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Slow Steady Flow of an Idealized Elastico-Viscous Incompressible
Fluid of Oldroyd Type Through a Straight Tube with an Arbitrary
Cross-section

By N. CH. ParTABHI RAMACHARYULU

In der Arbeit wird die langsame stationdre Strémung einer idealisierten clastisch-viskosen Flissigkeit
durch ein gerades Rohr untersucht. Die Bewegungs- und Zustandsgleichungen werden mit Hilfe der Storungs-
rechnung linearisiert und dann mil funktionentheoretischen Hilfsmitteln gelist. Unter dem Einfluf eines
konstanten Druckgradienten lings des Rohres ist die Stromung eine Parallelstromung, welcher eine Sekunddr-
stromung in den Ebenen senkrecht zur Rohrachse diberlagert ist. Man erhdlt die Lisung fiir beliebig geformite
Rohrquerschnitte; als Beispiel wird ein Rohr behandelt, dessen Querschnitt eine Pascalsche Schnecke ist.

In this paper, slow steady flow of an idealized elastico-viscous liquid through a straight tube is discussed.
Perturbation technique is employed to linearize the equations of motion and state. We observe that the flow,
under the influence of a constant pressure gradient down the awxis of the tube, 18 a rectilinear flow over which
a secondary flow is superposed in planes perpendicular to the length of the tube. The basic equations derived
are solved with the function theoretic method. The solution for any arbitrary cross-section of the tube is
obtained. The case of a tube with an elliptic-limacon cross-section s given as an example.

B paloTe ucclaemgyercda Me[JIeHHOE yCTAaHOBUBIlleecHa TeueHUe MACAIM3UPOBAHHON yNpyro-
BA3KOH KUTKOCTH B NpAMOI TpyGe. YpaBHEHUs ABUKEHUA U COCTOAHUA JINHEAPU3YIOTCA IIpU
IIOMOIINM MeToJa BO3MYIIEHMIi, a peuleHHsd HaXOAAT No Teopun ¢yHkmmii. Ilox BauAHHeM
IIOCTOAHHOTO I'DafUeHTa [aBJeHUA, HANPaBJIEHHOIO BAOJL TPYOLI, IOTOK CTAHOBMTCA Mapaj-
JIeJIbHBIM TeUeHWeM, HAa KOTOpoe B IJIOCKOCTH IepIIeHAUKYJIAPHO K OCH TPyOb HaKJIajbiBaeTca
BTOPUYHOE TedeHWe. PelleHUe BO3MOMKHO JJIA cedeHMs TPYyObl Jioboil ¢opmel. B 1ayecrse
npuMepa paccMaTpuBaeTca Tpy0a ¢ cedeHHWeM B BHUe YIUTKU Ilackamas.

1. Introduction

Due to the non-linearity of the differential equations in the theory of elastico-viscous
liquids of OLDROYD type [9] only a few problems with a high degree of symmetry have been solved
in an exact way. A few attempts have been made to solve the equations for flow problems even
in an approximate manner [10] —]12]. In the present paper, we examine the slow steady flow
of an elastico-viscous liquid through a tube of arbitrary cross-section by employing a method
of successive approximation based on the recursive approach proposed by Landrois [3] and
Laxcrors and RiviixN [7]. It is observed that a uniform pressure gradient down the tube can
produce a rectilinear flow over which a certain secondary flow is superposed in the cross-section.
This is noticeable only when terms of the order S% are retained in the expansion. However,
considering terms of third order in S only, we observe the normal stress variation on the boundary
different from zero unlike in the NewToxian case. This is in confirmity with KEArsLY’s experi-
mental results reported by Prrkix and Riviix [13]. Earlier, several authors [1], [3], [6], [7]
considered the slow steady motion of non-NEwtronian fluids through straight tubes with a
special reference to an elliptic cross-section. Recently, the secondary flow formation of non-
Newronian liquids of REmngr-Riviin type has been examined for the cross-section bounded
by (i) two eccentric circles [4] and (i i) two confocal ellipses [2]. In this paper, the basic equations
in the successive approximations for the flow through a tube of arbitrary cross-section are solved
by the function theoretic method developed by MusaxurLisavILI [8]. The case of an elliptic
limacon is given as an example.

2. Basie Equations of the Slow Motion of Elastico-viscous Liguids

The stress-tensor 7, and the rate of deformation tensor E;; = (Ui + Us,s), for a class
of isotropic liquids characterized by OrproyDp [9] are related by

.1) T = — P oy + Six
with
DSy
Six + M D7 T Ho Sis Eix — 11 (Sig Egie -+ Syx Eiy) + vy Spu Egy 0ie
(2.2)
DE;;
=27 [Eik + Ay DT 2u, By By + vy By Eyy (5”] ,
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U, being the velocity in the i-th direction, P is the hydrostatic mean pressure, S;; the deviatoric
stress-tensor, » the kinematic coefficient of viscosity and 2;, 2,; 1445 t1, Ug; ¥, ¥, are scalar physical
coefficients (exhibiting the elastico-viscous properties of the liquid) each with the dimension
of time T, restricted by the inequalities

2.3) 0, > 0y =06,/9,
where
3
(2.9) 0y = Ay Aq + po{tg — E”q — tty (g — ) .

Also D/DT indicates a corotational derivative
0

3T Sig + Uy Sin,g + Wiy Siy + Wiy Siy

D
(2.5) DT Sz =
which, following the typical element, takes into account the linear and angular motion of the
element measured by the velocity vector U; and the vorticity tensor Wy = ¢ (Up,; — Usp) -

We consider such an idealized elastico-viscous liquid at rest filling a long straight tube.
Taking the Z-axis of a system of rectangular Cartesian coordinates (z, y, Z) along the axis of the
tube, let the cross-section of the tube be given by the profile I" whose equation is f(z, y) = 0.
The state of rest is disturbed by imposing a small uniform pressure gradient 9P/0Z = S G where
S is non-dimensional and small. This parameter S may be taken as the REvyNoLD’s number
characteristic of slow motion depending purely upon a characteristic length of the cross-section,
pressure gradient and the kinematic coefficient of viscosity but independent of any of the elastico-
viscous constants.

Following L.ancrois [5] and Lawcrois and Rivuix [7], we assume that the velocity and
in fact any physical quantity X such as the deviatoric stress-components, pressure, stream func-
tion ete., can be expanded in an absolute convergent series in the real parameter S in some range
| S| < S, and for relevant values of x and y. We thus write

(2.6) X=85X1 4 §2X® 4 §3X® L S41X4D .,

and assume that the first and second order derivatives with respect to the space variables x
and y can be obtained term wise differentiation and the resulting series be absolutely convergent.
The equations of motion are

(2.7 o U Uy = 74y,

¢ being the density of the liquid, together with the incompressibility condition
(2.8) U,;=0.

Let the components of the velocity (u, v, w) be given by

oV —o¥
(2.9) U=z, U:’*aT s

3 w = w(x, y) .

The function ¥ may be interpreted as the stream function giving the flow pattern in the cross-
section of the tube. The expansions of the type (2.6) are substituted in the consititutive relations
(2.1), (2.2) and the equations of motion (2.7) and like powers of S are grouped. Thus the equations
for the stresses and motion can be formulated in various stages which may be called the equations

in the 1st, 2nd, 3rd, 4th... order approximations respectively. The boundary conditions, in
each order of approximation may be written as

(2.10) u™ =0, v =0, w™ =20

the first two of which being equivalent to

(2.11) Pm =0, ¥M =0

on I. We thus have at any stage a system of linear differential equations, with homogeneous,
boundary conditions, making use of the results of all the previous stages. The equations deter~
mining the flow in the successive orders of approximation reduce, after simplification, to the
following:

First Order Approximation:
(2.12), (2.13), (2.14) Mw=6n(=4q¢, V+¥® =0, POY =Gz constant.
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Second Order Approximation:

(2.15), (2.16) 2w® =0, JevPe =0,
2.17) pP® = %(— 29 — 2+ u) I + (— 24+ p) G w® + constant
where
(2.18) A=A —2gy M= — Uy V=71 — Wy,
(2.19) I = [P + [P
Third Order Approximation:

‘ : 1
(2.20) V2w = (o, — o) [G o L+ I,,],
(2.21), (2.22) Vey® =0, PO = constant.

Fourth Order Approximation:

0
2.23), (2.24 2w® =0, VAP = (uy — Ay) =7 @, P2w®) |
(2.23), (229 (te = A) 55 € )

These equations subject to the boundary conditions (2.10) yield the results
(2.25) PO =0, w® =0 YO0, PO —0, w®H—=0

throughout the cross-section and w®, w® and Y® can be determined as functions of x and y.

The secondary flow, characterized by ¥®, is not observed until the terms of the order S¢
are retained in the expansions (2.6). Further, this secondary flow depends on the elastico-
viscous coefficients. For the models with p, =1, or o, = o, the equation (2.24) reduces to
P+ ¥ = 0 which yields ¥ = 0 in the entire cross-section and hence upto this order, a purely
rectilinear flow of such models through straight tubes is possible.

3. Normal Stress Distribution on the Boundary

Motivated by the experimental results of KEarsLy reported by Riviin and Prpxix [9],
we examine the normal stress variation on the boundary. Retaining terms upto the third
order approximation only, we calculate the normal stress N = 7;; n; n; on the boundary:

Sn(=A+1), 0 2) () (1
) _ Snl—A T ) _ t ) 44, M vy,
This normal stress is seen much before the onset*of the secondary flow which appeared in a
later (4th) approximation. The variation of this normal stress along I"is thus mainly responsible
for the formation of the secondary flow in the planes perpendicular to the axis. In the Newroxnian
flow, N is a constant along I" and hence the flow is purely rectilinear for all cross-sections of

the tube.

We adopt the function theoretic procedure for solving the equations (2.12), (2.20), (2.24)
for an arbitrary cross-section which is simply connected so that by a suitable choise of the map-
ping function, the cross-section of the tube can be conformally mapped onto a unit circle [8].

4. Transformation of Coordinate Variables

Let us introduce the complex variable z =« -+ i y and its conjugate z =x — i y. The
equation (2.12) then reduces to '

ot G

P07 a7 =gq (say),

the solution of which can be written as

(4.2) W = f1(2) + [1(2) + qz%
where f,(z) is analytic inside I" and is so chosen that

(4.3) L@ +he)=—qzz
on I'. Also f,(2) represents f,(z).
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The pressure distribution (2.17) obtained in the second approximation can be written as

4.4 pA =2yn(—2v — A+ w (@ + q2) (fi + g2) +
+Agn(—2A 4w (HG) + (@) + qz3)

plus an arbitrary constant.
The equation (2.10) for w® can now be written as

- Fw® 2 _
(4.5) 2205 — 2 (01— 09) 5 5= 11z 2]
where
(4.6) Nz, 2) =g (@ N (2) +2q9"() 20" (2) +

+ @z {29 +229"0) - 29@} +
+ %q" z% z2 -+ conjugate expression

together with

4.7) 9@ =h@, M@ =/[@.

The solution of (4.5) can be written as

“4.8) w® = 2 (0, — 0y) (fal2) + [3(2) + Uz 2))

where f4(z) is analytic inside I" and satisfies the condition:

(4.9) fsz) + fs(z) = — Uz ) on I'.

Similarly, the equation (2.24) for ¥, characterizing the secondary flow, reduces to

o4y . oim(z, z

(1.10) S = — (o — ) (g — 1) e D)

where

(“.11) m(z2) = k@ +37hE@)297@ + 3¢ 9@ g () +
45 ¢3 22 {7 g2 —62zg(z) + 12 g(z)} — conjugate expression
with
4.12) K'(z) = [3() .
The boundary conditions ¥ = 0, Y’gf) = 0 can easily be verified to be identical with
Pz, z) = O0and P® = 0 or ) — 0 on I. The solution of (4.10) can now be written as

(4.13) PO = —i(o,— 0 (e — A) [11(d) — [u(®) + 2 @u®) — 2 pa2) + Mz, 2)]
where the functions f,(z) and ¢,(z) are analytic inside I" and satisfy the conditions on [
(4.14) 1) — [u2) + 290u2) — 2942) = —m(z,2),

(4.15) i@+ ) — 29D = — = 7).

The normal stress distribution (3.1) on the boundary, when the terms of the third order
perturbation are retained, is given by

dz - dz ——
(4.16) N=—SGZ—S§n(—p [Eg e +aa2 + 3 G0 + qz}Z]
calculated at points of I

5. Use of Conformal Mapping
Let the mapping function
(5.1) z=820), (=po, o=¢"?
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map the reglon inside I"in the z plane onto the unit circle y: [{| << 1 in the ¢ plane. Further, we
denote the images of the respective functions in the { plane by the corresponding capital letters,
Le.,

@ =Fyl), p=134 @) =00, U2 =L,
m(z, z) = M, 0), n(z2) = NGO .
Determination of Fy({): The boundary condition (4.2) can be written as

®-3) Fy(o) + Fylo) = — ¢ (o) 2(0) .

(.2)

N 1 . . .
Multiplying byjn [ (¢ — {) and integrating along y: || = 1, we get

/ ) S (o) (o)
(64) Fi(©) + Fy(0) = 2m/‘0~5d
e
The pressure in the second approximation can be written as
o
(5) ¢%=2neay_a+u{§g;+.moﬂffg+w9@ﬂ

+4qn (=2 + p) [F©) + Fi@) + ¢ 20 20)] .

Determination of Fy(0): The boundary condition (4.9) can be written in the { plane as

(5.6) Fy(0) + Fyf0) = — Li(a, 1/0)
from which we obtain as above,

0y 1 [L(,1 /U)
6.7) Fy©) + Fo0) = — 5 [ =g do
determining F,({).

Determination of @,4{): The condition (4.15) can now be written as
— Fi(o
5.8) LUy e Te) = — N, 1/0)
2(0)
Multiplying (5.8) by 1/2z i (¢ — {) and integrating along y, we get

Q(0)
QUQA) fMGW)

_ 1
68 X0+ 2O -5 [
The function @,({) can be obtained as a solution of thisintegral equation. Here X(0) = F1(0)/£'(0).

Determinationof Fy(): Having determined @,({) in the above manner, the boundary
condition (4.14) can now be written as
(5.10) F,(0) — Fy(o) = — M(o, 1/0) — Q(0) Dy(0) + Q2(6) Dy(0) = P(o, 1/o) (say).
Then, as before

(.11) Fyo) — Fi0) = L [P 19y,

27 i o — ¢
Y

s

from which the function F, can be determined.
The determination of @,(f) and F,({) can be facilitated by assuming power series expansmn
for the functions, the constants of which can be obtained by comparing like powers of { in the

equations (5.9) and (5.11) respectively.
The normal stress distribution responsible for the secondary flow can be obtained as

Q@{E@
0@ 120

(5.12) N=—-SGZ — 85 (A — /u)[ +q .Q(a)} -+ conjugate expressmn] .
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6. Flow through a Tube of Arbitrary Cross-section
Let the mapping function

(6.1) Z = Q(¢) = é; w, "

transforms conformally the interior of I" in the z plane, into the unit circle y: || =1 in the
¢ plane. For generality, we regard the coefficients o, to be complex. Then

n+1 n—r

(6.2), (6.3) (o) 2(0) = %j e o, o= 21 W) Wy -
r=—(n—1 j=
Determination of Fy({): From (5.4), we get after integrating,
—— n—1
6.9 B+ FO0) = —q 2 e gr.

n
Since ¢y = Zl w; w; 1s real, we can take
=

(6.5) Fy(0) = Fy(0) = — q &2

but for an imaginary constant the presence of which can be avoided as it does not effect the final
result. Hence we have

n—1
(©6.6) ﬂ@2“4hﬂ+£&4
and the velocity field in the first approximation:
n—1 _ n n -
(6.7) w0 = g |a+ 500 e~ Do u S50,
r=1 j=1 ji=1

Determination of Fy(l): Let

(6.8) L(o, 1/o) = I, + 2 (o" -+ I, [o7) .
Then thg equation (5.7), after integration, yields ‘
(6.9) FyQ) + Fa0) = — Eolr .
Taking Fy(0) = F3(0) = — [,/2 (real), we obtain
1 ©
(6.10) FO = =g+ S0e]
and hence
(6.11) w® = — 2(g, — 0y) [10 + 2 (L +L0) ~ L, 'c)i
Determination of @,({): Let
(6.12), (6.13) N(o, 1/0) =" 3 n,o", 78(2 = Zn’ c o,
F=-—00 Q'(o‘) f=—00

‘We shall also assume
(6.14) D) = f‘% a
and obtain

0 I n ©
(6.15) L0 G = S Ko+ 3 Ko,

Q' (o) r=0 i=1
where

N

(6.16) K, —

w(S - 7T + 1) Cs (’l-s'vr—{-]
A .

Il
3
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for all r = 0. We donot write out the expression for K_;, j > 0, as they are not required in the
calculation of @,((). We then get after substituting these expressions in (5.9) and comparing
the like powers of

6.17) —X(0)+a—Ky= —ny, ¢ —K,=—n, for0<r=n, a = —n,forr>n,.
This set of equations determines constants a, in terms of X(0) and n,.

Determination Fy({): Let

(6.18) o) Do) = dy + i d,o" +§1 d_Jo"
where

(6.19) A= X oy ayry,  doy= X o, .
Also let = S:r

(6.20), (6.21) M, 1jo) = i:m, o Fy(d) = 210 bor.

The boundary condition (5.10) can now be written as

= —00

(6.22) F,(0) — Fy(0) = — [(da —dy) + §(d, o' — djo) + :fl (da‘; —d, o”)—}— ¥ om, o’].

Multiplying byén i (¢ — ) and integrating along y, we obtain

(6.23) Fyf) — Fo0) = — [(do —dy) + ;I d, & — g?lé?—r &+ é‘)mrér} .

Substituting from (6.21) yields

(6.24) { by — by = — (dy — dy + mg), by = — (d, — d_,+m) for0<r=n,
by = — (d, + m,) for r>n.

Thus determining the coefficients #’s. Using all the above results, we can now write the stream
function:

(6.25)
PO = — (07 — 0y) (U — o) [ é',(b' &r—b,fry + é;ar e é;afé’ —ré; w, " ’ré')&rc_"FM(C’ 5)]

which characterizes the secondary flow pattern.
Further, the normal stress distribution (4.16) on the boundary can be obtained as

2 n2 _ n—1 n [n—r
626) N=—SGz — >4 "iUL’QH— @2 — X e o+ l(zljw,?um_l/ar) +
r= r= j=

¥

n—2 (n+1 9
+ ;;( e’ (G+1+1) 0 0jirin 0”)} -+ Conjugate} s

where
n4-1 n—r

U= XY Xj(+no,o6m0.

r=—(n—1) j=1

7. Application: Flow through an Elliptic Limaeon

The function
(7.1) =R =b( +ml?), 0= m<<1/2

maps the region inside the elliptic limacon on to the region bounded by the unit circle y in the { plane. The
results in this case are mentioned here under.

First Order Solution: The velocity in this approximation is given by

(7.2) w® = — g2 (1 — [+ m(l+p%+ 2mpPeose].
Second Order Approximation: The pressure field noticed in the second approximation is
(7.3) P2 =222y (— 2y — A+ pu) (P2l + 2m B cos g + m2f?) -

4+ {m2(l —4m2) —2m B (1 + 2m2P2) cosp — m?PB2cos 2 p}/H} 4
+4ng2b2(— A+ p) (1 — B2 {1 + m* (1 + f2) + 2 mf cos B}
where H =1 4-4 m ff cos @ - 4 m2 2.
26
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Third Order Solution: The effect of the non—Newronian coefficients in this approximation is
the rectilinear flow characterized
(0, — 05) ¢° b*

3 [3m2w® + 2 wi®]

(7.4) w® —

where

(7.50) w® =4m (L —p)[{log(1 —4m?) — A} {2m 4B+ (L +4m?)fcosp} —
— B (1 — 4 m? fsin¢]/D

and

(7.5b) w® = — (1 — B3+ 4m2 -+ md) + (3 + 12m? + 43 m* + 12 m®) 2 +
1 m2 (48 4 19 m2 - 12 m?) B* + 3 m* (25 - 4 m2) B8 - 12 m® f3} +
+4m {3+ 11 m? -+ 3m*) + (6 + 3m? + 8mt) f2 4
+ 2m2 (15 + 4 m2) Bt + 15 m* B8} B cos @ +-
+2m2{(L+5m?) 35+ m?)p2+ 24m?2pr) Peos29 +
+ 12 m3 (1 4 (%) 2 - cos 3 @]/H

with

A= (1/2)leg H,
B=tant{(2m Bsing)/(1 + 2mpPcosg)},
D=4m?*+ 1+ 4m?PpP+4m2pt+4m( 4 4m?) (1 + 2 cosp + 8m2f2cos2 ¢ .
Fourth Order Solution: The secondary flow, in planes perpendicular to the tube-axis is characterized
by the stream function ¥':
(7.6) W2 ¢2b% (6, — 0y) (0 — Ay)]
— (gt (2 —dm? — ) my+ (3~ Y mny} fsing +

-+ 32{_ mp + (Rr+1 -+ murr2 [l 4 B2 (1 — B2)} " sinr @ -
e

+@Bm/BHY{A[(1 —6m2f2 —8m2pY) fsing + m (1 — 8 m?B2) f2sin 2 ¢] —
— B[6m (L +2m282%) B2+ (1 + 18m2 3% 4+ 8m*f*) fcosp + m (1 + 8m?f2) - f2cos 2 ¢]} +
=+ (m/80 H) {[— 5 (3 4+ 8 m?) — 30 (4 + m?) 52 — 40 m? (8 + 9 m?) p* —
— 80 m2 (2 + 3 m*) B8 — 280 m* f8 — 48 m® B1°] B sin ¢ -
F+[—5m (34 16 m?) — 120 m (2 + m?) 2 — 40 m (1 -+ 4 m2 4+ 9 m*) p* —
— 288 m3 58 — 120 m5 58] p2sin 2 ¢ +
+ [— 120 m® (L + m?) 2 — T2 m2 f* — 96 m* B8] f2sin3p — 24 m3 B8sind ¢} .
The coefficients n, are given by

m

— _3@ — 2 4 — 2
no—[ 1 (I — 8m?+ 28 m*) log (1 4m)+16(1—47n2)

(61 — 276 m? + 440 m* — 480 m“)] s

3 m2
= | — —_ 2 4 — 2 —_— _— 2 4
N {32(1 8 m? 4 64 m*)log (1 4m)+8(1_4m2)(27 126 m +40m)],
ny = — ny/2m,
3 1
Ny = [W (1 — 4 m?-I- 8m* -+ 64 m® log (1 — 4 m?) + S0 =4y (15 — 170 m? - 216 m* - 576 m‘*)] ,

mzz{—gﬁ(l — 4 m? 4+ 4 mt 4 128 m8) log (1 — 4 m?) —

1
- mﬁ (16 — 90 m?2 | 244 m* — 776 m® - 480 ms)] ,

and i()I r= 5,
= ““—‘m — 5 4—37+72‘~88-—'57+72 2+

+ 16 (14 — 7r + r2) m2} {H, + log (1 — 4 m?3)} — §Sﬂ(— 2 m)rlog (1 — 4 m?) —

(—2my
T 38mr(r—1) (r—z)(l—zfmT){

+ 12 (40 — 887 - 1872 — 64 - 14) mt + 48 (r — 2) (30 — 33 + 132 — 243) 6

2r(r—1)(r—2) —~ 38+ 107 — 1572+ 5% m2 4

4192 (¢ — 1) (r — 2) (14 — Tr | 72) mS}J .
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Also m are given by
my =0,

-3 "
my = [@‘m (1 — 4m?®)3log (1 — 4 m2) — T (75 + 25 m® L 56 m4)J ,

3 ’ 1
My = \_m(l — 16 m*) (1 — 4 m2p2log (1 — 4 m?) 160 (15 — 140 m? — 768 m* 4 160 m“)] ,
_[_-_3 6 2y2 2 1
mg = | — 356 m® (1 —64m® (1 —4m22log(l—4m )—l—m — 15—|—90m2—648m4—[-2160m6—64Om.3:| ,

and for » = 4,

r3 1y
my = 35(—2—7”) (U —4m22{H, + (1 — 4" m2") log (1 — 4 m2)} +

(—2m)”

+64r(rz—l)

(137 (2 — 1) —4(24~7r—672+1373)7n2——16(72—1)(7‘~—6)m4}:,.

r
In the above expressions, H, represents 2 {(4 m2)¥/k} .
k=1

Form the structure of (7.6), it can be noticed that the flow is symmetrical about the line Re () =0,
which forms a dividing stream line. Hence, the secondary flow is composed of two regions of circulatory flow
with opposite directions in the two symmetrical halves of the
cross-section. The flow pattern in the cross-section has been ¥
illustrated in the figure. ;

When m = 0, the cross-section of the tube reduces to a
circle in which case, we get ¥¥ = 0, i. e., a purely rectilinear !
flow is sustained without the formation of secondary flow [9]. x

The normal stress, noticed much before the onset of the '
secondary flow (7.6) is given in the non-dimensional form: !

N+8GZ

% p—

@7 ST Cr o e

_cos2g(l -+ 2m2 - 2 m cos @)?
14+4m-+4mcosg ’

b

The following table gives the values of AN* along one
half of the limacon, for various values of m. The variation in
the other half can be got from symmetry. The cases of a circle
(m = 0) and cardioid (m = 1/2) are included in the table for
reference. It is observed that as the aspect ratio m of the
limacon increases, N* also increases. The departure of AN*
for an elliptic limacon from its value in the circular section
increases with m. Within the range 45° < ¢ <7 135°, AN* is
very close to its value for the circular case. The variation in
the range 135° < p < 180° is much larger than that in Secondary flow pattern .ilx?,tpbe whose cross-section
0° <¢ ¢ < 45° for m == 0. This non-uniformity in the variation is an elliptic limacon
of AN* and its departure from the circular cases are respon-
sible for the secondary flow. It is also worth mentioning that for m = 1/2. AN* becomes infinite at
@ = 180° i. e., at the cusp of the cardioid, a case which is excluded from our present discussion.

Variation of AN* along One Half of the Boundary

m 0.5
P Cﬁfle 0.1 0.2 0.3 0.4 Cardioid
0° -1.0000 -1.0336 -1.1176 -1.2377 —1.3872 -1.5625
15° -0.86603 -0.89372 -0.96360 —1.0645 -1.1908 -1.3395
30° -0.50000 —0.51382 —0.54945 -0.60243 —-0.67000 —0.75054
45° 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
. 60° +0.50000 +0.50512 +0.52443 +0.55804 +0.60545 +0.66582
75° +0.86603 +0.86944 +0.88689 +0.92385 +0.98270 +1.0637
90° +1.0000 +1.0004 +1.0055 +1.0239 +1.0626 +1.1252
105° +0.86603 +0.86765 +0.86721 +0.86724 +0.87582 +0.90089
120° +0.50000 +0.50518 +0.51083 J +0.51080 +0.50514 +0.50138
135° 0.0000 0.0000 0.0000 0.0000 0.0000 3.0000
150° -0.50000 -0.51511 —0.57380 -0.67680 ~-0.70914 ~0.74582
165° -0.86603 —0.90459 ~1.0743 -1.5505 -2.7298 -3.5041
180° —-1.00000 -1.0506 —1.2844 -2.1025 -6.7599 )

26*
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