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Slow Steady Flow of an Idealized Elastico-Viscous Incompressible 
Fluid of Oldroyd Type Through a Straight Tube with an Arbitrary 

Cross-section 
By N. CH. PATTABHI RAMACHARYULU 

I n  der Arbeit wird die langsame stationare Stromung einer idealisierten elastisch-viskosen Pliissigkeit 
dureh ein gerades Rohr untersucht. Die Bewegungs- und Zustandsgleichungen werden mit Hilfe der Storungs- 
rechnung linearisiert und dann mit  funktionentheoretisehen Hilfsmitteln gelost. Unter dem EinfluP eines 
konstanten Druckgradienten lungs des Rohres ist die Strvmung eine Parallelstromung, welcher cine Sekundar- 
stromung in den Ebenen senkrecht zur Rohrachse iiberlagert ist.  M a n  erhalt die Losung fiir beliebig geformte 
Rohrquerschnitte; als Beispiel wird ein Rohr behandelt, dessen Querschnitt eine Pascalsche Schnecke ist. 

In  this paper, slow steady flow of a n  idealized elastico-viscous liquid through a straight tube i s  discussed. 
Perturbation technique i s  employed to linearize the equations of motion and state. W e  observe that the flow, 
under the influence of a constant pressure gradient down the axis of the tube, i s  a rectilinear flow over which 
a secondary flow i s  superposed in planes perpendicular to the length of the tube. The basic equations derived 
are solved with the function theoretic method. The solution for any  arbitrary cross-section of the tube i s  
obtained. The case of a tube with a n  elliptic-limacon cross-section i s  given as a n  example. 

B p a 6 o ~ e  mx.neEye-rccI MeaneHHoe ycTaHoBmmeecII Teseme ~ ~ e a n ~ 3 1 1 p o ~ a ~ ~ o f  ynpyro- 
B R ~ K O ~  XMHIEOCTH B npHMoii TpyBe. YpameHm j w m W e H m  II COCTOIIHIIR n ~ ~ e a p m y w ~ c a  n p ~  
IIOMOUH MeToEa ~ o a ~ y w e ~ a i i ,  a pemeHm HaxoAm no Teopm (PYHKUH~~. IIon BnmmeM 
nocTommoro r p a p e m a  namemm, HanpaBneHHoro BHOJIb Tpy6b1, noToK cTaHoBmcsx napan- 
nenbmm TeqemxeM, Ha IcoTopoe B ~ J I O C K O C T H  nepneHjpmynqHo K OCH ~py6b1 HamanbrsaeTcn 
BTopmHoe Teqeme. PemeHHe B O ~ M O X ( H O  AJIR ceqeHm ~py6b1 nw60Gi (PopMbI. B ICaqecTBe 
npmrepa paccMaTpmaeTca TI) y6a c ceqenHeM B BnAe Y ~ T I L Z T K H  IT a c IE a n  II. 

1. Introduction 
Due to the non-linearity of the differential equations in the theory of elastico-viscous 

liquids of OLDROYD type [9] only a few problems with a high degree of symmetry have been solved 
in an exact way. A few attempts have been made to solve the equations for flow problems even 
in an approximate manner [lo]-[12]. In the present paper, we examine the slow steady flow 
of an elastico-viscous liquid through a tube of arbitrary cross-section by employing a method 
of successive approximation based on the recursive approach proposed by LANGLOIS [5] and 
LANCLOIS and RIVL~N [7]. I t  is observed that  a uniform pressure gradient down the tube can 
produce a rectilinear flow over which a certain secondary flow is superposed in the cross-section. 
This is noticeable only when terms of the order S4 are retained in the expansion. However, 
considering terms of third order in S only, we observe the normal stress variation on the boundary 
different from zero unlike in the NEwToNian case. This is in confirmity with KEARSLY’S experi- 
mental results reported by PIPKIN and RIVLIN [13]. Earlier, several authors [l], 131, [B], [7] 
considered the slow steady motion of non-NEwToNian fluids through straight tubes with a 
special reference to an elliptic cross-section. Recently, the secondary flow formation of non- 
NEwToNian liquids of REINER-RIVLIN type has been examined for the cross-section bounded 
by (i) two eccentric circles [4] and (i i) two confocal ellipses [2]. In this paper, the basic equations 
in the successive approximations for the flow through a tube of arbitrary cross-section are solved 
by the function theoretic method developed by MUSHKHELISHVILI [8]. The case of an elliptic 
limacon is given as an example. 

2. Basic Equations of the Slow Motion of Elastico-viscous Liquids 
The stress-tensor ‘ G ~ ~  and the rate of deformation tensor Eak = ; ( U ~ , I ,  + UI , ,~ ) ,  for a class 

of isotropic liquids characterized by OLDROYD [9] are related by 

(2.1) z i k  - p c j i k  ‘r st, 

with 
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U ,  being the velocity in the i-th direction, P is the hydrostatic mean pressure, Sik the deviatoric 
stress-tensor, rj the kinematic coefficient of viscosity and &, I.,; p o ;  y,, p,; vl, v2 are scalar physical 
coefficients (exhibiting the elastico-viscous properties of the liquid) each with the dimension 
of time T ,  restricted by the inequalities 

- - ~  

(2.3) 

(2.4) 

where 

Also D/DT indicates a corotational derivative 

which, following the typical element, takes into account the linear and angular motion of the 
element measured by the velocity vector U ,  and the vorticity tensor W,, = 

We consider such an idealized elastico-viscous liquid a t  rest filling a long straight tube. 
Taking the Z-axis of a system of rectangular Cartesian coordinates (x, y, Z) along the axis of the 
tube, let the cross-section of the tube be given by the profile T whose equation is f (x ,  y) = 0. 
The state of rest is disturbed by imposing a small uniform pressure gradient aPlaZ = S G where 
S is non-dimensional and small. This parameter S may be taken as the REYNOLD'S number 
characteristic of slow motion depending purely upon a characteristic length of the cross-section, 
pressure gradient and the kinematic coefficient of viscosity but independent of any of the elastico- 
viscous constants. 

Following LANGLOIS [5] and LANGLOIS and RIVLIN [7], we assume that  the velocity and 
in fact any physical quantity X such as the deviatoric stress-components, pressure, stream func- 
tion etc., can be expanded in an absolute convergent series in the real parameter S in some range 
/SI 5 So and for relevant values of x and y. We thus write 

(Uk , ,  - U,,,) . 

(2.6) x = s X(1) + s 2  X(2) + s3 X(3) + s4 X(4) + . . . 
and assume that  the first and second order derivatives with respect to the space variables x 
and y can be obtained term wise differentiation and the resulting series be absolutely convergent. 

The equations of motion are 

(2.7) 

(2.8) u,,, = 0 .  

e U ,  Ui,f = Ti?,?? 

Q being the density of the liquid, together with the incompressibility condition 

Let the components of the velocity (zz, u, w) be given by 

(2.9) 

The function Y may be interpreted as the stream function giving the flow pattern in the cross- 
section of the tube. The expansions of the type (2.6) are substituted in the consititutive relations 
(2.1), (2.2) and the equations of motion (2.7) and like powers of S are grouped. Thus the equations 
for the stresses and motion can be formulated in various stages which may be called the equations 
in the lst ,  2nd, 3rd, 4 th .  . . order approximations respectively. The boundary conditions, in 
each order of approximation may be written as 

(2.10) u(") = 0, u(n) = 0, w(") = 0 

(2.11) yp = 0, yp z 0 

the first two of which being equivalent to  

on r. We thus have a t  any stage a system of linear differential equations, with homogeneous, 
boundary conditions, making use of the results of all the previous stages. The equations deter- 
mining the flow in the successive orders of approximation reduce, after simplification, to the 
following : 

F i r s t  Orde r  A p p r o x i m a t i o n :  

(2.12), (2.13), (2.14) V 2  w(l) = G / q  (= 4 q), V4 W1) = 0, P(l)  = G z + constant . 
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Second O r d e r  A p p r o x i m a t i o n :  
(2.15), (2.16) V2 W ( 2 )  = 0, V4 YW = 0 ,  

p(2) = 3 (- 2 - A + p) I + (- A + p) G ~ ( 1 )  + constant 
2 (2 17) 

where 
(2.18) 

(2.19) 

A = A, - A, , / l  = I l l  - /c'z , v = v1 - v;! , 
I = [ W 9 ~  + [W',1']2 . 

T h i r d  Orde r  A p p r o x i m a t i o n :  

V z  d3) = (61 - 02) G - + w'," I ,  + ~ ( y l )  I ,  , [ , '  I (2.20) 

(2.21), (2.22) 

F o u r t h  Orde r  A p p r o x i m a t i o n :  

V4 W 3 )  = 0 , P(3)  = constant . 

a 
(2.23), (2.24) p w(4) = 0 ,  I74 y l ( 4 )  = (p* - A,) ~ ~ V2 W'3') . 

Y) 
These equations subject to the boundary conditions (2.10) yield the results 

(2.25) ycu = 0, W ( 2 )  = 0, y c z )  = 0, YJ(3) = 0, W ( Q  1 0 

throughout the cross-section and w(l ) ,  w ( ~ )  anti Y(4) can be determined as functions of x and y. 
The secondary flow, characterized by Yc4), is not observed until the terms of the order S4 

are retained in the expansions (2.6). Further, this secondary flow depends on the elastico- 
viscous coefficients. For the models with ,u2 =A, or C T ~  = o2 the equation (2.24) reduces to 
V4 W4) = 0 which yields !R4) = 0 in the entire cross-section and hence upto this order, a purely 
rectilinear flow of such models through straight tubes is possible. 

3. Normal Stress Distribution on the Boundary 
Motivated by the experimental results of KEARSLY reported by RIVLIN and PIPKIK 191, 

we examine the normal stress variation on the boundary. Retaining terms upto the t h i r d  
o rde r  approximation only, we calculate the normal stress N = zi, ni n, on the boundary: 

This normal stress is seen much before the onset'of the secondary flow which appeared in a 
l a t e r  (4th) approximation. The variation of this normal stress along r is thus mainly responsible 
for the formation of the secondary flow in the planes perpendicular to  the axis. In the NEwToNian 
flow, N is a constant along r and hence the flow is purely rectilinear for all cross-sections of 
the tube. 

We adopt the function theoretic procedure for solving the equations (2.12), (2.20), (2.24) 
for an arbitrary cross-section which is simply connected so that  by a suitable choise of the map- 
ping function, the cross-section of the tube can be conformally mapped onto a unit circle [8]. 

4. Transformation of Coordinate Variables 
Let us introduce the complex variable z = J: + i y and its conjugate Z = J: -- i y. ' 1 1 1 ~  

equation (2.12) then reduces to  

the solution of which can be written as 

(4-2) 

(4-3) 

W ( 1 )  = flW + I,<.> + CI z 3 

fl(4 + I,<.> = - (I z z 

where fl(z) is analytic inside r and is so chosen that  

-~ 
on 1'. Also fl(z) represents f,(Z). 
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(4.4) 

The pressure distribution (2.17) obtained in the second approximation can be written as 

plus an arbitrary constant. 
The equation (2.10) for zd3) can now be written as 

(4.5) 

where 
~~ 

(4.6) Z(z, 2 )  = g”’(z) h’(z) + 2 q {(’(Z) Zg”’(z) + 
+ q 2  z {z2 g”‘(z) + 2 2 g”(z) - 2 g’(z)} + 
+ 4 3  2 2  2 2  + conjugate expression 

2 
together with 
(4.7) g”(2)  = f l ( Z ) ,  h”(z) = f;”(z) . 

(4.8) 

The solution of (4.5) can be written as 

d3) = 2 (01 - 0 2 )  ( f 3 ( 4  + f30 + [(z,  2 ) )  

where f3(z) is analytic inside r and satisfies the condition: 

(4.9) f3(z) + jm = - Z(Z, 2)  on r .  
Similarly, the equation (2.24) for y1(4), characterizing the secondary flow, reduces to 

(4.10) 

where 

(4.1 1) m(z, Z) = k ( z )  + 3 h(z)  3 g”’(2) + 3 q2 g’(2) i2 m) + 
+ q3 z2 {Z3 g”’(z) - 6 Z s<.> + 12 g o }  - conjugate expression 

with 
(4.12) k”(z) = T3(z )  . 
The boundary conditions !Pi4) = 0, Fg) = 0 can easily be verified to be identical with 
Y(4)(2, Z) = 0 and y1i4) = 0 or YF) = 0 on r. The solution of (4.10) can now be written as 

(4.13) 

(4.14) 

!JJC4) = - i (01 - 0 2 )  (i.2 - 4) [ f 4 ( 4  - f4(3 + Z q 4 ( 4  - z q 4 0  + m(z, 2)l 

f 4 W  - 7x3 + 2 q 4 ( 4  - z q Z )  = - m(z, 2 )  9 

- fk(z) + y4(z) - 2 &(z) = - - = - n(2, Z) . 

where the functions f4(z) and q4(z)  are analytic inside r and satisfy the conditions on r: 

am 
a j  

_ _ ~  
(4.15) 

The normal stress distribution (3.1) on the boundary, when the terms of the third order 
perturbation are retained, is given by 

(4.16) 

calculated a t  points of r. 

5. Use of Conformal Mapping 
Let the mapping function 

(5.1) z = Q ( [ ) ,  [ = f l u ,  o = e i q  
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map the region inside r in the z plane onto the unit circle y : 15'1 < 1 in the t plane. Further, we 
denote the images of the respective functions in the 5 plane by the corresponding capital letters, 
i. e., 

f P ( 4  = FP(5) f 

m(z, 2 )  = AW(L r) 9 n(z, 2) = N ( t ,  C) . 

F h )  + F l ( 4  = - 4 Q(4 Q( 4 

P = 1, 3, 4, p l 4 ( 4  = @4(5) 9 l(z, 2 )  = L(i, t) , 

D e t e r m i n a t i o n  of Fl(t): The boundary condition (4.2) can be written as 
__ __ 

(5.3) 
1 
2 

Multiplying by- z i (a - C) and integrating along y :  151 = 1, we get 

(5.4) 

(5.5) 

Y 

The pressure in the second approximation can be written as 

+ 4 4 7  ( - 2  + P )  [pi(() + px) + 4 Q(5)3(5)1. 

D e t e r m i n a t i o n  of F3(C): The boundary condition (4.9) can be written in the ( plane as 
__ 

(5.6) F&) + F3(4 = - L\c, W) 
from which we obtain as above, 

(5.7) 

determining F3(c). 

D e t e r m i n a t i o n  of @,([): The condition (4.15) can now be written as 

Multiplying (5.8) by 112 z i (a - c) and integrating along y ,  we get 

The function @,(() can be obtained as a solution of this integral equation. Here X ( 0 )  = F;(O)/u(O).  

D e t e r m i n a t i o n  of F 4 ( [ ) :  Having determined @,([) in the above manner, the boundary 
condition (4.14) can now be written as 

__ __ __ 
(5.10) F4(o) - F,(a) = - iW(o, l/o) - Q(o) @,(c) + Q(o) @,(a) = P(0, l /u) (say) . 
Then, as before 

(5.11) 

Y 

from which the function F ,  can be determined. 

for the functions, the constants of which can be obtained by comparing like powers of 
equations (5.9) and (5.1 1) respectively. 

The determination of @,(<) and F4(c) can be facilitated by assuming power series expansion 
in the 

The normal stress distribution responsible for the secondary flow can be obtained as 
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6. Flow through a Tube of Arbitrary Cross-section 

Let the mapping function 
n 

r = 1  
z = Q(5) = z' or 5' 

transforms conformally the interior of I' in the z plane, into the unit circle y :  151 = 1 in the 
5 plane. For generality, we regard the coefficients w, to  be complex. Then 

(6.2), (6.3) 
n + l  n--7 

j = l  
~ ( 0 )  &(o) = 2 er cr , er = 2 W, wr 1.j. 

r =  -(n-1) 

D e t e r m i n a t i o n  of Fl(c): From (5.4), we get after integrating, 
n-1 

r=O 
(6.4) F,(5) 3- Fl(0) = - q ,r er 5' * 

n 

Since e, = 2 Wj w, is real, we can take 
j=l 

~ 

(6.5) Fl(0) = F,(O) = - q e,/2 
but for an imaginary constant the presence of which can be avoided as i t  docs not effect the final 
result. Hence we have 

(6.6) 

and the velocity field in the first approximation : 

(6.7) 

D e t e r m i n a t i o n  of F3([):  Let 
00 

L(0, I/@) = I, + 2: (1, or + I ,  lo') . 
r=1 

(6.8) 

Then tb equation (5.7), after integration, yields 
00 - -_ 

Fdf) + F3(0) = - 2 4 C' . 
r= 0 

(6.9) 
__ 

Taking F3(0) = F3(0) = - Z,/2 (real), we obtain 

(6.10) 

and hence 

D e t e r m i n a t i o n  of Q4(<): Let 

(6.12), (6.13) 

We shall also assume 

(6.14) 

and obtain 

(6.15) 

where 

(6.16) 
n 

K ,  = 2' (s - r + 1) c, 
s = r  
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for all r 2 0. We do not write out the expression for K-j ,  j > 0, as they are not required in the 
calculation of G4(5). We then get after substituting these expressions in (5.9) and comparing 
the like powers of 5 
(6.17) - X(0) + a, - K O  = - no, a, - K ,  = - nr for 0 < r 5 n , ar = - n, for r > R . 
This set of equations determines constants a, in terms of X(0) and n,. 

- 

~ 

D e t e r m i n a t i o n  F4(C): Let 

(6.18) 

where 

(6.19) 

Also let 

n n 

S=l s = r  
d,  = 27 CO, a s t r ,  d - ,  = 2 cOs a P r .  

m m 
(6.20), (6.21) M(a, l/o) = 2 m, cr ,  F4(0 = z b-r i' 

r=O r=O 

The boundary condition (5.10) can now be written as 

1 
2 Multiplying by - TC i (a - 5)  and integrating along y ,  we obtain 

Substituting from (6.21) yields 

b, - 6" = - (d,, - i, + m,,) , b, = - ((1, - L, + inr) for o < r 5 J I  , 
b, = - (d, + m,) for r > n .  

Thus determining the coefficients h's. Using all the above results, we can now write the stream 
function : 

1 !v4) = - i(al -az)(pz -Az) Z:(b,5 ' -h; i l . )+ ;w,51. z a , p -  & f w r P .  r=O 2Zr5'+M([,& LO r = l  -r=O r = l  

00 m 
(6.25) 

00 

which characterizes the secondary flow pattern. 
Further, the normal stress distribution (4.16) on the boundary can be obtained as 

n-1 n n-r 

U r = l  r = 1  j = 1  

s 2 4 2 v ( ~ - P )  (6.26) N = - S G Z - ~______- [ { - e,/2 - 2 e, ur + 2 ( 2 j co, Gj+r-l/ar) + 

I n-2 n f l  2 

r=O 3=1 
+ ( .Z ( i  + + 1) zr q+r+n a')) + Conjugate 

where 
n + l  n--r 

r=-(a-1) j=1 
U = 2 27 i ( j  + r) w3 ~ ( j + ~ )  or .  

7. Application: Flow through an Elliptic Limaeon 
The function 

(7.1) z = Q(() = b (< + r n c z ) ,  0 5 rn < 112 
maps the region inside the elliptic limacon on t o  the region bounded by the unit circle y in the 5 plane. The 
results in this case are mentioned here under. 

F i r s t  O r d e r  S o l u t i o n :  The velocity in this approximation is given by 

q b2 (1 - P )  [1 + m (1 + B2) 4- 2 m B COB T I .  w(1) == - 

p1 = 2 q2 b2 q (- 2 v - 

(7.2) 
Second O r d e r  A p p r o x i m a t i o n :  The pressure field noticed in the second approximation is 

(7.3) + ,u) [P2 (1 + 2 m /3 cos q~ + m2b2) + 
+ { WL' (1 - 4 m2) - 2 WL /3 (1 + 2 m'p') cos q~ - ~ ~ 2 / 3 2  00s 2 v}/H] + 
+ 4 r 1 9 2 b 2 ( -  a + ,u) (1 - 8 2 )  (1 + n t 2 ( i  + p )  + sm,9 c O s ~ }  

where H = 1 + 4 nz/3 cos @ + 4 m2j32. 
26 
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T h i r d  O r d e r  S o l u t i o n :  The effect of the non-NEwToNian coefficients in  this approximation is 
the rectilinear flow characterized 

w(3) = (O1 - '2) q3 b4 [3 m2 4 3 )  + 2 w$3)] 
(7.4) 3 

where 
( 7 . 5 ~ ~ )  wi3) = 4 m (1 - ,!I*) [{log (1 - 4 m2) - A } * ( 2  m (1 + p2) + (1 + 4 m2) B COB V ?  - 

- B (1 - 4 m2) /3 sin p ] / D  
and 
(7.5b) 4 3 )  == - (1 - b 2 )  [{ 3 (1 -1 4 m 2  + m4) + (3 4- 12 m2 + 43 m 4  + 12 m6) p2 + 

+ m2 (48 + 19 m2 + 12 m4) p4 + 3 m4 (25 4- 4 m2) D6 + 12 m6 pa} + 
+ 4 m { (3 + 11 m2 + 3 m4) + (6 + 3 m2 + 8 m4) p2 + 
+ 2 m2 (15 + 4 m2) p4 + 15 m4p6]  p cos rp +- 
+ 2 m2 { (1 + 5 m2) + 3 (5 + m2) pz + 24 m2 B4} p2 cos 2 p + 
+ 12 m3 (1 + p2) p3 cos 3 rp]/H 

with 
A = (l /2) log H , 
B = t a n - l { ( 2 m p s i n p ) / ( l  + 2 m / 3 c o s p ) } ,  
D = 4 m 2  4- (1 + 4m2)2,82 + 4 m 2 p 4  + 4 m  (1 4- 4 m 2 )  (1 + p2) cosy + 8 m 2 p 2 c o s 2 ~ .  

F o u r t h  O r d e r  S o l u t i o n :  The secondary flow, in planes perpendicular t o  the tube-axis is characterized 
by the stream function Y: 

(7.6) !P4)/[2 q4 b6 ( o ~  - g2)  (/J - A,)] 
= {no + (2 - 4 m2 - p2) n2 + (3 - p4) mn,)ps inrp  + 
+ 2 { - ~ 2 7  + (%?+I i- m nr+z [I + /PI) (1 - p)]  /T sin r rp + 
+ ( 3 m / 8 H )  {A [(l - 6 m2p2 - 8 w ~ ~ / 3 ~ ) p s i n r p  + m (1 - 8 m2p2)p2sin2rp] - 

+ ( m j 8 0 H )  {[-  5 (3 + 8 m 2 )  - 30 (4 + m2)/P - 4 0 m 2 ( 8  + 9m2),5'4 - 

+ [- 5 m (3 + 16 mZ) - 120 m (2 + m2) 

a3 

r = 2  

- B [6 m (1 + 2 m2D2)/?2 + (1 + 18 mzg2 + 8 m4,84)p cosy + m (1 + 8 m Z / P )  . p 2 ~ 0 ~ 2 r p ] )  4- 

- 8 0 m 2 ( 2 + 3 m 4 ) b 6 -  2 8 0 m 4 , 8 s - 4 8 m 6 ~ 1 0 ] ~ s i n r p +  
- 40 m (1 + 4 m2 + 9 m4) ,!I4 - 

- 288 m3 p6 - 120 m5 pa] pz sin 2 p + 
+ [- 1 2 0 m 2 ( 1  + m2)p2  - 72 m2p4 - 96m4/36]/13sin3rp - 2 4 m 3 , 5 s s i n 4 ~ } .  

The coefficients nr are given by 

(51 - 276 m2 + 440 m4 - 480 m6)  (1 - 8 m 2 + 2 8 m 4 ) l o g ( 1 - 4 m 2 ) + -  m 
16 (1 - 4 m 2 )  

n, = - 
[ 3  

8 m2 + 64 m4) log (1 - 

n2 = - nJ2 VL , 
3 

n3 = [m (1 - 

(27 - 126 m2 + 40 m4) , 1 m2 
m2) " 8(1-  4 m2) 

4 m2 + 8 m4 + 64 m6) log (1 - 4 m2) $- - (15- 80 (1 - 4 m 2 )  
170 1122 -k 216 m,4 + 576 m6)  , 1 

(1 - 4 m 2  + 4 m 4  + 128 ms)log (1 - 4m2) - 

~ (15 - 90 m2 + 244 m4 - 776 m6 + 480 ma) , 1 1 
80 m (1 - 4 m2) 

- 

and for r 2 5, 

n - -- -- { ( 4 - 3 r + r r 2 ) - 8 ( 8 - 5 r + r 2 ) m 2 f  
r - [  2 q  

+ 1 6 ( 1 4 - 7 ~ + + ~ ) ~ ~ ~ } { H ~ + l 0 g ( 1 - 4 ~ ~ ) }  - - - - ( - 2 w ~ m ) ~ l o g ( 1 - 4 ~ r / ~ ~ )  3 m  - 

8 

_ _  

+ 12 (40 - 38 r + 18 r2 - 6 r3 -+ r4) m4 + 48 ( r  - 2) (30 - 33 r + 13 r2 - 2 r3)  m6 

(- 2_2142T_-.-__ { 2 r ( r  - 1) (r - 2) - 3 (8 + 10 r - 15 r 2  + 5 r3) m2 + 
32 m r ( r  - 1) ( r  - 2) (1 - 4 m2) 

1 + 192 (r - 1) ( r  - 2) (14 - 7 r -t r2) m * }  
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Also m are given by 

m, = 0 ,  

I - 3  m 
' -[64m 40 

rn - -- (1 - 4 m2)310g (1 - 4 m2) - - (75 + 25 m2 + 56 m4) , 

1 1 
160 (1 - 16 ?a4) (1 - 4 m2)*10g (1 - 4 m2) -t - (15 - 140 m2 - 768 m4 + 160 m6) , 

1 
320 m 

(1 - 64 m6) (1 - 4?n2)210g (1 - 4 m2) +7 (- 15+90mZ-648n~4+2160m6 - 640inS 

and for r 2 4, 

m, = [& (- Lr (1 - 4,212 { H ,  + (1 - 4' f izz , )  log (1 - 4 m2)) + 
2 m  

(13 r (r2 - 1) - 4 (24 - 7 r - 6 r2 + 13 r3 )  rn2 - 16 ( r Z  - 1) (Y - 6) m4} . 1 (- 2m)V 
+ 64 r (r2 - 1) 

I n  the above expressions, H ,  represents k { (4 m2))"/k} . 
k = l  

Form the structure of (7.6), i t  can be noticed that  the flow is symmetrical about the line Re (5 )  = 0, 
which forms a dividing stream line. Hence, the secondary flow is composed of two regions of circulatory flow 
with opposite directions in the two symmetrical halves of the 
cross-section. The flow pattern in the cross-section has been 
illustrated in the figure. 

When m = 0, the cross-section of the tube reduces t o  a 
circle in which case, we get Yea) = 0, i. e., a purely rectilinear 
flow is sustained without the formation of secondary flow [9]. 

The normal stress, noticed much before the onset of the 
secondary flow (7.6) is given in the non-dimensional form: 

Y 

- -  N + S G Z  

The following table gives the values of AN* along one 
half of the limacon. for various values of m. The variation in 
the other half can be got from symmetry. The cases of a circle 
( m  = 0) and cardioid (m = l/2) are included in the table for 
reference. It is observed that  as the aspect ratio m of the 
limacon increases, N *  also increases. The departure of A N *  
for an elliptic limacon from its value in the circular section 
increases with m. Within the range 45" < q~ < 135", AN* is 
verv close to  its value for the circular case. The variation in 
t h z  range 135" < < 1800 is much larger than that in Secondary flow pattern in a tube whose CrOsS-SeCtiOn 

is an elliptic limacon 0" < o) < 45" for m + 0. This non-uniformitv in the variation 
of A x *  and its departure from the circu1ar"cases are respon- 
sible for the secondary flow. 
QJ = 180" i. e., at the cusp of the cardioid, a case which is excluded from our present discussion. 

It is also worth mentioning that  for m = l/2. AN* becomes infinite a t  

V a r i a t i o n  of AN* a l o n g  One  H a l f  of t h e  B o u n d a r y  

0" 
15" 
30" 
45" 

, 60" 
75" 
90" 

105" 
120" 
135" 
150" 
165' 
180" 

0.0 
Circle 

- 1 .oooo 
-0.86603 
-0.50000 

0.0000 
+0.50000 
+0.86603 
+ 1 .oooo 
+0.86603 
+ 0.50000 

0.0000 
-0.50000 
-0.86603 
- 1.00000 

0.1 1 0.2 1 0.3 

- 1.0336 
-0.89372 
-0.51382 

0.0000 
1-0.50512 
+0.86944 
+ 1.0004 
+0.86765 
+0.50518 

0.0000 
-0.51511 
-0.90459 
- 1.0506 

-1.1176 
-0.96360 
-0.54945 

0.0000 
+0.52443 
+ 0.88689 
+1.0055 
+0.86721 
+0.51083 

0.0000 
-0.57380 
- 1.0743 
- 1.2844 

- 1.2377 
- 1.0645 
-0.60243 

0.0000 
+0.55804 
+0.92385 
+1.0239 
+0.86724 
+0.51080 

0.0000 
-0.67680 
- 1.5505 
-2.1025 

0.4 

- 1.3872 
-1.1908 
- 0.67000 

0.0000 
+0.60545 
+0.98270 
+ 1.0626 
+0.87582 
+ 0.50514 

0.0000 
-0.70914 
-2.7298 
-6.7599 

0.5 
Cardioid 

- 1.5625 
- 1.3395 
- 0.75054 

0.0000 
1-0.66582 
+ 1.0637 
+ 1.1252 
+0.90089 
+0.50138 

0.0000 
-0.74582 
-3.5941 
- c o  

26* 
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