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Abstract

In this paper, a seventh order numerical method is presented for solving singularly perturbed two-point boundary value
problems with a boundary layer at one end point. The two-point boundary value problem is transformed into general first
order ordinary differential equation system. A discrete approximation of a seventh order compact difference scheme is
presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed
two-point boundary value problem is obtained from the theory of singular perturbations. It is used in the seventh order
compact difference scheme to get a two term recurrence relation and is solved. Several linear and nonlinear singular per-
turbation problems have been solved and the numerical results are presented to support the theory.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Singular perturbation problems arise very frequently in fluid mechanics, fluid dynamics, elasticity, aero
dynamics, plasma dynamics, magneto-hydrodynamics, rarefied gas dynamics, oceanography and other
domains of the great world of fluid motion. A few notable examples are boundary layer problems, WKB prob-
lems, the modeling of steady and unsteady viscous flow problems with large Reynolds numbers, convective
heat transport problems with large Peclet numbers, magneto-hydrodynamics duct problems at high Hartman
numbers, etc. These problems depend on a small positive parameter in such a way that the solution varies rap-
idly in some parts of the domain and varies slowly in some other parts of the domain. So, typically there are
thin transition layers where the solution varies rapidly or jumps abruptly, while away from the layers the solu-
tion behaves regularly and varies slowly. If we apply the existing standard numerical methods for solving these
problems, large oscillations may arise and pollute the solution in the entire interval because of the boundary
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layer behavior. Thus more efficient and simpler computational techniques are required to solve singularly per-
turbed two-point boundary value problems.

A wide verity of papers and books have been published in the recent years, describing various methods for
solving singular perturbation problems, among these, we mention Bender and Orszag [1], Kevorkian and Cole
[7], Nayfeh [8], O’ Malley [9], Hemker and Miller [5], Roberts [11], Kadalbajoo and Reddy [6].

In fact, some numerical techniques employed for solving singularly-perturbed boundary value problems in
ordinary differential equations are based on the idea of replacing a two-point boundary value problem by two
suitable initial value problems. For example, Gasparo and Macconi [3] considered a semilinear ordinary dif-
ferential equation which was integrated to obtain a first-order ordinary differential equation, and considered
both the inner and outer solutions. The outer solution corresponds to the reduced problem, i.e., that obtained
by setting the small perturbation parameter to zero. A similar matching idea combining the reduced problem
and a WKB approximation for the full problem has also been employed by Gasparo and Macconi [4] for lin-
ear and semilinear, singularly-perturbed BVP in ordinary differential equations. These matching ideas are
based on the method of asymptotic expansions and on the work of Roberts [11] who considered the matching
between inner, i.e., boundary layer, and outer solutions at an unknown location which was determined iter-
atively, and referred to his method as a boundary value technique. Robert’s idea has been extended by Valan-
arasu and Ramanujam [12] for boundary value problems of singularly-perturbed systems of odes; these
authors used exponentially-fitted methods for solving the singularly-perturbed initial value problem. Reddy
and Chakravarthy [10] considered the full ordinary differential equation in the inner and outer regions, albeit
they determined the boundary condition at the matching point from the solution of the reduced problem.
Higher order Numerical method for two-point boundary value problems was presented by Peng [2].

In this paper, a seventh order numerical method is presented for solving singularly perturbed two-point
boundary value problems with a boundary layer at one end point. The two-point boundary value problem
is transformed into general first order ordinary differential equation system. A discrete approximation of a
seventh order compact difference scheme is presented for the first order system. An asymptotically equivalent
first order equation of the original singularly perturbed two-point boundary value problem is obtained from
the theory of singular perturbations. It is used in the seventh order compact difference scheme to get a two
term recurrence relation and is solved. Several linear and nonlinear singular perturbation problems have been
solved and the numerical results are presented to support the theory.

2. Numerical method

We Consider the two-point boundary value problem
y00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ ð1Þ
with the boundary conditions y(0) = a and y(1) = b.
The first order linear system corresponding to the above boundary value problems is
Y 0 ¼ AðxÞY þ RðxÞ; x 2 ½0; 1� ð2Þ
with the boundary conditions are given by B1Y(0) + B2Y(1) = D, where A, B1 and B2 are second order matri-
ces and Y, R, D are two dimensional vectors.

Now we divide the interval [0,1] into N equal parts with constant mesh length H. Let 0 = x0, x1,
x2, . . . ,xN = 1 be the mesh points. Again we subdivide each interval [xi,xi+1] into six equal smaller subinter-
vals. Let t1, t2, . . . , t7 are the grids in the subinterval [xi,xi+1] and corresponding values of the variables and its
derivatives are Y1, Y2, Y3, Y4, Y5, Y6, Y7 and Y 01, Y 02, Y 03, Y 04, Y 05, Y 06, Y 07.

By considering Taylor’s expansions of Y1, Y2, Y3, Y4, Y5, Y6, Y7 at the fractional grid t4 (Ref. Dianyun
Peng [2]), we have
hnþ1

ðnþ 1Þ! Y ðnþ1Þ
4 ¼

X7

j¼1

an
j Y j þ an

8Y 04 þ Oðh8Y ð8Þ4 Þ; ð3Þ
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where h ¼ ðxiþ1�xiÞ
6

, n = 1,2,3,4,5,6 and the coefficients an
j are given by
a1
3 ¼ a1

5 ¼
3

4
; a1

4 ¼
�49

36
; a1

8 ¼ 0; a1
1 ¼ a1

7 ¼
1

180
; a1

2 ¼ a1
6 ¼
�3

40
;

a2
1 ¼ �a2

7 ¼ �
1

540
; a2

2 ¼ �a2
6 ¼

3

80
; a2

3 ¼ �a2
5 ¼
�3

4
; a2

4 ¼ 0; a2
8 ¼
�49

36

a3
1 ¼ a3

7 ¼
�1

144
; a3

2 ¼ a3
6 ¼

1

12
; a3

3 ¼ a3
5 ¼
�13

48
; a3

4 ¼
7

18
; a3

8 ¼ 0;

a4
1 ¼ �a4

7 ¼
1

432
; a4

2 ¼ �a4
6 ¼
�1

24
; a4

3 ¼ �a4
5 ¼

13

48
; a4

4 ¼ 0; a4
8 ¼

7

18
;

a5
1 ¼ a5

7 ¼
1

720
; a5

2 ¼ a5
6 ¼
�1

120
; a5

3 ¼ a5
5 ¼

1

48
; a5

4 ¼
�1

36
; a5

8 ¼ 0;

a6
1 ¼ �a6

7 ¼
�1

2160
; a6

2 ¼ �a6
6 ¼

1

240
; a6

3 ¼ �a6
5 ¼
�1

48
; a6

4 ¼ 0; a6
8 ¼
�1

36
:

ð4Þ
By taking the Taylor’s series expansions of Y 01, Y 02, Y 03, Y 04, Y 05, Y 06, Y 07 at the grid point t4 and substituting (3),
we get
Y 0k ¼
1

h

X7

j¼1

bk
j Y j þ bk

8Y 04 þ Oðh7Y ð8Þ4 Þ for k ¼ 1; 2; 3; 5; 6; 7; ð5Þ
where
b1
j ¼ �6a1

j þ 27a2
j � 108a3

j þ 405a4
j � 1458a5

j þ 5103a6
j þ Sgnðj� 8Þ;

b2
j ¼ �4a1

j þ 12a2
j � 32a3

j þ 80a4
j � 192a5

j þ 448a6
j þ Sgnðj� 8Þ;

b3
j ¼ �2a1

j þ 3a2
j � 4a3

j þ 5a4
j � 6a5

j þ 7a6
j þ Sgnðj� 8Þ;

b5
j ¼ 2a1

j þ 3a2
j þ 4a3

j þ 5a4
j þ 6a5

j þ 7a6
j þ Sgnðj� 8Þ;

b6
j ¼ 4a1

j þ 12a2
j þ 32a3

j þ 80a4
j þ 192a5

j þ 448a6
j þ Sgnðj� 8Þ;

b7
j ¼ 6a1

j þ 27a2
j þ 108a3

j þ 405a4
j þ 1458a5

j þ 5103a6
j þ Sgnðj� 8Þ; j ¼ 1; 2; . . . ; 8
and SgnðxÞ ¼ 1; x P 0
0; x < 0

� �
. The variable Y and its derivative Y 0 at grids t1, t2, . . . , t7 are subject to equations
Y 0j ¼ AjY j þ Rj; j ¼ 1; 2; 3; 4; 5; 6; 7; ð6Þ
where Aj and Rj are values of A and R at grids tj.
Substituting (6) in (5), we get six linear algebraic equations with respect to seven unknown variables Y1, Y2,

Y3, Y4, Y5, Y6, Y7.
By eliminating Y2, Y3, Y4, Y5, Y6, a relation between Y1 and Y7 can be obtained as follows:
1

h
SiY i þ

1

h
T iY iþ1 ¼ F i for i ¼ 1; 2; . . . ;N � 1; ð7Þ
where Si and Ti are second order matrices and Fi is a two dimensional vector. By assuming
c1 ¼ b7
5b1

3 � b1
5b7

3;

c2 ¼ ðb7
6b1

5 � b1
6b7

5Þ=c1;

c3 ¼ ðb7
2b1

5 � b1
2b7

5Þ=c1;

W 1 ¼ ððb7
7b1

5 � b1
7b7

5ÞI � hb1
5A7Þ=c1;

W 2 ¼ ððb7
1b1

5 � b1
1b7

5ÞI þ hb7
5A1Þ=c1;

W 3 ¼ ððb7
4b1

5 � b1
4b7

5ÞI þ hðb7
8b1

5 � b1
8b7

5ÞA4Þ=c1;

G1 ¼ ðb7
5R1 � b1

5R7 þ ðb7
8b1

5 � b1
8b7

5ÞR4Þ=c1;
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c4 ¼ ðb1
6b7

3 � b7
6b1

3Þ=c1;

c5 ¼ ðb1
2b7

3 � b7
2b1

3Þ=c1;

W 4 ¼ ððb1
7b7

3 � b7
7b1

3ÞI þ hb1
3A7Þ=c1;

W 5 ¼ ððb1
1b7

3 � b7
1b1

3ÞI � hb7
3A1Þ=c1;

W 6 ¼ ððb1
4b7

3 � b7
4b1

3ÞI þ hðb1
8b7

3 � b7
8b1

3ÞA4Þ=c1;

G2 ¼ ðb1
3R7 � b7

3R1 þ ðb7
3b1

8 � b1
3b7

8ÞR4Þ=c1;

c6 ¼ b6
2 þ b6

3c3 þ b6
5c5;

W 7 ¼ b6
7I þ b6

3W 1 þ b6
5W 4;

W 8 ¼ b6
1I þ b6

3W 2 þ b6
5W 5;

W 9 ¼ b6
4I þ b6

3W 3 þ b6
5W 6 þ hb6

8A4;

W 10 ¼ ðb6
3c2 þ b6

5c4 þ b6
6ÞI � hA6;

G3 ¼ R6 � b6
8R4 � b6

3G1 � b6
5G2;

c7 ¼ b2
6 þ b2

3c2 þ b6
5c4;

W 11 ¼ b2
3W 1 þ b2

5W 4 þ b2
7I ;

W 12 ¼ b2
1I þ b2

3W 2 þ b2
5W 5;

W 13 ¼ b2
4I þ b2

3W 3 þ b2
5W 6 þ hb2

8A4;

W 14 ¼ ðb2
2 þ b2

3c3 þ b2
5c5ÞI � hA2;

G4 ¼ R2 � b2
8R4 � b2

3G1 � b2
5G2;

W 15 ¼ b5
3W 1 þ b5

5W 4 þ b5
7I � hW 4A5;

W 16 ¼ b5
3W 3 þ b5

5W 5 þ b5
1I � hW 5A5;

W 17 ¼ b5
3W 3 þ b5

5W 6 þ b5
4I þ hðb5

8A4 � W 6A5Þ;
W 18 ¼ b5

3c2I þ b5
5c4I þ b5

6I � hc4A5;

W 19 ¼ b5
3c3I þ b5

5c5I þ b5
2I � hc5A5;

G5 ¼ R5 � b5
8R4 � b5

3G1 � b5
5G2 þ hA5G2;

W 20 ¼ b3
3W 1 þ b3

5W 4 þ b3
7I � hW 1A3;

W 21 ¼ b3
3W 2 þ b3

5W 5 þ b3
1I � hW 2A3;

W 22 ¼ b3
3W 3 þ b3

5W 6 þ b3
4I þ hðb3

8A4 � W 3A3Þ;
W 23 ¼ ðb3

3c2 þ b3
5c4 þ b3

6ÞI � hc2A3;

W 24 ¼ ðb3
3c3 þ b3

5c5 þ b3
2ÞI � hc3A3;

G6 ¼ R3 � b3
8R4 � ðb3

3 � hA3ÞG1 � b3
5G2;

W 28 ¼ W 10W 14 � c6c7I ;

W 25 ¼ W �1
28 ðc6W 11 � W 7W 14Þ;

W 26 ¼ W �1
28 ðc6W 12 � W 8W 14Þ;

W 27 ¼ W �1
28 ðc6W 13 � W 9W 14Þ;

G7 ¼ W �1
28 ðc6G4 � G3W 14Þ;

W 29 ¼ �ðW 10W 25 þ W 7Þ=c6;

W 30 ¼ �ðW 10W 26 þ W 8Þ=c6;

W 31 ¼ �ðW 10W 27 þ W 9Þ=c6;
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G8 ¼ �ðG3 þ W 10G7Þ=c6;

W 32 ¼ W 19W 29 þ W 18W 25 þ W 15;

W 33 ¼ W 19W 30 þ W 18W 26 þ W 16;

W 34 ¼ W 19W 31 þ W 18W 27 þ W 17;

G9 ¼ G5 þ W 19G8 þ W 18G7;

W 35 ¼ W 24W 29 þ W 23W 25 þ W 20;

W 36 ¼ W 24W 30 þ W 23W 26 þ W 21;

W 37 ¼ W 24W 31 þ W 23W 27 þ W 22;

G10 ¼ G6 þ W 24G8 þ W 23G7;

we get Si ¼ W 36 � W 37W 33W �1
34 ;

T i ¼ W 35 � W 37W 32W �1
34 ;

F i ¼ G10 � W 37G9W �1
34 :
Now we consider a linear singularly perturbed two-point boundary value problem of the form:
ey00ðxÞ þ ½aðxÞyðxÞ�0 þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1�; ð8Þ
with yð0Þ ¼ a; ð9aÞ
and yð1Þ ¼ b; ð9bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0, 1]. Further more, we assume that a(x) P M > 0
throughout the interval [0,1], where M is some positive constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 0.

First we obtain the reduced problem by setting e = 0 in Eq. (8) and solve it for the solution with an appro-
priate boundary condition. Let y0(x) be the solution of the reduced problem
½aðxÞyðxÞ�0 þ bðxÞyðxÞ ¼ f ðxÞ with y0ð1Þ ¼ b:
We now set up the approximation equation to given Eq. (8) as follows:
ey00ðxÞ þ ½aðxÞyðxÞ�0 þ bðxÞy0ðxÞ ¼ f ðxÞ; ð10Þ

where we simply replaced y(x) by y0(x) in the last term of left hand side of Eq. (8). Now we rewrite Eq. (10) in
the form
ey00ðxÞ þ ½aðxÞyðxÞ�0 ¼ HðxÞ; ð11Þ
where H(x) = f(x) � b(x)y0(x).
By integrating (11), we obtain
ey0ðxÞ þ aðxÞyðxÞ ¼ PðxÞ þ K; ð12Þ
where P ðxÞ ¼
R

HðxÞdx and K is a constant to be determined.
In order to determine K, we introduce the condition that the reduced equation of (12) should satisfy the

boundary condition y(1) = b.
i:e:; yð1Þ ¼ 1

að1Þ ½P ð1Þ þ K� ¼ b;

) K ¼ að1Þb� Pð1Þ:
ð13Þ
Remark. This choice of K ensure that the solution of the reduced equation of (8) and (9) satisfies the reduced
equation of (12). Hence, Eq. (12) is a first order equation which is asymptotically equivalent to the linear
singularly perturbed two-point boundary value problem (8).
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It is used in the seventh order compact difference scheme (7) to get a two term recurrence relation.
The system (7) i.e., 1

h SiY i þ 1
h T iY iþ1 ¼ F i gives the following equations:
Table
Numer

X

0
1.0000
5.0000
1.0000
5.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
1.0000
S11yi þ S12y 0i þ T 11yiþ1 þ T 12y0iþ1 ¼ hf1; ð14Þ
S21yi þ S22y 0i þ T 21yiþ1 þ T 22y0iþ1 ¼ hf2: ð15Þ
By eliminating y 0iþ1 from the above equations we have,
ðS11T 22 � T 12S21Þyi þ ðS12T 22 � T 12S22Þy0i þ ðT 11T 22 � T 12T 21Þyiþ1 ¼ hðT 22f1 � T 12f2Þ: ð16Þ

From the asymptotic boundary condition (12) we have
y0ðxÞ ¼ 1

e
ðP ðxÞ þ k � aðxÞyðxÞÞ:
Substituting this in (16) and simplifying, we get a two term recurrence relation as follows:
yiþ1 ¼
1

eðT 22T 11 � T 12T 21Þ
heðT 22f1 � T 12f2Þ � ðP i þ kÞðT 22S12 � S22T 12Þ½

�ðeðT 22S11 � S21T 12Þ � aiðT 22S12 � T 12S22ÞÞyi�: ð17Þ

The condition y0 = a, is used to solve the above two term recurrence relation in forward process.

3. Numerical examples

To demonstrate the applicability of the method we have applied it to two linear singular perturbation prob-
lems with left-end boundary layer. These examples have been chosen because they have been widely discussed
in literature and because approximate solutions are available for comparison. The approximate solution is
compared with the exact solution.

Example 3.1. Consider the following homogeneous singular perturbation problem from Bender and Orszag
[1, p. 480; problem (9.17) with a = 0]:
ey00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�

with y(0) = 1 and y(1) = 1. The exact solution is given by
yðxÞ ¼ ½ðe
m2 � 1Þem1x þ ð1� em1Þem2x�

½em2 � em1 � ;
where m1 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p� �

=ð2eÞ and m2 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p� �

=ð2eÞ.
The numerical results are given in Tables 1(a) and 1(b) for e = 10�3 and 10�4 respectively.
1(a)
ical results of Example 3.1, e = 10�3, h = 10�3

Exact solution Approximate solution

1.000000000000000e+000 1.000000000000000e+000
00000000000e�003 6.007917971118448e�001 6.009586917270412e�001
00000000000e�003 3.743262782418618e�001 3.739979292656276e�001
00000000000e�002 3.719723959330329e�001 3.716055656467813e�001
00000000000e�002 3.871078683269507e�001 3.867409917855329e�001
00000000000e�001 4.069350064869349e�001 4.065696264479281e�001
00000000000e�001 4.496878534047455e�001 4.493289273231297e�001
00000000000e�001 4.969323412245205e�001 4.965852631276493e�001
00000000000e�001 5.491403645555466e�001 5.488115911536213e�001
00000000000e�001 6.068333955506272e�001 6.065306100458046e�001
00000000000e�001 6.705876925538863e�001 6.703199911453044e�001
00000000000e�001 7.410400559723790e�001 7.408181600185163e�001
00000000000e�001 8.188941888631804e�001 8.187306860347755e�001
00000000000e�001 9.049277257677435e�001 9.048373439417579e�001
00000000000e+000 1.000000000000000e+000 9.999999181132426e�001



Table 1(b)
Numerical results of Example 3.1, e = 10�4, h = 10�3

X Exact solution Approximate solution

0 1.000000000000000e+000 1.000000000000000e+000
1.000000000000000e�003 3.683129549003972e�001 3.722612628741235e�001
5.000000000000000e�003 3.697602265008225e�001 3.700563137660214e�001
1.000000000000000e�002 3.716134715795036e�001 3.719112287536567e�001
5.000000000000000e�002 3.867777582501955e�001 3.870892139299358e�001
1.000000000000000e�001 4.066062453397311e�001 4.069357023234568e�001
2.000000000000000e�001 4.493649046843792e�001 4.497335037345733e�001
3.000000000000000e�001 4.966200590285670e�001 4.970323892117160e�001
4.000000000000000e�001 5.488445591957479e�001 5.493057418984449e�001
5.000000000000000e�001 6.065609809398519e�001 6.070767310781289e�001
6.000000000000000e�001 6.703468540124427e�001 6.709235482279791e�001
7.000000000000000e�001 7.408404411178888e�001 7.414851937536867e�001
8.000000000000000e�001 8.187471245827021e�001 8.194678723202614e�001
9.000000000000000e�001 9.048464646461863e�001 9.056520607856806e�001
1.000000000000000e+000 1.000000000000000e+000 1.000900319475613e+000
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Example 3.2. Now consider the following non-homogeneous singular perturbation problem:
Table
Nume

X

0
1.0000
5.0000
1.0000
5.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
1.0000
ey00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1�
with y(0) = 0 and y(1) = 1.
The exact solution is given by yðxÞ ¼ xðxþ 1� 2eÞ þ ð2e�1Þð1�e�x=eÞ

ð1�e�1=eÞ .

The numerical results are given in Tables 2(a) and 2(b) for e = 10�3 and 10�4 respectively.
4. Nonlinear problems

Nonlinear singular perturbation problems were converted as a sequence of linear singular perturbation
problems by using Newton method of Quasilinearization. The outer solution (the solution of the given prob-
lem by putting e = 0) is taken to be the initial approximation. The approximate solution is compared with the
exact solution. To demonstrate the applicability of the method, we have applied it on a nonlinear singular per-
turbation problems with left-end boundary layer.
2(a)
rical results of Example 3.2, e = 10�3, h = 10�3

Exact solution Approximate solution

0 0
00000000000e�003 �6.298573177109006e�001 �6.303846373794365e�001
00000000000e�003 �9.862605288949127e�001 �9.870862518408403e�001
00000000000e�002 �9.878746908700971e�001 �9.887018256048586e�001
00000000000e�002 �9.456000000000000e�001 �9.463937308072652e�001
00000000000e�001 �8.882000000000000e�001 �8.889519284784425e�001
00000000000e�001 �7.584000000000000e�001 �7.590683238207974e�001
00000000000e�001 �6.086000000000000e�001 �6.091847191631525e�001
00000000000e�001 �4.388000000000000e�001 �4.393011145055076e�001
00000000000e�001 �2.490000000000000e�001 �2.494175098478627e�001
00000000000e�001 �3.920000000000001e�002 �3.953390519021775e�002
00000000000e�001 1.906000000000003e�001 1.903496994674275e�001
00000000000e�001 4.404000000000001e�001 4.402333041250724e�001
00000000000e�001 7.101999999999999e�001 7.101169087827173e�001
00000000000e+000 1.000000000000000e+000 1.000000513440362e+000



Table 2(b)
Numerical results of Example 3.2, e = 10�4, h = 10�3

X Exact solution Approximate solution

0 0 0
1.000000000000000e�003 �9.987538091502235e�001 �9.905776013165379e�001
5.000000000000000e�003 �9.947760000000000e�001 �9.922645199239503e�001
1.000000000000000e�002 �9.897020000000000e�001 �9.871895775238370e�001
5.000000000000000e�002 �9.473100000000000e�001 �9.447900382738046e�001
1.000000000000000e�001 �8.898200000000001e�001 �8.872906142112640e�001
2.000000000000000e�001 �7.598400000000001e�001 �7.572917660861831e�001
3.000000000000000e�001 �6.098600000000001e�001 �6.072929179611019e�001
4.000000000000000e�001 �4.398800000000001e�001 �4.372940698360208e�001
5.000000000000000e�001 �2.499000000000000e�001 �2.472952217109397e�001
6.000000000000000e�001 �3.991999999999996e�002 �3.729637358585854e�002
7.000000000000000e�001 1.900600000000003e�001 1.927024745392228e�001
8.000000000000000e�001 4.400400000000002e�001 4.427013226643038e�001
9.000000000000000e�001 7.100199999999999e�001 7.127001707893848e�001
1.000000000000000e+000 1.000000000000000e+000 1.002699018914466e+000
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Example 4.1. Consider the following singular perturbation problem from Bender and Orszag [1, p. 463; Eqs.
(9.7.1)]:
Table
Numer

X

0
1.0000
5.0000
1.0000
5.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
1.0000
ey00ðxÞ þ 2y 0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1�
with y(0) = 0 and y(1) = 0. The linear problem concerned to this example is
ey00ðxÞ þ 2y 0ðxÞ þ 2

xþ 1
yðxÞ ¼ 2

xþ 1

� �
loge

2

xþ 1

� �
� 1

	 

:

We have chosen to use Bender and Orszag’s uniformly valid approximation [1, p. 463; Eq. (9.7.6)] for
comparison,
yðxÞ ¼ loge

2

xþ 1

� �
� ðloge2Þe�2x=e:
For this example, we have boundary layer of thickness O(e) at x = 0 [cf. Bender and Orszag [1]].
The numerical results are given in Tables 3(a) and 3(b) for e = 10�3 and 10�4 respectively.
3(a)
ical results of Example 4.1, e = 10�3, h = 10�3

Exact solution Approximate solution

0 0
00000000000e�003 5.983404102211222e�001 5.984379697942955e�001
00000000000e�003 6.881281702155939e�001 6.881230939411335e�001
00000000000e�002 6.831968482780944e�001 6.831924583398247e�001
00000000000e�002 6.443570163905132e�001 6.443594751549894e�001
00000000000e�001 5.978370007556204e�001 5.978479580207977e�001
00000000000e�001 5.108256237659907e�001 5.108532931516190e�001
00000000000e�001 4.307829160924542e�001 4.308268342327517e�001
00000000000e�001 3.566749439387324e�001 3.567345957803070e�001
00000000000e�001 2.876820724517809e�001 2.877569252446644e�001
00000000000e�001 2.231435513142098e�001 2.232330741743283e�001
00000000000e�001 1.625189294977747e�001 1.626226045335766e�001
00000000000e�001 1.053605156578264e�001 1.054778440717806e�001
00000000000e�001 5.129329438755048e�002 5.142379954828764e�002
00000000000e+000 0 1.432286796641612e�004



Table 3(b)
Numerical results of Example 4.1, e = 10�4, h = 10�3

X Exact solution Approximate solution

0 0 0
1.000000000000000e�003 6.921476787981791e�001 6.506543048555499e�001
5.000000000000000e�003 6.881596390489064e�001 6.879738129098669e�001
1.000000000000000e�002 6.831968497067772e�001 6.830137473746494e�001
5.000000000000000e�002 6.443570163905132e�001 6.441912027005219e�001
1.000000000000000e�001 5.978370007556204e�001 5.976920141280261e�001
2.000000000000000e�001 5.108256237659907e�001 5.107199231303178e�001
3.000000000000000e�001 4.307829160924542e�001 4.307137097390938e�001
4.000000000000000e�001 3.566749439387324e�001 3.566398055551009e�001
5.000000000000000e�001 2.876820724517809e�001 2.876788748200377e�001
6.000000000000000e�001 2.231435513142098e�001 2.231704148691400e�001
7.000000000000000e�001 1.625189294977747e�001 1.625741818843904e�001
8.000000000000000e�001 1.053605156578264e�001 1.054426595432628e�001
9.000000000000000e�001 5.129329438755048e�002 5.140098154994006e�002
1.000000000000000e+000 0 1.320102511843774e�004
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5. Right-end boundary layer problems

Finally, we discuss our method for singularly perturbed two-point boundary value problems with right-end
boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation problem
of the form:
ey00ðxÞ þ aðxÞy 0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð18Þ
with yð0Þ ¼ a ð19aÞ
and yð1Þ ¼ b; ð19bÞ
where e is a small positive parameter (0 < e� 1) and a, b are known constants. We assume that a(x), b(x) and
f(x) are sufficiently continuously differentiable functions in [0,1]. Further more, we assume that a(x) 6M < 0
throughout the interval [0,1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 1.

From the asymptotic boundary condition we have
ey0ðxÞ þ aðxÞyðxÞ ¼ PðxÞ þ k;
where P(x) = �H(x)dx, k = a(0)b � P(0) and H(x) = f(x) � b(x)y0(x).

Substituting this in (16) and simplifying, we get the two term recurrence relation as follows:
yi ¼
heðT 22f1 � T 12f2Þ � ðP i þ kÞðT 22S12 � S22T 12Þ � eðT 22T 11 � T 21T 12Þyiþ1

eðS11T 22 � S21T 12Þ � aiðS12T 22 � S22T 12Þ
: ð20Þ
The condition yn = b is used to solve the above two term recurrence relation in backward process.

6. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two-point boundary value problems with right-end
boundary layer of the underlying interval we considered two examples. The approximate solution is compared
with the exact solution.

Example 6.1. Consider the following singular perturbation problem:
ey 00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1 and yð1Þ ¼ 0:
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Clearly, this problem has a boundary layer at x = 1. i.e.; at the right end of the underlying interval.

The exact solution is given by yðxÞ ¼ ðeðx�1Þ=e�1Þ
ðe�1=e�1Þ .

The numerical results are given in Tables 4(a) and 4(b) for e = 10�3 and 10�4 respectively.

Example 6.2. Now we consider the following singular perturbation problem:
Table
Numer

X

0
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
9.9000
9.9500
9.9900
1.0000

Table
Numer

X

0
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
9.9000
9.9500
9.9900
1.0000
ey00ðxÞ � y 0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ and yð1Þ ¼ 1þ 1=e:
Clearly this problem has a boundary layer at x = 1. The exact solution is given by y(x) = e(1+e)(x�1)/e + e�x

The numerical results are given in Tables 5(a) and 5(b) for e = 10�3 and 10�4 respectively.
7. Discussion and conclusions

A seventh order numerical method is presented for solving singularly perturbed two-point boundary value
problems with a boundary layer at one end point. A two term recurrence relation is obtained and is solved.
4(a)
ical results of Example 6.1, e = 10�3, h = 10�3

Exact solution Approximate solution

1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 9.999546000702375e�001 9.999546000678188e�001
00000000000e�001 9.932620530009145e�001 9.932620528214147e�001
00000000000e�001 6.321205588285580e�001 6.321205568684837e�001
00000000000e+000 0 0

4(b)
ical results of Example 6.1, e = 10�4, h = 10�3

Exact solution Approximate solution

1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 1.000000000000000e+000
00000000000e�001 1.000000000000000e+000 9.999999999938426e�001
00000000000e�001 9.999546000702375e�001 9.942736058544357e�001
00000000000e+000 0 0



Table 5(a)
Numerical results of Example 6.2, e = 10�3, h = 10�3

X Exact solution Approximate solution

0 1.000000000000000e+000 9.990004182346399e�001
1.000000000000000e�001 9.048374180359596e�001 9.038378362705996e�001
2.000000000000000e�001 8.187307530779819e�001 8.177311713126219e�001
3.300000000000000e�001 7.189237334319262e�001 7.179241516665662e�001
4.000000000000000e�001 6.703200460356393e�001 6.693204642702791e�001
5.000000000000000e�001 6.065306597126334e�001 6.055310779472733e�001
6.000000000000000e�001 5.488116360940265e�001 5.478120543286664e�001
7.000000000000000e�001 4.965853037914095e�001 4.955857220260496e�001
8.000000000000000e�001 4.493289641172216e�001 4.483293823518615e�001
9.000000000000000e�001 4.065696597405991e�001 4.055700779752390e�001
9.900000000000000e�001 3.716216392149593e�001 3.706223875442146e�001
9.950000000000000e�001 3.764277858922879e�001 3.754561392792220e�001
9.990000000000000e�001 7.357592502223562e�001 7.353595249630720e�001
1.000000000000000e+000 1.367879441171442e+000 1.367879441171442e+000

Table 5(b)
Numerical results of Example 6.2, e = 10�4, h = 10�3

X Exact solution Approximate solution

0 1.000000000000000e+000 9.999000941512859e�001
1.000000000000000e�001 9.048374180359596e�001 9.047375121872455e�001
2.000000000000000e�001 8.187307530779819e�001 8.186308472292678e�001
3.000000000000000e�001 7.408182206817180e�001 7.407183148330039e�001
4.000000000000000e�001 6.703200460356393e�001 6.702201401869251e�001
5.000000000000000e�001 6.065306597126334e�001 6.064307538639194e�001
6.000000000000000e�001 5.488116360940265e�001 5.487117302453125e�001
7.000000000000000e�001 4.965853037914095e�001 4.964853979426955e�001
8.000000000000000e�001 4.493289641172216e�001 4.492290582685075e�001
9.000000000000000e�001 4.065696597405991e�001 4.064697538918851e�001
9.900000000000000e�001 3.715766910220457e�001 3.714767851735604e�001
9.950000000000000e�001 3.697234445440590e�001 3.696240169244649e�001
9.990000000000000e�001 3.682928591661881e�001 4.225930889950365e�001
1.000000000000000e+000 1.367879441171442e+000 1.367879441171442e+000
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The advantage of this two term recurrence relation is it can be solvable by forward or backward process. There
is no need of applying any analytical or numerical method to solve the system of equations. Several linear and
nonlinear singular perturbation problems have been solved and the numerical results are presented to support
the theory.
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