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Slow Steady Flow of an Idealized Elastico-viscous Liquid 
through a Cone with a SourcelSink at the Vertex 

By N. CH. PATTABHI RAMACHARYULU 

Durch Linearisierung wurden die Gleichungen gelost, die fzir eine idealisierte elastisch-viskose Flussiylceit 
*on O l d r o y d - T y p  gelten, uyenn diese langsam und stationar durch ein lconisches Rohr striimt, wobei sich in der 
Spitze des Kegels eine Quelle bzui. Senke befindet. Die nieht-newtonschen Effekte uierden ausfvhrlich unter- 
sucht. Getrennt von einer rein radialen Stromung in groperen Entfernungen, treten in der Nahe der Spitze 
Gebiete zirkulierender Stromung auf. 

Employing a linearization technique, the momentum equations and the general constitutive relations for 
idealized elastico-viscous liquids of the O l d r o y d  type have been solced for Ihe slozu steady /loto through a conical 
channel with a source or sink at the vertex. The  non-Newtonian e;fects have been discussed in detail. W e  notice 
regions of circulatory flow near the vertex separated from apurely rndinl flow at large distances. 

rIpn IIOMOIIIH n ~ ~ e a p m a q ~ r n  B naHHot4 pa6OTe peruamTcH ypamemm HJIH HAeanbHbix 
3JIaCTHZIHO-BH3KHX xnnKocTeii Tnna O n n p  o Bna B TOM cnyqae, KorAa mAaHocTb MejqneHno 
A cTaumoHapHo T e s e T  no KomsecIcoii ~pyGe, a B O C T ~ H H  HaxoAmcR HCTOZIHHK A ~ H  CTOIC. 

L I H ~ K ~ J I H U A A  T e r r e H m ,  IcoTopbIe HaxonrlTcx Ha ~ O J I ~ I U O M  paccTommH OT ZIACTO panxxanbHoro 
TeZIeHm. 

rIoapo6~0 ACCJlenyIOTCH H e  - HbH)TOHOBCKHe 3@#eKTbI. BFJIH~H OCTpHH BO3HHKaH)T 06nacm 

1. Introduction 
The equations of classical hydrodynamics are non-linear and in the case of general viscous 

liquids, even the constitutive relations are non-linear. The non-linearity of these equations pre- 
sents intractable difficulties in solving specific flow problems. However, some attempts have 
been made to  obtain solutions by approximating and truncating the equations involved. Recently, 
LANGLOIS [2] proposed a technique of linearizing the momentum equations and constitutive 
relations under the assumption that  the steady state of a slow flow field is a perturbation from the 
state of rest and that  the flow variables are expandable in powers of a suitable small non-dimen- 
sional parameter S, the smallness of which characterizes the degree of slowness of the flow. The 
first order solution corresponds to the so called creeping flow of a Newtonian liquid, which we may 
call as the primary flow. The second and higher order solutions give the effect of the nonlinear 
terms and throw light upon the formation of secondary flows superposed on the primary one. 
This method had been successfully employed by the present author in solving some non-Newtonian 
flow problems: (i) Slow steady rotation of a sphere [GI, (ii) slow steady flow through a tube of non- 
circular cross-section under a constant pressure gradient [7], (iii) Slow steady helical flow through 
an anulus [8]. The constitutive relations of the non-Newtonian model of our choice are the more 
general relations (2.1) -(2.2) given by OLDROYD [5] for a class of idealized elastico-viscous liquids. 
A similar procedure had been employed by LESLIE [4] in discussing the slow steady non-New- 
tonian stream past a sphere with 1, = p1 and A, = pz in the equations (2.1)-(2.2). The pertur- 
bation parameter chosen by LESLIE depends on the relaxation time A1, one of the non-Newtonian 
coefficients. The smallness of this parameter has therefore a strong restriction on the type of the 
non-Newtonian fluid or on the size of the sphere in question. 

In the present paper, we employ the linearization technique mentioned above to  examine 
the flow of an idealized elastico-viscous liquid of OLDRoYD-type [5] in a conical region due to 
a weak source or sink a t  the vertex. Such a problem has been discussed earlier by LANGLOIS and 
RIVLIN [I] by neglecting inertial terms in the momentum equations for a class of slightly visco- 
elastic models of the RITLIN-ERICKSEN type [9]. These authors obtained an approximate solution 
of the problem by a different method, adopting the scheme followed by LANCLOIS [3] in which the 
non-Newtonian flow between rotating spheres is examined. But LANGLOIS and RIVLIN [ l ]  in their 
work neglected the inertia of liquid. They noticed a purely radial flow for a Newtonian liquid. 
The non-Newtonian effect is a transverse velocity superposed on the radial flow in the meridian 
plane. This effect is negligibly small a t  large distances from the vertex. 

As the inertial terms are more predominant in the vicinity of the vertex, they have a strong 
influence on the primary flow by generating a secondary flow even in the case of classical viscous 
liquids. The structure of this secondary flow is of the same type as mentioned before and is com- 
posed of two regions of circulatory motion touching the cone-wall in the case of source: fig. 4 and 
one such region around the axis for a sink: fig. 9. Outside these regions, the flow is approximately 
radial a t  large distances from the vertex. This observation is being supported by the conclusions 
of ROBERT C. ACKERBERG [lo] in discussing the flow of a Newtonian viscous liquid in a cone due 
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to  a sink a t  the vertex. Such an effect is not noticed by LANQLOIS and RIVLIN [l] when their ana- 
lysis is applied for a classical viscous liquid as they neglected inertial terms completely. 

In our present investigation, the momentum and the constitutive equations have been taken 
without any approximations and truncations. A perturbation parameter S is chosen, independent 
of any of the elastico-viscous coefficients. We observe that  up to the first order of S,  the flow is 
purely radial as in the Newtonian creeping flow. But when the second order terms are retained, 
the radial flow is deviated due to  the superposed secondary flow. Thus the effects of non-linear 
terms is a secondary flow composed of both radial and transverse velocities in the meridian plane. 
We observe that this secondary flow pattern is characterized by one or more loops near the wall 
and/or near the cone-axis. This effect is predominant near the vertex only and a t  large distances 
from it, the flow is purely radial coinciding with the creeping flow of a Newtonian liquid. As an 
example, the flow pattern is illustrated in figs. (1)-(10) for various values of a certain non- 
Newtonian parameter K and when the semi-angle of the cone is 60". 

2. Basic equations 
OLDROYD [5] considered a class of isotropic and incompressible fluids, with elastico-viscous 

properties, characterized by a set of general equations of state, relating the stress-tensor t l k  and 
the rate of strain-tensor E,, = (Ui,k + Uk,,)/2: 

(2.1) 
with 

where U ,  is the velocity in the direction of the i-th coordinate X I ,  g,, is metric tensor and P is an 
isotropic pressure, q is the kinematic viscosity, I,, A, are the relaxation and retardation times and 
,u0, f i ,  p2; vl, v4 are constants having the dimensions of time T. These constants A,, A,; po, p!,.p2; 
vl, v2 characterize the elastico-viscous properties of the fluid and are restricted by the inequalities: 

(2.3) 

where 

Also DIBT indicates a total material derivative: 

which following the typical element, takes into account the linear and angular motion of the ele- 
ment measured by the velocity vector U ,  and the vorticity tensor: W,, = (Uk, i  - Ui,k)/2. 

The equations governing the steady flow of an incompressible fluid, in the absence of exter- 
nal forces are (2.5) together with the continuity equation (2.6) 

(2.6) E: = 0 
Q being the density of the liquid. 

We consider the slow steady laminar flow of an idealized elastico-viscous liquid characterized 
by the constitutive relations (2.1)-(2.2) in a right cone of semi-angle B with a source or sink a t  the 
vertex. Let u, v, w be the physical components of the velocity in the directions of the spherical 
polar coordinates r, 8, v where r is the distance from the vertex, 8 = 0 represents the axis of the 
cone and v is the azimuth. All the tensor quantities in the above equations are expressed in terms 
of their physical components referred to  this choice of spherical polar coordinates. We introduce 
a stream function y defined by the equations: 

(2.5) @ Uk U,<k = 7:; , 

so as to satisfy the continuity equation (2.6). 
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The boundary conditions of the problem are 
(2.8) u = o ,  v = o ,  w = o  
on 0 = a for all r and the condition of constant mass flux around the vertex: 

(2.9) 
d 

e J 2 n r 2 s i n 8 u d B  = Q  
0 

which is positive for a source and negative for a sink. 
Following LANGLOIS [2], we take for slow motion: 

(2.10) Q = E q  
and assume that  any physical quantity X such as velocity, pressure, deviatoric stress, stream 
function etc., are expressed as 

where E is a suitable non-dimensional parameter characteristic of the slow motion. We assume that  
E is sufficiently small so as t o  validate this expansion technique. This slowness parameter has 
later been related to another non-dimensional parameter S by the relation (5.2) which has a phy- 
sical bearing over the problem. These expansions (2.11) for all the flow variables in question are 
substituted in the constitutive relations (2.1)-(2.2), the dynamical equations (2.5)-(2.6) and the 
boundary conditions (2.8)-(2.9) and the coefficients of 5, t2, t3. . . are grouped together. This 
leads to the equations determining the flow in the lst, 2nd, 3rd, . . . approximations respectively. 
At each stage of the analysis, the system of equations form a linear set making explicit use of the 
results of the previous stages. The equations in the first order are the same as those obtained for 
a creeping flow of a Newtonian liquid (i.e., the equations for the STOKES' flow in which the inertial 
terms are neglected). 

3. First order solution 

(2.11) x = 5 X(1) + 5 2  X(2) + 5 3  3 3 3 )  + . . . , 

The deviatoric stresses in the first order are 
(3.1) S(:i = 2 EQi 
for all i and k. The equations of motion now reduce t o  

and 

(3.4) 

where 

Elimating p(l) from (3.2)-(3.3), we obtain the equations for y(l) 

with the boundary conditions : 
(3.7) E4 $1) = 0 

(3.8 a) 

(3.8 b), (3.8 c) 9 a) - y(I)(r, 0) = - 
2 n  @ '  

The solution of the equations (3.4) and (3.7) can be obtained as 
N 
3 y ( l )  = - - (cos e - COS (2 cos a + cos e) (3.9), (3.10) w(') = 0 ,  

where 

(3.1 1) 3 9  
2 72 @ (1 - cos &)2 (1 + 2 cos a) * 

N =  

Using these results, we obtain the pressure from the equations (3.2) -(3.3): 

p(1) = __ (1 - 3 cos2 e) + constant . 
3 r3 (3.12) 
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We thus realize, in the first approximation, a purely radial flow field: 

u(1) = ~ f ( O )  u(1) = 0 , w(1) = 0 , 
r2 ' (3.13) 

where 
(3.14) 

4. Second order solution 

In this order of approximation, we have the deviatoric stresses: 

(18 f 2  - r2)  + ____ N 2  (12 f 2  + f 1 2 )  + X(2) , qLN2 sg) = 2 7 E;:) - ~ 

r6 r6 I 

where 

(4.2) 

and 
(4.3) A = 1, - & ,  p = p1 -p2, v = v1 - v2 .  

Also, the acceleration components are 

The equations of motion now reduce to  

(4.5) 

and 

(4.7) 

in the directions of r, 8, q respectively. Eliminating P(2) from (4.5) -(4.6), we obtain the equation 
for y(2) : 

[(6 cos2 OL - 1) - 5 cos2 81 sin2 8 cos 8. (COS~ 8 - C O S ~  OL) sin2 8 cos 8 + ~ 

16p N 2  
r7 

8 p N 2  
(4.8) E4 y(2)  = 7 

The boundary conditions for (4.7)-(4.8) are 

Further, we notice symmetry of the flow about the axis of the cone. The equations (4.7) and 
the first of (4.9) yield the solution 
(4.10) w(2) = 0 
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which shows that no flow is induced in the p-direction by the non-linear terms. The solution of 
(4.8) can be expressed in the form: 

(4.1 1) 

where F,(8) and F3(8) satisfy the equations: 
(4.12) 
(4.13) 
with 

(L + 2) (L + 12) Fl(8) = (COS~ 8 - cos2 a) sin2 8 cos 8 ,  
(L + 12) (L + 30) F3(8) = [(6 cos2 LY - 1) - 5 cos2 81 sin2 8 cos 8 

(4.14) 

The boundary conditions are 
(4.15) F@) = 0 ,  Fi(6) = 0 , ( i  = 1, 3) a t  8 = 0 and a . 

(4.16) 
(4.17) 
where 

The equations (4.12) -(4.13) yield the solutions : 
Fl(8) = sin2 8 (COS 8 - cos ( Y ) ~  (3 - 5 cos2 (Y + 2 cos 8 cos a)/[2SS cos a] , 
F3(8) = sin2 8 (COS 8 - cos a)2 . g(8)/[288 cos a h(a)] , 

(4.18) g(e) = 21 (- 15 cos4 + 5s C O S ~  a + 5) C O S ~  e + 
+ 12 (105 c0s4 a + 140 cos2 (Y + 46) cos a cos 8 + 
+ 567 C O S ~  iy + 372 COS’ - 95, 

(4.19) 
The pressure P@) can be obtained by a straight-forward integration of the equations (4.5) to 

(4.6). The stream function y(2) given by (4.11) together with (4.16) -(4.19), characterizes the 
secondary flow superposed on the primary motion obtained in the first approximation. We thus 
notice that the non-linear terms in the equations (2.1), (2.2) and (2.5) induce a secondary flow 
only in the meridian planes. This flow is not prominent a t  large distances from the cone-vertex. 

h(a) = 105 c0s4 (Y - 42 cos2 a + 19 . 

5. 

The non-Newtonian effects are thus noticed when the terms of the order t2 are retained in 
the equations of motion and the constitutive relations. Upto this order, the resultant stream func- 
tion can be written as 

(5.1) y= 6 y(1) + p y(2) 

in which Q = [ q may be employed in eliminating to which no physical meaning is attached hither- 
to excepting that i t  is taken as sufficiently small so as to validate the perturbation technique. 
However, to facilitate the comparison of the results with those in the Newtonian case, a non-dimen- 
sional number S can be chosen which is purely dependent upon the kinematic viscosity q of the 
liquid, a characteristic (geometrical) length L and also upon the agency responsible for the flow, 
but independent of any of the elastico-viscous coefficients occuring in the constitutive relations. 
This number S may as well be preferred to  5 as a perturbation parameter throughout the above 
analysis. In our present case, we take the strength Q of the source or sink as this agency and con- 
struct 

which represents the REYNOLDS’ number characteristic of the slow motion. We further assume 
that IS1 < 1 as a necessary condition for slow motion so as to validate the analysis. This would 
give 

(5.2) S = Q / S n ~ L = [ q / f 3 n q L  

(5.3) Y < S n q  

an approximate upper limit for the strength of the (weak) source or sink. 

r*,  K ,  y/ defined by the scheme: 
(5.4) r = L r*, K = p q [ ~  L 2 ,  

and express the non-Newtonian effects in terms of the parameter K. 

For analysing the result numerically, we introduce the following non-dimensional quantities 

w = Q Y/[2 ?G e (1 - cos a)2 (1 + 2 cos (Y)] 
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The flow pattern can be realized from the stream function Y in the non-dimensional form : 

3 - 5 cos2 a + 2 cos a cos 6 
r* 

S sin2 8 
+ cos a (1 - cos a)2 (1 + 2 cos a) 

6. Observations 

The stream function (5.5) shows that the flow a t  large distances is purely radial: divergent 
in the case of a source and convergent for a sink. As the vertex is approached, the intertial and 
non-Newtonian effect (contributed by the last two terms respectively in (5.5)), is to produce a velo- 
city in the transverse direction. The stream lines (in the meridian plane) are therefore bent, from 
the radial pattern either, towards the wall or the axis of the cone. Since these terms are of order 
l/r* and llr*3, respectively, the non-Newtonian terms have a stronger influence near the vertex 
than the intertial terms in bending down the stream lines. 

The total flux across any arbitrary surface around the vertex 
00 

2 n p J r2 sin 0 u de = Q [Y (r*,  a) - Y ( r * ,  O)]/[(l + 2 cos a) (1 - cos a)2] = Q 
0 

(6.1) 

which is independent of r*. Hence upto the order of approximation taken, (5.5) represents the 
flow satisfying the kinematic condition of constant flux for a sourcelsink a t  the vertex. 

The stream line Y = 0 is composed of two branches: the cone wall (0 = a) and the dividing 
stream line in the axial plane represented by the curve : 

(6.2) 
2 ~ g ( e )  + 3 - 5 cos2 a + 2 cos a cos e cos a (1 - cos .)2 (1 + 2 cos a) (2 cos a + cos o) _ -  - = 0 .  

This is the boundary of the region of circulatory flow near the cone wall. The intersections of this 
line with the cone wall can be obtained from the cubic: 

r* S sin2 8 

(6.3) 
3 sin2 M 3 cot2& (945~0~~a+3465cos4a+l029cos2a-95)+--- -___ (1 -cosa)2(1+2cosa) = O .  2 K  

qq-7 r* S 

The stream line Y = Ya = - (1 + 2 cos a) (1 - cos a)2 is composed of the cone-axis 
8 = 0 and the dividing stream line in the axial plane whose equation is given by 

(6.4) 
2 Kg(e) 3 - 5c0s2a + 2c0sa case cosa(i - cosa)2(i + 2cosa)(i + cos e + CosZe - 3cos2a) = o  
h(a) r*3 

which gives the boundary of the region of circulatory flow around the axis and its intersections with 
i t  are obtained from the cubic: 

S (1 + sin 0) (cos 8 - cos a)2 + r* + 

(6.5) q&pir3 (630 cos5 CY. + 126 COP (Y + 840 C O S ~  a + 795 C O S ~  (Y + 276 cos a + 5) + 
(3 + 5 cos a) (1 - cos a) 

+ + r* 
3 cos a sin2 a (1 + 2 cos a) 

S 
= o .  ~~~ 

By varying the values of K and S suitably, the equations (6.3) and (6.4) yield one or more 
real positive roots for any assigned value of a. We also note that these equations have two equal 

positive roots when K takes two particular values K,(a, S )  
and K2(a, S) .  These are found to  be negative when a = 45", 
60" (c.f : Table 1). 

The flow pattern is illustrated by taking a = 60" for 
a source S =  + .1 and sink S = - .l: figs. 1-10. 

F low P a t t e r n  for  a source :  (S > 0). The curve 
(6.2) meets the cone wall in no points, two different points or 
only one point according as K < K,(a, S), K,(a, S )  < K < 0 

Table 1 
Values of Kl(a, S), Kz(a, S) 

-.01119 -.5031 

- .1292 -.01933 



N. CH. P. RAMACHARYULU, Slow Steady Flow of an Idealized Elastico-viscous Liquid through a Cone 15 

Fig. 1. Flow pattern when R = -1.0 with Fig 2. Flow pattern when R = - 0.001292 
with the source: S = + 0.1 

Fig. 3. Flow pattern when R = - 0.001 with 
t,he source: S = + 0.1 the sonrce: S = + 0.1 

Fig. 4. Flow pattern when K=O (Newto- 
nian liquid) with the source: S= +0.1 

Fig. 5. Flow pattern when K =  +1.0 with 
the source : S = + 0.1 

Fig. 6. Flow pattern when K =  1.0 with 
the sink: S=--0.1 
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or 0 < K respectively. Also when K = K,(a, S) ,  the dividing stream line (6.2) hits the wall a t  
only one point. Further, the curve (6.4) meets the axis a t  one point only for K < 0 and in no 
point when K 2 0. Hence in the case of a source, the flow pattern (in the axial plane) near the 
vertex consists of 

only one region of circulatory flow symmetrically placed around the axis when K < K ,  : 
fig. 1, 
one region of circulatory flow near the axis and two such regions near the wall when 
K = K,: fig. 2, 
one region of circulatory flow near the axis with the boundary passing through the 
vertex and two such regions near the wall, but with boundaries not passing through 
the vertex when Kl < K <: 0 fig. 3, 
two regions of circulatory flow near the wall with their boundaries passing through the 
vertex when 0 5 K :  figs. 4 and 5. 

F low p a t t e r n  fo r  a s ink :  S < 0. The curve (6.2) meets the cone wall a t  only one point 
for K < 0 and in no point K 2 0. Further, the curves (6.4) meets the axis in no points, two points or 
only one point according as K < K,(a, S) ,  Kz(a, S )  < K < 0, or 0 5 K.  Also when K = K,(a, S) ,  
we get only one intersection. We thus have the flow pattern (in the axial plane) near the vertex in 
this case: 

(v) two regions of circulatory flow near the wall when K < K,(a, S): fig. 6, 
(vi) one region of circulatory flow round the axis and two such regions near the wall when 

K = K,(a, S ) :  fig. 7, 

Fig. 7. Flow pattern when E = -0.0001933 with the sink: 
s = - 0.1 

Fig. 9. Flowpattern when E = 0 (Newtonian liquid) with the sink: 
s = - 0.1 

Fig. 8. Flow pattern when K = -0.0001 with the sink: s = - 0.1 

Fig. 10. Flow pattern when E = + 1.0 with the sink: s = - 0.1 
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(vii) one region of circulatory flow round the axis whose boundary does not pass through 
the vertex and two regions of circulatory flow near the wall with their boundaries 
passing through the vertex when K,(cu, S) < K < 0:  fig. 8, 

(viii) only one region of circulatory flow round the axis when 0 5 K :  figs. 9 and 10. 

The paths of the particles within these regions form closed loops which have a common 
node a t  the vertex of the cone whenever the boundary of the region passes through it. 

Acknowledgement 
The author acknowledges with thanks the receipt of a travel grant from the University Grants’ Commis- 

sion, with the aid of which numerical calculations were carried out a t  the I.B.M. 1620 Computer Centre a t  the 
Indian Institution of Technology, Kanpur. 

References 
1 W. E. LANGLOIS and R. S. RIVLIN, Brown University Report, No. DA-472513 (1957) 
2 W. E. LANGLOIS, Trans SOC. Rheology 7, p. 75 (1963). 
3 W. E. LANGLOIS, Quart. Appl. Math. XXI, p. 61 (1963). 
4 F. M. LESLIE, Quart. J. Mech. and Appl. Math. W., p. 36 (1961). 
5 J. G. OLDROYD, Proc. Roy. SOC. A 245, p. 278 (1958). 
6 N. Ch. PATTABHI RAMACHARYULU, Research Bulletin, Regl. Eugg. College, 1, p. 25 (1964). 
7 N. Ch. PATTABHI RAMACHARYULU, (to be published in ZAMM). 
8 N. Ch. PATTABHI RAMACHARYULU, Bull. Un. Mat. Ital. (to be published). 
9 R. S. RIVLIN and J. L. ERICKSEN, J. Rat. Mech. Anal. 4, p. 343 (1968). 

10 C. ACKERBERG ROBERT, J. Fluid Mechanics, 21, p. 47 (1965). 

Manuskripteingang: 19. 10. 1965 

Anschrift: N. CH. PATTABHI RAMACHARYULU, Department of Mathematics, Regional Engineering College, 
Warangal - 4 (A.P.), India 

2 




