT i�1 � H i

F i � EiW i�1

� �
: ð30Þ
By comparing (30) and (28), we get the recurrence relations
W i ¼
Gi

F i � EiW i�1

� �
; ð31aÞ

T i ¼
EiT i�1 � Hi

F i � EiW i�1

� �
: ð31bÞ
To solve these recurrence relations for i = 0, 1, 2, 3, . . ., N � 1, we need the initial conditions for W0 and T0.
For this we takey0 ¼ a ¼ W 0y1 þ T 0. We choose W 0 ¼ 0 so that the value of T 0 ¼ a. With these initial values,
we compute Wi and Ti for i = 1, 2, 3, . . ., N � 1 from (31) in forward process, and then obtain yi in the back-
ward process from (28) and (27b).

5. Stability analysis

We will now show that the algorithm is computationally stable. By stability, we mean that the effect of an
error made in one stage of the calculation is not propagated into larger errors at later stages of the calcula-
tions. Let us now examine the recurrence relation given by (31a). Suppose that a small error ei�1 has been
made in the calculation of Wi� 1; then, we have

W i�1 ¼ W i�1 þ ei�1 and we are actually calculating
W i ¼
Gi

F i � EiW i�1

� �
: ð32Þ
From (32) and (31a), we have
ei ¼
Gi

F i � EiðW i�1 þ ei�1Þ

� �
� Gi

F i � EiW i�1

� �

¼ GiEiei�1

F i � EiðW i�1 þ ei�1Þð Þ F i � EiW i�1ð Þ

� �
¼ W 2

i Ei

Gi

� �
ei�1 ð33Þ
under the assumption that the error is small initially. From the assumptions made earlier that a(x) > 0 and
b(x) 6 0, we have
F i P Ei þ Gi; i ¼ 1; 2; 3; . . . ;N � 1
Form (31a) we have
W 1 ¼
G1

F 1

< 1; since F 1 > G1

W 2 ¼
G2

F 2 � E2W 1

<
G2

F 2 � E2

; since W 1 < 1;

<
G2

E2 þ G2 � E2

¼ 1; since F 2 P E2 þ G2
successively, it follows that
jeij ¼ jW ij2
Ei

Gi

����
����jei�1j < jei�1j since jEij 6 jGij:
Therefore the recurrence relation (31a) is stable. Similarly we can prove that the recurrence relation (31b) is
also stable. Finally the convergence of the Thomas Algorithm is ensured by the condition jW ij < 1; i ¼ 1; 2; 3;
. . . ;N � 1.
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6. Numerical examples

In this section, to demonstrate the applicability of the present method we have chosen three linear singular
perturbation problems with left-end boundary layer which are widely discussed in literature. The approximate
solutions of these problems are used for comparison. The approximate solution is compared with the exact
solution.

Example 6.1. Consider the following homogeneous singular perturbation problem from Bender and Orszag
([1, pp. 480]; problem 9.17 with a ¼ 0)
Table
Nume

x

0.00
0.01
0.02
0.04
0.06
0.08
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
ey00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�

with y(0) = 1 and y(1) = 1.

The exact solution is given by
yðxÞ ¼ em2 � 1ð Þem1x þ 1� em1ð Þem2x½ �
em2 � em1½ � ;
where m1 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p

Þ=ð2eÞ and m2 ¼ ð�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p

Þ=ð2eÞ.
The numerical results are given in Tables 1a and 1b for e ¼ 10�3 and 10�4, respectively.

Example 6.2. Let us consider the following non-homogeneous singular perturbation problem from fluid
dynamics for fluid of small viscosity, Reinhardt ([10], example 2)
ey00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1�

with yð0Þ ¼ 0 and yð1Þ ¼ 1.

The exact solution is given by
yðxÞ ¼ xðxþ 1� 2eÞ þ ð2e� 1Þð1� e�x=eÞ
ð1� e�1=eÞ :
The numerical results are given in Tables 2a and 2b for e ¼ 10�3 and 10�4, respectively.

Example 6.3. Consider the following variable coefficient singular perturbation problem from Kevorkian and
Cole ([4, pp. 33]; Eqs. (2.3.26) and (2.3.27) with a ¼ �1=2)
ey00ðxÞ þ 1� x
2

� �
y0ðxÞ � 1

2
yðxÞ ¼ 0; x 2 ½0; 1�
1a
rical results of Example 6.1, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

1.0000000 1.0000000
0.3723905 0.3719724
0.3753125 0.3756784
0.3828933 0.3832599
0.3906282 0.3909945
0.3985194 0.3988851
0.4065700 0.4069350
0.4493294 0.4496879
0.4965857 0.4969323
0.5488120 0.5491403
0.6065310 0.6068335
0.6703203 0.6705877
0.7408184 0.7410401
0.8187310 0.8188942
0.9048376 0.9049277
1.0000000 1.0000000



Table 1b
Numerical results of Example 6.1, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

0.00 1.0000000 1.0000000
0.01 0.3723643 0.3716134
0.02 0.3753144 0.3753479
0.04 0.3828952 0.3829296
0.06 0.3906302 0.3906645
0.08 0.3985214 0.3985557
0.10 0.4065720 0.4066062
0.20 0.4493313 0.4493649
0.30 0.4965876 0.4966201
0.40 0.5488138 0.5488445
0.50 0.6065326 0.6065609
0.60 0.6703218 0.6703468
0.70 0.7408197 0.7408404
0.80 0.8187319 0.8187470
0.90 0.9048380 0.9048464
1.00 1.0000000 1.0000000

Table 2a
Numerical results of Example 6.2, e ¼ 10�3, h ¼ 10�2

x y(x) Exact solution

0.00 0.0000000 0.0000000
0.01 �0.9898533 �0.9878747
0.02 �0.9795987 �0.9776400
0.04 �0.9583987 �0.9564800
0.06 �0.9363987 �0.9345200
0.08 �0.9135987 �0.9117600
0.10 �0.8899987 �0.8882000
0.20 �0.7599989 �0.7584000
0.30 �0.6099989 �0.6086000
0.40 �0.4399991 �0.4388001
0.50 �0.2499992 �0.2490000
0.60 �0.0399993 �0.0392001
0.70 0.1900005 0.1905999
0.80 0.4400004 0.4403999
0.90 0.7100002 0.7102000
1.00 1.0000000 1.0000000
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with yð0Þ ¼ 0 and yð1Þ ¼ 1.
We have chosen to use uniformly valid approximation which is obtained by the method given by Nayfeh

([7, pp. 148], equation 4.2.32) as our ‘exact’ solution:
yðxÞ ¼ 1

2� x
� 1

2
e�ðx�x2=4Þ=e:
The numerical results are given in Tables 3a and 3b for e ¼ 10�3 and 10�4, respectively.
7. Non-linear problems

Non-linear singular perturbation problems were converted as a sequence of linear singular perturbation
problems by using Quasilinearization (Replacing the non-linear problem by a sequence of linear problems)
method. The outer solution (the solution of the given problem by putting e ¼ 0) is taken to be the initial
approximation.



Table 3a
Numerical results of Example 6.3, e ¼ 10�3, h ¼ 10�2

x y(x) Exact solution

0.00 0.0000000 0.0000000
0.01 0.5021808 0.5024893
0.02 0.5050551 0.5050505
0.04 0.5102089 0.5102041
0.06 0.5154687 0.5154639
0.08 0.5208381 0.5208333
0.10 0.5263206 0.5263158
0.20 0.5555605 0.5555555
0.30 0.5882403 0.5882353
0.40 0.6250049 0.6250000
0.50 0.6666715 0.6666667
0.60 0.7142904 0.7142857
0.70 0.7692348 0.7692308
0.80 0.8333368 0.8333333
0.90 0.9090930 0.9090909
1.00 1.0000000 1.0000000

Table 2b
Numerical results of Example 6.2, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

0.00 0.0000000 0.0000000
0.01 �0.9898996 �0.9897020
0.02 �0.9795996 �0.9794040
0.04 �0.9583996 �0.9582080
0.06 �0.9363996 �0.9362120
0.08 �0.9135996 �0.9134160
0.10 �0.8899996 �0.8898200
0.20 �0.7599996 �0.7598400
0.30 �0.6099995 �0.6098601
0.40 �0.4399996 �0.4398801
0.50 �0.2499996 �0.2499000
0.60 �0.0399997 �0.0399201
0.70 0.1900003 0.1900600
0.80 0.4400002 0.4400398
0.90 0.7100001 0.7100199
1.00 1.0000000 1.0000000
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The approximate solution is compared with the exact solution.

8. Non-linear examples

We considered three non-linear singular perturbation problems with left-end boundary layer to demon-
strate the applicability of the present method.

Example 8.1. Consider the following singular perturbation problem from Bender and Orszag ([1, pp. 463];
equations: 9.7.1)
ey00ðxÞ þ 2y0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1�

with yð0Þ ¼ 0 and yð1Þ ¼ 0.

The linear problem concerned to this example is
ey00ðxÞ þ 2y0ðxÞ þ 2

xþ 1
yðxÞ ¼ 2

xþ 1

� �
loge

2

xþ 1

� �
� 1

� �
:



Table 3b
Numerical results of Example 6.3, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

0.00 0.0000000 0.0000000
0.01 0.5022034 0.5025126
0.02 0.5050550 0.5050505
0.04 0.5102088 0.5102041
0.06 0.5154686 0.5154639
0.08 0.5208380 0.5208333
0.10 0.5263205 0.5263158
0.20 0.5555604 0.5555555
0.30 0.5882401 0.5882353
0.40 0.6250048 0.6250000
0.50 0.6666714 0.6666667
0.60 0.7142903 0.7142857
0.70 0.7692348 0.7692308
0.80 0.8333365 0.8333333
0.90 0.9090929 0.9090909
1.00 1.0000000 1.0000000
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We have chosen to use Bender and Orszag’s uniformly valid approximation ([1, pp. 463], equation: 9.7.6) for
comparison,
Table
Numer

x

0.00
0.01
0.02
0.04
0.06
0.08
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
yðxÞ ¼ loge

2

xþ 1

� �
� ðloge2Þe�2x=e:
For this example, we have boundary layer of thickness O(e) at x ¼ 0 (cf. Bender and Orszag [1]).
The numerical results are given in Tables 4a and 4b for e ¼ 10�3 and 10�4, respectively.

Example 8.2. Let us consider the following singular perturbation problem from Kevorkian and Cole ([4, pp.
56], Eq. (2.5.1))
ey00ðxÞ þ yðxÞy0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�

with yð0Þ ¼ �1 and yð1Þ ¼ 3:9995.

The linear problem concerned to this example is
ey00ðxÞ þ ðxþ 2:9995Þy 0ðxÞ ¼ xþ 2:9995:
4a
ical results of Example 8.1, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

0.0000000 0.0000000
0.6840518 0.6831968
0.6733397 0.6733446
0.6539229 0.6539265
0.6348748 0.6348783
0.6161829 0.6161861
0.5978339 0.5978370
0.5108232 0.5108256
0.4307811 0.4307829
0.3566736 0.3566750
0.2876811 0.2876821
0.2231429 0.2231436
0.1625185 0.1625189
0.1053602 0.1053605
0.0512932 0.0512933
0.0000000 0.0000000



Table 4b
Numerical results of Example 8.1, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

0.00 0.0000000 0.0000000
0.01 0.6840518 0.6831968
0.02 0.6733397 0.6733446
0.04 0.6539229 0.6539265
0.06 0.6348748 0.6348783
0.08 0.6161829 0.6161861
0.10 0.5978339 0.5978370
0.20 0.5108232 0.5108256
0.30 0.4307811 0.4307829
0.40 0.3566736 0.3566750
0.50 0.2876811 0.2876821
0.60 0.2231429 0.2231436
0.70 0.1625185 0.1625189
0.80 0.1053603 0.1053605
0.90 0.0512932 0.0512933
1.00 0.0000000 0.0000000
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We have chosen to use the Kivorkian and Cole’s uniformly valid approximation ([4, pp. 57–58], Eqs. (2.5.5),
(2.5.11) and (2.5.14)) for comparison,
Table
Nume

x

0.00
0.01
0.02
0.04
0.06
0.08
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
yðxÞ ¼ xþ c1 tanh
c1

2

� � x
e
þ c2

� �� �
;

where c1 ¼ 2:9995 and c2 ¼ ð1=c1Þloge½ðc1 � 1Þ=ðc1 þ 1Þ�.
For this example also we have a boundary layer of width O(e) at x ¼ 0 (cf. Kevorkian and Cole [4, pp. 56–

66]).
The numerical results are given in Tables 5a and 5b for e ¼ 10�3 and 10�4, respectively.

Example 8.3. Consider the following singular perturbation problem from O’Malley ([8, pp. 9], Equation (1.10)
case 2):
ey00ðxÞ � yðxÞy0ðxÞ ¼ 0; x 2 ½�1; 1�:

With yð�1Þ ¼ 0 and yð1Þ ¼ �1.
5a
rical results of Example 8.2, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

�1.0000000 �1.0000000
3.0095010 3.0095000
3.0195010 3.0195000
3.0395010 3.0395000
3.0595009 3.0595000
3.0795009 3.0795000
3.0995009 3.0994999
3.1995008 3.1995001
3.2995007 3.2995000
3.3995006 3.3994999
3.4995005 3.4995000
3.5995004 3.5994999
3.6995003 3.6995001
3.7995002 3.7995000
3.8995001 3.8994999
3.9995000 3.9995000



Table 5b
Numerical results of Example 8.2, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

0.00 �1.0000000 �1.0000000
0.01 3.0095010 3.0095000
0.02 3.0195010 3.0195000
0.04 3.0295010 3.0295000
0.06 3.0395010 3.0395000
0.08 3.0495009 3.0495000
0.10 3.0595009 3.0595000
0.20 3.0695009 3.0695000
0.30 3.0795009 3.0795000
0.40 3.0895009 3.0895000
0.50 3.0995009 3.0994999
0.60 3.1995008 3.1995001
0.70 3.2995007 3.2995000
0.80 3.3995006 3.3994999
0.90 3.4995005 3.4995000
1.00 3.5995004 3.5994999
0.70 3.6995003 3.6995001
0.80 3.7995002 3.7995000
0.90 3.8995001 3.8994999
1.00 3.9995000 3.9995000
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The linear problem concerned to this example is
Table
Numer

x

�1.00
�0.90
�0.80
�0.70
�0.60
�0.50
�0.40
�0.30
�0.20
�0.10

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
ey00ðxÞ þ y0ðxÞ ¼ 0:
We have chosen to use O’Malley’s approximate solution ([8, pp. 9–10], Eqs. (1.13) and (1.14)) for comparison,
yðxÞ ¼ �
1� e�ðxþ1Þ=e
 �
ð1þ e�ðxþ1Þ=eÞ :
6a
ical results of Example 8.3, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

0.0000000 0.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000
�1.0000000 �1.0000000



Table 6b
Numerical results of Example 8.3, e ¼ 10�4, h ¼ 10�2

x y(x) Exact solution

�1.00 0.0000000 0.0000000
�0.90 �1.0000000 �1.0000000
�0.80 �1.0000000 �1.0000000
�0.70 �1.0000000 �1.0000000
�0.60 �1.0000000 �1.0000000
�0.50 �1.0000000 �1.0000000
�0.40 �1.0000000 �1.0000000
�0.30 �1.0000000 �1.0000000
�0.20 �1.0000000 �1.0000000
�0.10 �1.0000000 �1.0000000

0.00 �1.0000000 �1.0000000
0.10 �1.0000000 �1.0000000
0.20 �1.0000000 �1.0000000
0.30 �1.0000000 �1.0000000
0.40 �1.0000000 �1.0000000
0.50 �1.0000000 �1.0000000
0.60 �1.0000000 �1.0000000
0.70 �1.0000000 �1.0000000
0.80 �1.0000000 �1.0000000
0.90 �1.0000000 �1.0000000
1.00 �1.0000000 �1.0000000
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For this example, we have a boundary layer of width O(e) at x ¼ �1 (cf. O’Malley [8, pp. 9–10], Eqs. (1.10),
(1.13), (1.14), case 2).

The numerical results are given in Tables 6a and 6b for e ¼ 10�3 and 10�4, respectively.
9. Right-end boundary layer problems

Now let us discuss our present method for singularly perturbed two point boundary value problems with
right-end boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation
problem of the form:
ey00ðxÞ þ aðxÞy 0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð34Þ
With yð0Þ ¼ a; ð35aÞ
and yð1Þ ¼ b; ð35bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0,1]. Furthermore, we assume that a(x)6 M < 0
throughout the interval [0,1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x ¼ 1.

From the theory of singular perturbations the solution of (34) and (35) is of the form
yðxÞ ¼ y0ðxÞ þ
að1Þ
aðxÞ ðb� y0ð1ÞÞe

R 1

x

aðxÞ
e �

bðxÞ
aðxÞ

� �
dx
þOðeÞ; ð36Þ
where y0ðxÞis the solution of
aðxÞy00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð0Þ ¼ a: ð37Þ

By taking first terms of the Taylor’s series expansion for a(x) and b(x) about the point ‘1’, (36) becomes,
yðxÞ ¼ y0ðxÞ þ ðb� y0ð1ÞÞe
að1Þ

e �
bð1Þ
að1Þ

� �
ð1�xÞ
þOðeÞ: ð38Þ
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Now we divide the interval [0,1] into N equal parts with constant mesh length h. Let 0 ¼ x0; x1; x2;
. . . :xN ¼ 1 be the mesh points. Then we have xi ¼ ih; i ¼ 0; 1; 2; . . . ;N :

From (38) we have
yðihÞ ¼ y0ðihÞ þ ðb� y0ð1ÞÞe
að1Þ

e �
bð1Þ
að1Þ

� �
ð1�ihÞ

þOðeÞ:
Therefore
lim
h!0

yðihÞ ¼ y0ð0Þ þ ðb� y0ð1ÞÞe



a2ð1Þ�ebð1Þ
að1Þ

�
ð1e�iqÞ ð39Þ
where q ¼ h
e.

Now, we consider the special second-order finite difference scheme (14) and introduce the fitting factor rðqÞ:
erðqÞ
h2
ðyiþ1 � 2yi þ yi�1Þ þ

aiþ1=2

h
ðyiþ1 � yiÞ þ biþ1=2

3yiþ1 þ 6yi � yi�1

8

� �
¼ fiþ1=2; 1 6 i 6 N � 1; ð40Þ
y0 ¼ a; yN ¼ b; where rðqÞ is a fitting factor which is to be determined in such a way that the solution of (40)
converges uniformly to the solution of (35) and (36).

Multiplying (40) by h and taking the limit as h! 0; we get
lim
h!0

rðqÞ
q

yiþ1 � 2yi þ yi�1


 �
þ aiþ1=2 yiþ1 � yi


 �� �
¼ 0;
if fiþ1=2 � biþ1=2
3yiþ1þ6yi�yi�1

8

� �
is bounded.
) limh!0
rðqÞ
q

yðihþ hÞ � 2yðihÞ þ yðih� hÞð Þ þ aðihþ h=2Þ yðihþ hÞ � yðihÞð Þ
� �

¼ 0: ð41Þ
Substituting (39) in (41) and simplifying, we get
lim
h!0

r
q
¼ 1

4
að0Þ

1� e
� a2ð1Þ�ebð1Þ

að0Þ

� �
q

" #

sinh að1Þ2�ebð1Þ
að1Þ

� �
q
2

� �h i2
: ð42Þ
We have:
r ¼ q
4

að0Þ
1� e

� a2ð1Þ�ebð1Þ
að1Þ

� �
q

" #

sinh að1Þ2�ebð1Þ
að1Þ

� �
q
2

� �h i2
; ð43Þ
r given by (43) is the constant fitting factor.
From (40) we have
erðqÞ
h2
ðyiþ1 � 2yi þ yi�1Þ þ

aiþ1=2

h
ðyiþ1 � yiÞ þ biþ1=2

3yiþ1 þ 6yi � yi�1

8

� �
¼ fiþ1=2; i ¼ 1; 2; . . . ;N � 1

er

h2
� biþ1=2

8

� �
yi�1 �

2er

h2
þ aiþ1=2

h
� 6biþ1=2

8

� �
yi þ

er

h2
þ 3biþ1=2

8

� �
yiþ1 ¼ fiþ1=2; i ¼ 1; 2; . . . ;N � 1 ð44Þ
where the fitting factor r is given by (43).
An equivalent three term recurrence relation for Eq. (40) is:
Eiyi�1 � F iyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1; ð45Þ

where



Table
Nume

x

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.92
0.94
0.96
0.98
0.99
1.00

Table
Nume

x

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.92
0.94
0.96
0.98
0.99
1.00
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Ei ¼
er

h2
� bðxi þ h=2Þ

8
;

F i ¼
2er

h2
þ aðxi þ h=2Þ

h
� 6bðxi þ h=2Þ

8
;

Gi ¼
er

h2
þ 3bðxi þ h=2Þ

8
;

Hi ¼ f ðxi þ h=2Þ:
Thomas Algorithm is used to solve the tri-diagonal system (45).

10. Examples with right-end boundary layer

Here we considered two singularly perturbed two point boundary value problems with right-end boundary
layer and demonstrated the applicability of the present method. The approximate solution is compared with
the exact solution.
7a
rical results of Example 10.1, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

1.0000000 1.0000000
1.0000005 1.0000000
1.0000011 1.0000000
1.0000017 1.0000000
1.0000023 1.0000000
1.0000029 1.0000000
1.0000035 1.0000000
1.0000041 1.0000000
1.0000046 1.0000000
1.0000052 1.0000000
1.0000054 1.0000000
1.0000055 1.0000000
1.0000056 1.0000000
1.0000057 1.0000000
0.9999605 0.9999546
0.0000000 0.0000000

7b
rical results of Example 10.1, e ¼ 10�4, h ¼ 10�2

y(x) Exact solution

1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
1.0000000 1.0000000
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Example 10.1. Consider the following singular perturbation problem:
Table
Numer

x

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.92
0.94
0.96
0.98
0.99
1.00

Table
Numer

x

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.92
0.94
0.96
0.98
0.99
1.00
ey00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1�

with yð0Þ ¼ 1 and yð1Þ ¼ 0.

Clearly, this problem has a boundary layer at x ¼ 1. i.e., at the right end of the underlying interval.
The exact solution is given by yðxÞ ¼ eðx�1Þ=e�1ð Þ

ðe�1=e�1Þ .
The numerical results are given in Tables 7a and 7b for e ¼ 10�3 and 10�4, respectively.

Example 10.2. Now we consider the following singular perturbation problem
ey00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1�

with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ; and yð1Þ ¼ 1þ 1=e.

Clearly this problem has a boundary layer at x ¼ 1.
The exact solution is given by yðxÞ ¼ eð1þeÞðx�1Þ=e þ e�x.
The numerical results are given in Tables 8a and 8b for e ¼ 10�3 and 10�4, respectively.
8a
ical results of Example 10.2, e ¼ 10�3, h ¼ 10�2

y(x) Exact solution

1.0000000 1.0000000
0.9056407 0.9048374
0.8201851 0.8187308
0.7427930 0.7408183
0.6727035 0.6703200
0.6092277 0.6065307
0.5517415 0.5488117
0.4996795 0.4965853
0.4525301 0.4493290
0.4098296 0.4065697
0.4017858 0.3985191
0.3938998 0.3906278
0.3861686 0.3828929
0.3786025 0.3753111
0.3712000 0.3716217
1.3678794 1.3678794

8b
ical results of Example 10.2, e ¼ 10�4, h ¼ 10�2

y(x) ?>Exact solution

1.0000000 1.0000000
0.9057209 0.9048374
0.8203305 0.8187308
0.7429905 0.7408183
0.6729421 0.6703200
0.6094978 0.6065307
0.5520348 0.5488117
0.4999894 0.4965853
0.4528508 0.4493290
0.4101565 0.4065697
0.4021133 0.3985191
0.3942279 0.3906278
0.3864971 0.3828929
0.3789316 0.3753111
0.3714887 0.3716217
1.3678794 1.3678794
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11. Discussion and conclusions

We have presented an exponentially fitted special second-order finite difference method for solving singu-
larly perturbed two-point boundary value problems. We have implemented the present method on three linear
examples, three non-linear examples, with left-end boundary layer and two examples with right-end boundary
layer by taking different values of e. Numerical results are presented in tables and compared with the exact
solutions. It can be observed from the tables that the present method approximates the exact solution very
well.
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