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Abstract

In this paper, a seventh order numerical method is presented for solving singularly perturbed two-point boundary value
problems with a boundary layer at one end point. The two-point boundary value problem is transformed into general first
order ordinary differential equation system. A discrete approximation of a seventh order compact difference scheme is
presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed
two-point boundary value problem is obtained from the theory of singular perturbations. It is used in the seventh order
compact difference scheme to get a two term recurrence relation and is solved. Several linear and nonlinear singular per-
turbation problems have been solved and the numerical results are presented to support the theory.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Singular perturbation problems; Two-point boundary value problems; Ordinary differential equations; Boundary layer;
Seventh order compact difference scheme

1. Introduction

Singular perturbation problems arise very frequently in fluid mechanics, fluid dynamics, elasticity, aero
dynamics, plasma dynamics, magneto-hydrodynamics, rarefied gas dynamics, oceanography and other
domains of the great world of fluid motion. A few notable examples are boundary layer problems, WKB prob-
lems, the modeling of steady and unsteady viscous flow problems with large Reynolds numbers, convective
heat transport problems with large Peclet numbers, magneto-hydrodynamics duct problems at high Hartman
numbers, etc. These problems depend on a small positive parameter in such a way that the solution varies rap-
idly in some parts of the domain and varies slowly in some other parts of the domain. So, typically there are
thin transition layers where the solution varies rapidly or jumps abruptly, while away from the layers the solu-
tion behaves regularly and varies slowly. If we apply the existing standard numerical methods for solving these
problems, large oscillations may arise and pollute the solution in the entire interval because of the boundary
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layer behavior. Thus more efficient and simpler computational techniques are required to solve singularly per-
turbed two-point boundary value problems.

A wide verity of papers and books have been published in the recent years, describing various methods for
solving singular perturbation problems, among these, we mention Bender and Orszag [1], Kevorkian and Cole
[7], Nayfeh [8], O’ Malley [9], Hemker and Miller [5], Roberts [11], Kadalbajoo and Reddy [6].

In fact, some numerical techniques employed for solving singularly-perturbed boundary value problems in
ordinary differential equations are based on the idea of replacing a two-point boundary value problem by two
suitable initial value problems. For example, Gasparo and Macconi [3] considered a semilinear ordinary dif-
ferential equation which was integrated to obtain a first-order ordinary differential equation, and considered
both the inner and outer solutions. The outer solution corresponds to the reduced problem, i.e., that obtained
by setting the small perturbation parameter to zero. A similar matching idea combining the reduced problem
and a WKB approximation for the full problem has also been employed by Gasparo and Macconi [4] for lin-
ear and semilinear, singularly-perturbed BVP in ordinary differential equations. These matching ideas are
based on the method of asymptotic expansions and on the work of Roberts [11] who considered the matching
between inner, i.e., boundary layer, and outer solutions at an unknown location which was determined iter-
atively, and referred to his method as a boundary value technique. Robert’s idea has been extended by Valan-
arasu and Ramanujam [12] for boundary value problems of singularly-perturbed systems of odes; these
authors used exponentially-fitted methods for solving the singularly-perturbed initial value problem. Reddy
and Chakravarthy [10] considered the full ordinary differential equation in the inner and outer regions, albeit
they determined the boundary condition at the matching point from the solution of the reduced problem.
Higher order Numerical method for two-point boundary value problems was presented by Peng [2].

In this paper, a seventh order numerical method is presented for solving singularly perturbed two-point
boundary value problems with a boundary layer at one end point. The two-point boundary value problem
is transformed into general first order ordinary differential equation system. A discrete approximation of a
seventh order compact difference scheme is presented for the first order system. An asymptotically equivalent
first order equation of the original singularly perturbed two-point boundary value problem is obtained from
the theory of singular perturbations. It is used in the seventh order compact difference scheme to get a two
term recurrence relation and is solved. Several linear and nonlinear singular perturbation problems have been
solved and the numerical results are presented to support the theory.

2. Numerical method

We Consider the two-point boundary value problem

V(%) + a(x)y (x) + b(x)y(x) = f(x) (1)

with the boundary conditions y(0) = o and y(1) = f.
The first order linear system corresponding to the above boundary value problems is

Y =A(x)Y +R(x), x€[0,1] (2)

with the boundary conditions are given by B; Y(0) + B, Y(1) = D, where A, B; and B, are second order matri-
ces and Y, R, D are two dimensional vectors.

Now we divide the interval [0,1] into N equal parts with constant mesh length H. Let 0= xq, X,
X2,...,Xy =1 be the mesh points. Again we subdivide each interval [x;, x;1] into six equal smaller subinter-
vals. Let 1, t5,. .., 17 are the grids in the subinterval [x;, x;+] and corresponding values of the variables and its
derivatives are Yy, Y», Y3, Ya, Ys, Y6, Y7 and Y!, Y5, Y5, ¥, Y5, Y, V0.

By considering Taylor’s expansions of Y;, Y,, Y3, Y4, Y5, Y, Y7 at the fractional grid 74 (Ref. Dianyun
Peng [2]), we have

hn+1 (nt1)

CES

7
@Y, + aY, + O(h'YyY), (3)
j=1
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where h = @, n=1,2,3,4,5,6 and the coefficients a; are given by

3 —49 1 -3

a;:a;:Z, aél‘:?’ aé:() a}:a;—m’ aé:aé_%’
1 3 -3 —-49

afi_agi %7 agf_‘%*%a agz_a§:T7 ai:Ov aéi 36

-1 1 —13 7
a? a;—m, agzag—ﬁ, ag—ag—4—8, ai—ﬁ, a§:0, ”
&= 4:L &= _—_1 &= 4_2 & =0 a4_l
! 74327 2 67247 3 S48 AT Y

1 -1 1 -1
af:ag—m, “;zag_ma ai:ag—ﬁ, ai—¥7 a§:0,

-1 1 -1 -1
a?:—a$:72160, ag:—ag:m7 ag:—ag:E, 02:, ag:%

By taking the Taylor’s series expansions of Y, Y, Y3, Y/, Y%, Y, Y’ at the grid point 74 and substituting (3),
we get

1 7
V=2 D BY 4 b+ OWYY) fork=1,2,3,567, (5)
j=1

where

b; = —6a; + 27a; — 108a; + 4054} — 14584 + 51034 + Sgn(j — 8),

b: = —4d} + 12a; — 32} + 80a? — 1924] + 4484° + Sgn(j — 8),

b= —2a]1, + 3a12. - 4aj3. + Sa? - 6a15. + 7a§? + Sgn(j — 8),

b15_ = Za} + 3a12. + 4aj3. + Sal‘; + 6a15. + 7a/6- + Sgn(j — 8),

b = 4aj + 12a; + 32a; + 80a; + 192a; + 44845 + Sgn(j — 8),

b] = 6a; +27a; + 108a; + 405a; + 14584} 4 51034} + Sgn(j —8), j=1,2,...,8

and Sgn(x) = { (1)’ i 2 OO } The variable Y and its derivative Y’ at grids 7y, f,, . .., ?7 are subject to equations
Y;:AijJer, j=1,2,3,4,56,7, (6)

where 4; and R; are values of 4 and R at grids ¢;.

Substituting (6) in (5), we get six linear algebraic equations with respect to seven unknown variables Yi, Y5,
Y3, Y4, YS, Y6a Y7.

By eliminating Y,, Y3, Y4, Ys, Y, a relation between Y; and Y5 can be obtained as follows:

1 1

ZSiYi—’—ZTiYi-H:Fi fori:1,2,...,N—l, (7)
where S; and T; are second order matrices and Fj is a two dimensional vector. By assuming

c1 = blby — bib,

c2 = (bgbs — behs) /1,

c3 = (bybs — bybi) /i,

W= ((b;bé - b%b;)] - hbéAﬁ/Cl,

Wy = ((bibs — byb})I + hblA) /ey,

W5 = ((bibs — byb{)I + h(bgbs — bybl)As) fer,

G1 = (b;Rl - b;R7 + (b;b; — béb;)R4)/Cl,
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ca = (b3 — bgbs) /1,
¢s = (byby — b3by) /ey,
Wa = ((byb — bIb3)I + hbidy) /ey,
Ws = ((b1b3 — bib3)I — hbidy) /ey,

We = ((byb} — biby)I + h(bgb] — biby)A4)/c1,
Gy = (byR7 — bR, + (bibg — byby)Ry)/cy,

ce = b5 + bSes + bics,

Wy = bSI+ bWy + bSW 4,

Wy = b1+ bSW, + bSWs,

Wo = bl + bSWs + biWe + hbyAs,
Wiy = (bSea + bicy + b — hdsg,

Gs = Rs — bRy — bSG) — bSG,,

¢7 = bg + bicy + by,

Wi = bW, + bW, + b3,

Wiy = b + bW, + b2Ws,

Wis = byl + b3W5 + beWe + hbgdy,
Wiy = (b3 + b3cs + bics)I — hd,,

Gy = Ry — biRy — b3G) — biGs,

Wis = bW, + bWy + byl — hW,aAs,
Wis = b3Ws + biWs + b1 — hWsAs,

Wiz = biWs + biWe + bl + h(byds — Weds),

ng = bgCZI + b§C4I + bg[ — hC4A5,
W19 = b§C3] + b§C5I + bg[ — hC5A5,

Gs = Rs — bgRy — 3G, — bG; + hAsGs,

W = bBIW\ + bIW,4 + b3 — hV 1 4;,
Wy = byWs + biWs + bl — hW 43,

Wy = bIWs + biWe + bl + h(bids — W3d3),

W23 = (bgCQ —+ b2C4 + bg)] — hCQA3,
W24 = (b§C3 + bgCS + b;)] — }1(2'31437

Gs = Ry — byRy — (b3 — hA3)G) — biG,

Was = WioWia — cocrl,

Was = Wag (csW i — WiW 1),
Wae = Wag (csW 12 — WsWhs),
W = Wi (cWiz — WoW 1),
Gy = W34 (c6Gs — G W 1a),
Wi = —(W1Was + W) /cs,
Wi = —(WiWas + Ws)/cs,
W3 = —(WioWa + Wy)/cs,

863
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Gs = —(G3 + W1Gy)/cs,

Wi =WioWa + WigWas + Wis,
Wiz = WioWso+ WisWas + Wi,
Wis=WioWs1 + WisWa + Wiy,
Gy = Gs + Wi9Gs + W 3Gy,

Wis = WuWa + WnWas + W,
Wie = WaualWso+ WasWas + Wa,
Wi = WuWs + WiWa + W,
Gio = Gs + WGg + WGy,

we get S; = Wi — Wy W W3,
Ti=Wss — WyulWuWsy,

Fi = Gyg— WG,

Now we consider a linear singularly perturbed two-point boundary value problem of the form:

&y (x) + [a(@)y(x)] + b(x)y(x) = f(x), x€[0,1], (8)
with y(0) = o, (9a)
and (1) = f, (9b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, ff are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0, 1]. Further more, we assume that a(x) = M >0
throughout the interval [0,1], where M is some positive constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 0.

First we obtain the reduced problem by setting ¢ = 0 in Eq. (8) and solve it for the solution with an appro-
priate boundary condition. Let yy(x) be the solution of the reduced problem

la(x)y(x)] + bx)y(x) = f(x) with  y,(1) = B.
We now set up the approximation equation to given Eq. (8) as follows:

&' (x) + la(x)y(0)] + b(x)y (x) = £ (x), (10)

where we simply replaced y(x) by yo(x) in the last term of left hand side of Eq. (8). Now we rewrite Eq. (10) in
the form

&y (x) + [a(x)y(x)] = H(x), (11)

where H(x) = f(x) — b(x)yo(x).
By integrating (11), we obtain

&y (x) + a(x)y(x) = P(x) + K, (12)

where P(x) = [ H(x)dx and K is a constant to be determined.
In order to determine K, we introduce the condition that the reduced equation of (12) should satisfy the
boundary condition y(1) = f.

e y(1) :%1)[”(” +K] =B,

K =a()p—P(1).

(13)

Remark. This choice of K ensure that the solution of the reduced equation of (8) and (9) satisfies the reduced
equation of (12). Hence, Eq. (12) is a first order equation which is asymptotically equivalent to the linear
singularly perturbed two-point boundary value problem (8).
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It is used in the seventh order compact difference scheme (7) to get a two term recurrence relation.
The system (7) i.e., +S;Y; 4+ 4 T;Y;; = F; gives the following equations:

Suy; + Swyi+ Tuyiy + Ty, = hfi, (14)

So1y; + Snyi 4+ Toyipy + Ty = hfa. (15)
By eliminating y;,, from the above equations we have,

(S11T2 — T182)y; + (812720 — T1oSn)y, + (T11 T — T12Ta1 )y = h(Tnfi — Tiaf?). (16)

From the asymptotic boundary condition (12) we have

V) =L (PL) + & — ale)y()).

Substituting this in (16) and simplifying, we get a two term recurrence relation as follows:

1
he(Tnfy = Tiafa) = (Pi + k) (TS — ST
8(T22T11—T12T21)[ (T2fi 12/2) = )(T2S12 — SnTh2)

—(&(T22S11 —SuT12) — ai(T2S12 — T1252))y]- (17)

The condition yg = o, is used to solve the above two term recurrence relation in forward process.

Yir1 =

3. Numerical examples

To demonstrate the applicability of the method we have applied it to two linear singular perturbation prob-
lems with left-end boundary layer. These examples have been chosen because they have been widely discussed
in literature and because approximate solutions are available for comparison. The approximate solution is
compared with the exact solution.

Example 3.1. Consider the following homogeneous singular perturbation problem from Bender and Orszag
[1, p. 480; problem (9.17) with o = 0]

&'(x) +¥(x) —y(x) =0; x€[0,1]
with y(0) =1 and y(1) = 1. The exact solution is given by
[(e™ — 1)e™* + (1 —e™)e™*]

[emz _ em]]

where my = (—1+ V1 +4e)/(2¢) and my = (=1 — V1 +4¢)/(2e).

y(x) =

)

The numerical results are given in Tables 1(a) and 1(b) for ¢ = 10~ and 10~* respectively.

Table 1(a)

Numerical results of Example 3.1, ¢ = 1073, h=10"3

X

Exact solution

Approximate solution

0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e+000

1.000000000000000e+000
6.007917971118448e—001
3.743262782418618e—001
3.719723959330329¢—001
3.871078683269507¢e—001
4.069350064869349e—001
4.496878534047455e—001
4.969323412245205e—001
5.491403645555466e—001
6.068333955506272e—001
6.705876925538863e—001
7.410400559723790e—001
8.188941888631804e—001
9.049277257677435e—001
1.000000000000000e+000

1.000000000000000e+000
6.009586917270412e—001
3.739979292656276e—001
3.716055656467813e—001
3.867409917855329e—001
4.065696264479281e—001
4.493289273231297e—001
4.965852631276493e—001
5.488115911536213e—001
6.065306100458046e—001
6.703199911453044e—001
7.408181600185163e—001
8.187306860347755e—001
9.048373439417579e—001
9.999999181132426e—001
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Table 1(b)

Numerical results of Example 3.1, ¢ = 1074 h=10"7

X

Exact solution

Approximate solution

0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e+000

1.000000000000000e+000
3.683129549003972e—001
3.697602265008225¢—001
3.716134715795036e—001
3.867777582501955e—001
4.066062453397311e—001
4.493649046843792e—001
4.966200590285670e—001
5.488445591957479e—001
6.065609809398519¢—001
6.703468540124427e—001
7.408404411178888e—001
8.187471245827021e—001
9.048464646461863e—001
1.000000000000000e+000

1.000000000000000e+000
3.722612628741235¢—001
3.700563137660214e—001
3.719112287536567e—001
3.870892139299358e—001
4.069357023234568e—001
4.497335037345733e—001
4.970323892117160e—001
5.493057418984449e—001
6.070767310781289e—001
6.709235482279791e—001
7.414851937536867e—001
8.194678723202614e—001
9.056520607856806e—001
1.000900319475613e+000

Example 3.2. Now consider the following non-homogeneous singular perturbation problem:

&' (x)+)y(x)=1+4+2x; x€l0,1]

with »(0) =0 and y(1) = 1. e
The exact solution is given by y(x) = x(x + 1 — 2¢) + %

The numerical results are given in Tables 2(a) and 2(b) for ¢ = 10> and 10~ respectively.

4. Nonlinear problems

Nonlinear singular perturbation problems were converted as a sequence of linear singular perturbation
problems by using Newton method of Quasilinearization. The outer solution (the solution of the given prob-
lem by putting ¢ = 0) is taken to be the initial approximation. The approximate solution is compared with the
exact solution. To demonstrate the applicability of the method, we have applied it on a nonlinear singular per-
turbation problems with left-end boundary layer.

Table 2(a)

Numerical results of Example 3.2, ¢ = 1073, h=10"3

X Exact solution Approximate solution
0 0 0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e+000

—6.298573177109006e—001
—9.862605288949127e—001
—9.878746908700971e—001
—9.456000000000000e—001
—8.882000000000000e—001
—7.584000000000000e—001
—6.086000000000000e—001
—4.388000000000000e—001
—2.490000000000000e—001
—3.920000000000001e—002

1.906000000000003e—001

4.404000000000001e—001

7.101999999999999¢—001

1.000000000000000e+000

—6.303846373794365¢e—001
—9.870862518408403e—001
—9.887018256048586e—001
—9.463937308072652e—001
—8.889519284784425¢—001
—7.590683238207974e—001
—6.091847191631525¢—001
—4.393011145055076e—001
—2.494175098478627e—001
—3.953390519021775e—002

1.903496994674275e—001

4.402333041250724e—001

7.101169087827173e—001

1.000000513440362e+000
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Table 2(b)

Numerical results of Example 3.2, ¢ = 1074 h=10"3

X

Exact solution

Approximate solution

0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e-+000

0
—9.987538091502235e—001
—9.947760000000000e—001
—9.897020000000000e—001
—9.473100000000000e—001
—8.898200000000001e—001
—7.598400000000001e—001
—6.098600000000001e—001
—4.398800000000001e—001
—2.499000000000000e—001
—3.991999999999996e—002
1.900600000000003e—001
4.400400000000002e—001
7.100199999999999¢—001
1.000000000000000e+000

0
—9.905776013165379¢e—001
—9.922645199239503e—001
—9.871895775238370e—001
—9.447900382738046e—001
—8.872906142112640e—001
—7.572917660861831e—001
—6.072929179611019¢—001
—4.372940698360208e—001
—2.472952217109397e—001
—3.729637358585854e—002
1.927024745392228e—001
4.427013226643038e—001
7.127001707893848e—001
1.002699018914466e+000

Example 4.1. Consider the following singular perturbation problem from Bender and Orszag [1, p. 463; Egs.
(9.7.1):

ey (x) +2)/(x) + e =0; x€0,1]
with »(0) =0 and y(1) = 0. The linear problem concerned to this example is

& (x) + 20 (x) +)%y(x) - (x i 1) [loge ()%) _ 1}

We have chosen to use Bender and Orszag’s uniformly valid approximation [1, p. 463; Eq. (9.7.6)] for
comparison,

o 2 —2x/¢
) = o, () — (log.2)e >

For this example, we have boundary layer of thickness O(¢) at x = 0 [cf. Bender and Orszag [1]].
The numerical results are given in Tables 3(a) and 3(b) for ¢ = 10~ and 10~* respectively.

Table 3(a)

Numerical results of Example 4.1, ¢ = 1073, h=10"3

X

Exact solution

Approximate solution

0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e+000

0

5.983404102211222e—001
6.881281702155939e—001
6.831968482780944e—001
6.443570163905132e—001
5.978370007556204e—001
5.108256237659907e—001
4.307829160924542e—001
3.566749439387324e—001
2.876820724517809e—001
2.231435513142098e—001
1.625189294977747e—001
1.053605156578264e—001
5.129329438755048e—002
0

0

5.984379697942955¢—001
6.881230939411335e—001
6.831924583398247e—001
6.443594751549894e—001
5.978479580207977e—001
5.108532931516190e—001
4.308268342327517e—001
3.567345957803070e—001
2.877569252446644e—001
2.232330741743283e—001
1.626226045335766e—001
1.054778440717806e—001
5.142379954828764¢—002
1.432286796641612e—004
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Table 3(b)

Numerical results of Example 4.1, ¢ = 1074 h=10"7

X

Exact solution

Approximate solution

0

1.000000000000000e—003
5.000000000000000e—003
1.000000000000000e—002
5.000000000000000e—002
1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
1.000000000000000e+000

0

6.921476787981791e—001
6.881596390489064e—001
6.831968497067772e—001
6.443570163905132e—001
5.978370007556204e—001
5.108256237659907e—001
4.307829160924542e—001
3.566749439387324e—001
2.876820724517809e—001
2.231435513142098e—001
1.625189294977747e—001
1.053605156578264e—001
5.129329438755048e—002
0

0

6.506543048555499e—001
6.879738129098669e—001
6.830137473746494e—001
6.441912027005219e—001
5.976920141280261e—001
5.107199231303178e—001
4.307137097390938e—001
3.566398055551009e—001
2.876788748200377e—001
2.231704148691400e—001
1.625741818843904e—001
1.054426595432628e—001
5.140098154994006e—002
1.320102511843774e—004

5. Right-end boundary layer problems

Finally, we discuss our method for singularly perturbed two-point boundary value problems with right-end
boundary layer of the underlying interval. To be specific, we consider a class of singular perturbation problem
of the form:

&' (x) + a(x)y'(x) + b(x)y(x) = f(x), x€[0,1] (18)
with y(0) =« (19a)
and y(1) = f, (19b)

where ¢ is a small positive parameter (0 < ¢ < 1) and o,  are known constants. We assume that a(x), b(x) and
fix) are sufficiently continuously differentiable functions in [0, 1]. Further more, we assume that a(x) < M <0
throughout the interval [0, 1], where M is some negative constant. This assumption merely implies that the
boundary layer will be in the neighborhood of x = 1.
From the asymptotic boundary condition we have
&y (x) + a(x)y(x) = P(x) + k,
where P(x) = [H(x)dx, k = a(0)p — P(0) and H(x) = f{x) — b(x)yo(x).

Substituting this in (16) and simplifying, we get the two term recurrence relation as follows:

)= he(Tofi — Tiafo) — (P + k) (T22S12 — 8S2T12) — (Tl — T Tha)yy
' e(S11 T —8uT1) — ai(S12Tn — S»Th) '

The condition y,, = f is used to solve the above two term recurrence relation in backward process.
6. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two-point boundary value problems with right-end
boundary layer of the underlying interval we considered two examples. The approximate solution is compared
with the exact solution.

Example 6.1. Consider the following singular perturbation problem:

&'(x) =)y (x)=0, xe€l0,1]
with y(0) =1 and y(1)=0.
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Clearly, this problem has a boundary layer at x = 1. i.e.; at the right end of the underlying interval.
The exact solution is given by y(x) = %

The numerical results are given in Tables 4(a) and 4(b) for ¢ = 10~ and 10~* respectively.

Example 6.2. Now we consider the following singular perturbation problem:
&'(x) =y'(x) = (I +e)y(x) =0, x€l0,1]
with »(0) =1 +exp(—(1+¢)/e) and y(1)=1+1/e.
Clearly this problem has a boundary layer at x = 1. The exact solution is given by y(x) = eI T9=1/e 4 o=

The numerical results are given in Tables 5(a) and 5(b) for ¢ = 10~ and 10~ respectively.

7. Discussion and conclusions

A seventh order numerical method is presented for solving singularly perturbed two-point boundary value
problems with a boundary layer at one end point. A two term recurrence relation is obtained and is solved.

Table 4(a)

Numerical results of Example 6.1, ¢ = 1073, h=10"3

X

Exact solution

Approximate solution

0

1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
9.900000000000000e—001
9.950000000000000e—001
9.990000000000000e—001
1.000000000000000e+000

1.000000000000000e+000
1.000000000000000e+-000
1.000000000000000e+000
1.000000000000000e+-000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+-000
1.000000000000000e+000
1.000000000000000e+-000
9.999546000702375e—001
9.932620530009145e—001
6.321205588285580e—001
0

1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
9.999546000678188e—001
9.932620528214147e—001
6.321205568684837e—001
0

Table 4(b)

Numerical results of Example 6.1, ¢ = 1074, h=10"3

X

Exact solution

Approximate solution

0

1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
9.900000000000000e—001
9.950000000000000e—001
9.990000000000000e—001
1.000000000000000e-+000

1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
9.999546000702375e—001
0

1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
1.000000000000000e+000
9.999999999938426e—001
9.942736058544357e—001
0
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Table 5(a)

Numerical results of Example 6.2, ¢ = 1073, h=10"7

X

Exact solution

Approximate solution

0

1.000000000000000e—001
2.000000000000000e—001
3.300000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
9.900000000000000e—001
9.950000000000000e—001
9.990000000000000e—001
1.000000000000000e+000

1.000000000000000e+000
9.048374180359596e—001
8.187307530779819¢—001
7.189237334319262e—001
6.703200460356393e—001
6.065306597126334e—001
5.488116360940265¢—001
4.965853037914095e—001
4.493289641172216e—001
4.065696597405991e—001
3.716216392149593e—001
3.764277858922879¢—001
7.357592502223562e—001
1.367879441171442¢+000

9.990004182346399e—001
9.038378362705996e—001
8.177311713126219¢—001
7.179241516665662e—001
6.693204642702791e—001
6.055310779472733e—001
5.478120543286664e—001
4.955857220260496e—001
4.483293823518615¢—001
4.055700779752390e—001
3.706223875442146e—001
3.754561392792220e—001
7.353595249630720e—001
1.367879441171442e+000

Table 5(b)

Numerical results of Example 6.2, ¢ = 1074 h=10"7

X

Exact solution

Approximate solution

0

1.000000000000000e—001
2.000000000000000e—001
3.000000000000000e—001
4.000000000000000e—001
5.000000000000000e—001
6.000000000000000e—001
7.000000000000000e—001
8.000000000000000e—001
9.000000000000000e—001
9.900000000000000e—001
9.950000000000000e—001
9.990000000000000e—001
1.000000000000000e+000

1.000000000000000e+000
9.048374180359596e—001
8.187307530779819¢—001
7.408182206817180e—001
6.703200460356393e—001
6.065306597126334e—001
5.488116360940265e—001
4.965853037914095e—001
4.493289641172216e—001
4.065696597405991e—001
3.715766910220457e—001
3.697234445440590e—001
3.682928591661881e—001
1.367879441171442e+000

9.999000941512859e—001
9.047375121872455e—001
8.186308472292678e—001
7.407183148330039e—001
6.702201401869251e—001
6.064307538639194e—001
5.487117302453125e—001
4.964853979426955e—001
4.492290582685075e—001
4.064697538918851e—001
3.714767851735604e—001
3.696240169244649¢—001
4.225930889950365e—001
1.367879441171442e+000

The advantage of this two term recurrence relation is it can be solvable by forward or backward process. There
is no need of applying any analytical or numerical method to solve the system of equations. Several linear and
nonlinear singular perturbation problems have been solved and the numerical results are presented to support
the theory.
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