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Abstract: The paper presents a rigorous 2-dimensional analysis of a double-sided linear induction motor, with
particular reference to the entry-end and the exit-end effects. The analysis takes into account the discontinuity
of the stator winding as well as the discontinuity of the stator iron. The field equations, together with the
boundary conditions, constitute a mixed boundary value problem, which is solved by the use of Wiener-Hopf
technique (WHT). The results clearly bring out the individual effects of (i) the discontinuity in the winding
and (ii) the discontinuity in the iron, as well as the 2-dimensional nature of the field quantities. The analysis
is illustrated by applying it to the data of two linear induction motors.

List of principal symbols

Az = z-component of vector potential
Jo = peak value of linear current density in primary

winding, A/m
= airgap length, m
= thickness of secondary conducting sheet, m
= length of stator, m
= synchronous speed, m/s
= velocity of conducting sheet, m/s
= width of stator, m
= 2nf= angular frequency of stator supply, rad/s
= 7r/r, where r is pole pitch in metres
= conductivity of the secondary sheet, S/m
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Symbols such as A, f2, ip+, $'-, Gu GL, C+ and C!_, which are
functions of the transform variable s, are defined in the text
at appropriate places.
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Introduction

A vast amount of work has already been carried out by various
investigators regarding the end effects in a short-stator linear
induction motor. Notable among these are the works of
Yamamura [1 ,7 ] , Nasar [2, 8, 9] and Dukowicz [3]. In the
1-dimensional analysis given by Yamamura [1], the effects of
discontinuity in the stator winding, as well as stator iron, are
taken into account. In the 1-dimensional analysis proposed by
Nasar [2], the discontinuity in the stator iron is simulated by
assuming fictitious reactive current sheets placed on the stator
iron beyond the winding length. The 1-dimensional analysis is
too much of an approximation, since it completely ignores the
tangential component of the flux density in the airgap. On
the other hand, in the 2-dimensional analyses proposed by
Yamamura [ 1 ] and Nasar and Boldea [9], the effect of
discontinuity of the stator winding is considered, but the dis-
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continuity in the iron is ignored to make the problem amenable
for analytical solution. They have proposed numerical solutions
when both the discontinuity of iron and the discontinuity of
winding are to be taken into account. Dukowicz [3] has
obtained a 2-dimensional solution for the airgap field by
simulating the condition of finite iron length by lining up the
iron beyond the stator ends by reactive current sheets, but the
solution given is valid for short airgap machines only. The
analysis presented in this paper does not call for any such
simulation, nor is restricted to small airgap machines. The
2-dimensional airgap field with discontinuous stator iron and
discontinuous stator winding has been solved directly by
applying the Wiener-Hopf technique and the solution obtained
gives a greater insight into the end effects as compared to
numerical solutions. In the 1-dimensional analysis, the vector
potential, as well as flux density, is assumed independent ofy
(Fig. la). In other words, the Bx component is completely
ignored. In the 2-dimensional analysis, the vector potential and
hence the flux density are function of both x and y. Thus, the
2-D analysis enables us to calculate both the 'cross gap' and
'along gap' fields.

2 Formulation of problem

The model of a double-sided, short primary LIM is shown in
Fig. la. The Cartesian co-ordinate system is chosen with its
origin at the midpoint of the secondary sheet at the entry end.
The jc-axis coincides with the central line of the secondary
sheet and the ^-direction is taken normal to the stator iron.
The following assumptions are made in the analysis:

(i) The primary winding is replaced by a thin current sheet,
with linear current density given by

hz =
,(j<jjt-jkx)

(1)

where co is the angular frequency of the current and k = TT/T.
(ii) The stator and the rotor are considered to be infinitely

long in the transverse direction (z-direction).
(iii) The rotor of finite thickness is placed symmetrically in

the airgap with respect to the stator.
(iv) The flux in each stator block leaves or enters that

block only through the surface facing the airgap. It is also
assumed that the net leakage flux from either of the stator
blocks is zero. Each stator block is considered to be infinitely
permeable and perfectly laminated.

It follows from assumption (iv) that the vector potential along
AB must be a constant, so also the vector potential along CD
(Fig. la). Furthermore, the vector potential at B must be same
as the vector potential at C. For convenience, this constant
value of the vector potential can be chosen as zero. Along BC,
Az distribution is not known but dAz/dy (= /i0 Hx) is known
and is equal to fi0J0 ^ < w ' k \

own b
" kx\
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Assuming the conducting sheet to be moving with a
velocity v, the current density in the secondary is given by A*(s,y) = f A(x,y)e~sxdx

J — oo

f2z = o(E+VxB) = - a

Finally, Az should satisfy

bAf bA

bx2 ' by2

in the airgap region,

= 0

bA,

bt bx

in the rotor region,
with the following boundary conditions:

(\)AZ = Oatj> = # for* < 0 and* > L .

(ii)
bAz

by

(2)

(3a)

(3b)

(4a)

(4b)

The boundary conditions (for L -> °°) could be expressed in
terms of A* as follows:

(i)A*(s,g) = ^+(s), say.

(u) I—-I = — + \p.(s).
Wlvt S+Ik

(iii) (a) Aty = 0,4 f is symmetrical at the x-axis.

bA:

where

and

(b) Aty=d,A* and —— are continuous.
by

A(x,g)e-sxdx

dx

(iii) In the current region of the rotor: (a) the flux lines are
symmetrical about the x-axis, (b) at the rotor surface, By and
Hx are continuous.

This is a 3-part mixed boundary value problem, which can be
solved by using WHT only approximately. However, if the
stator is sufficiently long, the entry end effects can be ignored
at the exit end, and vice versa. The problem, then, can be
simplified to a 2-part mixed boundary value problem, paying
attention only to either the entry end or the exit end. An
exact solution can be obtained for this problem by WHT.

2 Solution to vector potential at entry end

Considering only the entry end (Fig. \b), the boundary con-
ditions are as in eqn. 4, when L~^°°.

We can express Az in the form Az = A(x, y) eju>t and
define the bilateral Laplace transform of A as
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Fig. 1 Models of linear induction motor

a Double-sided linear induction motor
b Model to study entry-end effect

The general solution of eqn. 3 is:

A*(s, y) = Pi sin sy + Qi cos sy

in the airgap region

A*(s, y) = P2 sin Xy + Q2 cos \y

in the rotor, where

X2 = s2 —z>Mo os~ /w Ho o

? j , P2, Qx and Q2 are the constants yet to be obtained.
Making use of the boundary conditions and elim-
inating _Pt ,P2, Qi, Q2, we finally have:

Ms)

+

fi(s,g)
h (s, g)

(5a)

(s + jk)

where

/ i (s, g) = {sin sd cos \d — (X/s) sin \d cos sd} sin sg

+ {cos sd cos Xd + (X/s) sin Xd sin sd} cos sg

(5b)

fi (s, g) = {sin sd cos Xd — (X/s) sin Xd cos sd} s cos s#

— {cos sg cos Xd + (X/s) sin Xd sin sd} s sin s#

(5c)

In eqn. 5, i//+ and i//̂  are unknown. The Wiener-Hopf technique
attempts to solve these two unknowns from the single equation,
eqn. 5, making use of the analytic continuity of \p+ and \pi and
Liouville's theorem. The technique and its applications are ex-
tensively discussed by Noble [4] and Collin [5]. When i//+ and
\p- are known, A* can be obtained. The method of evaluating
0+ and i//i is given in Section 10.

Making use of the results in Section 10, we finally have:

A * — Jo Ha 1

(s+jk)f2(s,g)

L* fi(*,y)
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where where

The vector potential A (x, y) is obtained by taking the inverse
transform of A*, defined as:

A(x,y) — I" A* es

2nf J
I A esx ds

2nf J
C -joo

w h e r e a < c < b.
This integral is evaluated by making use of Cauchy's residue

theorem. For x > 0, we choose the contour shown in Fig. 2a.
This encloses the roots —jk, — j3j, — /32 . . . and — 5 j ,
- S 2 . . .
Thus we obtain:

-jk

T —I s-plo.

r r1 s-plane

! b

Fig. 2 Contours of integration to obtain A(x, y)

a For x > 0
6 For x < 0
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For x < 0, the contour chosen encloses the zeros as and 7s
(Fig. 2b), leading to

At ^A(x,y) = -

(7

The various quantities ocn,pn,yn,8n,G+^R\ G_(H) are defined
in Section 10. as and — /Js are the zeros of fx (s, g), and 7s and
— 5s are the zeros of/2 (s, g).

3 Vector potential at exit end

The exit-end field can be obtained by following a procedure
similar to the case of entry end. The origin of the co-ordinate
system is shifted to the exit end, as shown in Fig. 3.

The final expression for the vector potential for JC < 0 is:

y f ( )
n \(S+Jk)f'2(s,g) =yn

8=1,

For x > 0,

4 A method of accounting for fringing flux and possible
iron extension beyond winding

In the model shown in Fig. la, the length of the stator iron is
taken exactly the same as the winding length and the fringing
flux from the end faces of the stator block is neglected. To
approximately accommodate the latter, it can be imagined that

1
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= M o j
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Fig. 3 Model for studying exit-end effect
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the stator iron extends beyond the stator winding by a small
amount [13], say Lx, Lx being chosen so as to keep the per-
meance of the extended portion equal to the permeance of the
fringing flux from the end faces calculated by any suitable
method such as conformal mapping. For a stator block of
height h, the extension Lx is given by the relation

,

fi(s,y)ei

(1c)

exp 1
— In eqn. 1c, the second and third terms on the RHS represent

the effects due to discontinuity in winding and iron,
respectively.

(6) At exit end (Fig. 4b)

Lx may also be made to include any real extension of the
stator which is most likely to be present in a practical machine.

With iron extension, the model becomes as shown in Fig. 4a
at the entry end, and as shown in Fig. 4b at the exit end.
There will be no difficulty in extending the WHT to solve for
Az for these models also. The relevant expressions forAz are:

iron
extension

jM-kx*kL, )

= oo, p =oo

x=0 x=L

j(cot-kx -
— iron extension

r JU=OO, P =O0

x=-Li x=0

Fig. 4 Model of LIM with finite iron extension

a At entry end
b At exit end

At the entry end (Fig. 4a)

(i) JC < 0

fi(s,y)e°
(la)

(s+jk)f'i(s,g)

m (7m

fi(s,y)esx

(7b)

(in) x>L

U = i'
(s+jk)f'2(s,g) j 8=-8n
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(ii) — Z,j <x<0

Az(x,y) = - I

GiR)(yn)fl(s,y)e<

fi(s,g)

(8b)

(Hi) x< —

v )

s=-jk

(8c)

Expressions for flux density and thrust

5.1 Flux density
The expressions given for Az, Bx and By can be obtained from
the well known relations

dA
and y (9)

5.2
The tractive force is obtained by calculating the reaction on
the stator block, using Lorentz equation

F = \ R e | (By)y=gjlzdx

where j l z = conjugate of/i2
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dx
N/m (10)

(force per metre width of the stator block)

The integration is to be carried over the winding length. Of the
different components ofAz, the component due to continuous
winding and continuous iron gives rise to a force which is
equal to

-WRe N / m

s=_jk

for both the stator blocks. This force is constant per unit
length in the x-direction and represents the normal induction-
motor force.

The remaining terms in Az contribute to the force due to
the end effects. Since these terms decay with the distance
from the ends, the total force due to these can be calculated
by choosing the Kmits of integration in eqn. 10 as zero and
infinity. Thus, the total force due to entry-end effect

g)

s=-8,

(7
(12)

s=-8,

This force is generally negative (except for extremely small
values of slip) and hence represents a brake force. Of the two
terms in eqn. 12, the first term represents the force due to
discontinuity in the winding, and the second term represents
the force due to discontinuity in iron.

Similarly, the total force due to the exit end effect

(s+jk)

(-«, - 6 m s)GiR\-Sm)jam

(13)

This force is generally positive and hence adds to the thrust. In
eqn. 13, the first component is due to the effect of discontinu-
ity in the winding and the second component is due to the dis-
continuity in iron.

6 Applications

To illustrate the nature of flux distribution at the entry end
and exit end with different iron extensions (to the stator) and
the corresponding end effect force, the data of motor A of
Reference 1 are used, as given in the following paragraph.

Number of poles, P = 4: frequency = 50 Hz;
synchronous speed, Vs = 9m/s; airgap length, 2g = 0.015 m;
secondary (copper) sheet thickness, 2d = 0.005 m; core length,
L = 0.36 m; core width, W = 0.09 m; peak value of primary
current density, Jo = 70000 A/m; conductivity of secondary
sheet, a = 0.59 x 10 8 S/m.

current dens i t y . JQ= 7 0 6 0 0 A / m

normal va lue

winding

| / / / / / / i / /// / / r/ / / / / A/ // / / / *
0 0.09 0.18 0.27 0.36

distance m

0.3 -

V \ \ \ \ \ \ i \ \ \ \ \ \ \ \ \ \ \ \ \ \ W W W Y
0 0.09 0.18 0.27 0.36

distance,m

Fig. 5 Flux distribution due to entry-end effect (Motor A, 0.05 slip)

stator without iron extension
— . — . — stator with a small iron extension (0.0124 m)

with infinite iron extension

Table 1 : Zeros of fl {s. g) and f2 (s, g)

Motor A, slip 0.05 (v = 8.55m/s)

n Roots of fx (s,g): eqn. 5b Roots of f2[s,g): eqn. 5c

1
2
3
4
5
6
7
8

<*n

404.3 +/12.7
817.9 + /12.1

1152.0 + /4.8
1582.0 +/2.5
2011.0+/2.6
2408.0 +/1.8
2834.0 + /1.4
3258.0+/1.4

-90.6- /25.9
-560.9- /3.1
-957.8- /3.5

-1360.0-/2.5
-1796.0-/1.6
-2206.0-/1.6
-2617.0-/1.3
-3047.0—/1.0

7n

164.2 +/19.6
629.1 +/12.3
978.5 + /8.9

1359.0 +/2.9
1803.0+/2.6
2209.0 + /2.3
2617.0+/1.5
3049.0+/1.4

-58 - /35 .5
-333.0-/5.2
- 768.1 -/3.2

-1152.0—/3.2
-1579.0-/1.9
-2006.0-/1.6
-2409.0-/1.6
-2833.0-/0.12
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From the preceding data, we obtain <x> = 314.15 rad/s,
r = 0.09 m, k = TT/T = 34.8. First, the zeros of/x (s, g) and/2

(s, g) for any chosen value of the slip are to be determined.
Choosing a slip of 0.05, v is 8.55 m/s, and, for this value of v,
Table 1 gives the zeros of fx (s, g) and/2 (s, g) determined by
the Newton-Raphson method.

Next, the A2 distribution can be obtained, using eqns. 7
and 8 and the flux density, and end-effect forces can be deter-
mined, using eqns. 9, 12 and 13. Fig. 5 gives the nature of the
By distribution on the stator and rotor surface due to entry-
end effect with different iron extensions to the stator. Fig. 6
gives the corresponding distribution due to exit-end effect.

In a similar way, thei?y distribution obtained on the stator
and rotor for a higher value of slip (0.6) are shown in Fig. 7
near the entry end, and in Fig. 8 near the exit end.

The variation of entry-end effect force with slip is shown in
Fig. 9, and that of exit-end force in Fig. 10, for different iron
extensions to the stator.

-0.27

<//////1//////V/7/ /7\
-0.27 -0.18 -0.09 0

distance ,m

Fig. 6 Flux distribution due to exit-end effect (Motor A, 0.05 slip)

stator without iron extension
— • — • — stator with a small iron extension

stator with infinite iron extension

The following conclusions can be drawn from the flux-
distribution curves:

(i) The 2-dimensional analysis brings out clearly the dis-
tinction between the flux distributions on the stator and rotor.

(ii) The entry-end effect, which lasts over considerable
distance from the entry end for small values of slip, is mainly
due to the discontinuity in the winding. The discontinuity in
the iron gives rise to peaking of flux density of the stator in a
very short region near the tip of the entry end.

(iii) The exit-end effect, which persists over a relatively
short distance at the exit end, is more affected by discontinuity
in iron. The discontinuity (in iron) gives rise to a very sharp
rise of flux density on the stator surface at the exit end.

(iv) The results for a stator with even a small amount of
iron extension (approximately equal to the gap length) are
nearly same as those of infinite iron extension.

From the end-effect force curves shown in Figs. 9 and 10, the
following conclusions can be drawn:

(i) The entry-end effect force is generally negative (thus
reducing the net thrust) except at very small values of slip
(< 0.01). The discontinuity in iron increases the negative force
by a very small amount.

(ii) The exit-end force is generally positive, thus helping
the thrust to a small extent. The discontinuity in iron increases

n///// / 77 T/K77/T// / / / / / / / //>T
0.09 0.18 0.27 0.36

distance m

| 0.06

CD

0.0*.

K\\\\\i\\\\\\N\\\\\\\ \\\\wr
0 0.09 0.18 0.27 0.36

distance, m

Fig. 7 Flux distribution due to entry-end effect (Motor A, 0.6 slip)

stator without iron extension
— • — • — stator with a small iron extension

stator with infinite iron extension
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this positive force considerably at low values of slip, including
zero slip. However, even if a small amount of iron extension is
present, this force reduces substantially.
For short stator lengths, particularly at small values of slip, the
entry-end effect may last even up to the exit end. It is then

^\\\\\\i\\\\\\\\\\W
-027 -0.18 -0.09

distance m

0.12

<////// A ///// / / / / /A
-0.27 -0.18 -0.09

distance m

Fig; 8 Flux distribution due to exit-end effect (Motor A, 0.6 slip)

stator without iron extension
— • — • — stator with a small iron extension

stator with infinite iron extension

0.9 0.8 0.7 0.6 05 0.4 0.3 0.2

-1-240

Fig. 9 Thrust due to entry-end effect (Motor A)

stator without iron extension
— • — • — stator with 0.0124 m extension

stator with infinite iron extension
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necessary to consider the entry and exit-end effects simul-
taneously. As mentioned in Section 2, this leads to a 3-part
mixed boundary value problem which can be solved by using
an approximate Wiener-Hopf technique. Details of this method
are given in Reference 12.

It can be seen from Fig. 5 that, for stator length equal to
0.36 m (four pole pitches) and for 0.05 slip, the entry-end effect
does not decay completely at the exit end. Hence, simultaneous
treatment of the end effects is required in this case. Fig. 11
gives the stator flux-density distribution obtained using such
an analysis. For the same stator length, but at 0.6 slip, it can
be seen from Figs. 7 and 8 that the end effects can be treated
separately.

Finally, Figs. 12 and 13 compare results obtained by using
2-dimensional analysis with those obtained by 1-dimensional
analysis. The 1-D treatment gives results which are close to
those obtained by 2-D analysis, except that (i) it fails to predict
the rotor flux density accurately, and (ii) it slightly over-
estimates the thrust.

In order to apply the analyses given so far to predict the
performance of a practical machine, the following modifi-
cations are needed:

-.56

40

32 Z

In
2 4 1

16

8

1 /

0.9 0.8 0.7 0.6 05 0.4 0.3 0.2 0.1 0
slip

Fig. 10 Thrust due to exit-end effect (Motor A)

stator without iron extension
• • stator with 0.003 m iron extension

— • — • — stator with 0.0124 m iron extension
stator with infinite iron extension

0.4 r-

0.18
distance, m

Fig. 11 Flux distribution on stator surface with simultaneous treat-
ment of end effects (Motor A, 0.05 slip)

stator without iron extension
stator with infinite iron extension

• — without end effects
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(i) The finite length effects in the transverse direction are
to be taken into account by modifying the gap length and
conductivity of the secondary sheet. It can be shown from
Bolton's analysis [11, 13] that geff and aeff to be used in the
2-dimensional model are related with the true values by the
following relation:

g + ( j 2joeffHodsco _
geff k2 ~ i j ^ g X J H o

(14)

where s = slip, r2 = k2 + (joHoUds/g), M=l+ (r/k) tanh rW^
tanh k (W2 - Wx), 2WX = width of stator block, and 2W2 =
width of rotor sheet.

(ii) In double-layer stator windings, the two layers are
often staggered. The application of Wiener-Hopf technique to
this situation does not offer any special difficulty.

0.4 r

stator-current density = 70600 Aim

yy////////////////////////A
0.09 0.18 0.27

distance.m
0.36

0.4 r

0.0 0.09 0.18 0.27 0.36
distance, m

Fig. 12 Comparison of flux distributions by 1-D and 2-D analyses
(Motor A, 0.05 slip)

1-D analysis
2-D analysis

240

16O2

80 £

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
slip

Fig. 13 Comparison of thrusts by 1 -D and 2-D analyses

1-D analysis
2-D analysis

(iii) The performance of the machine at constant applied
voltage is to be computed from constant-current operation,
taking into account the stator resistance and leakage reactance
drops.

Incorporating the above modifications and making use of
the 2-D analysis with simultaneous treatment of the end
effects, the performance of the linear motor constructed and
tested by Coho, Kliman and Robinson [10] is predicted at the
operating condition of 100 V at 150 Hz. The flux-density dis-
tribution on the stator surface and in the yoke are predicted at
0.06 slip and are plotted in Fig. 14 along with the experimental
results. The variation of the total thrust with slip is shown in
Fig. 15, along with the test results. The correlation between
the experimental and predicted values can be considered as
satisfactory. Similar correlation was obtained for the operating
condition of 40 V at 60 Hz. In predicting the results, a small
amount of iron extension, as calculated from eqn. 6, is
assumed to allow for fringing flux.

16-

Fig. 14 Air gap and yoke flux distribution in motor of Reference 10
(100 V, 150Hz, 0.06 slip)

—o—o— test values
predicted values

-,400

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 01 0
slip

Fig. 15 Variation of thrust with slip (Motor of Reference 10; 100 V,
150 Hz)

-o—o— test values
predicted values
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7 Conclusions

A 2-dimensional analysis is presented for a double-sided short
stator LIM, taking into consideration the discontinuity in iron
along with the discontinuity in the winding, using the Wiener
Hopf technique. It is shown that discontinuity in the iron gives
rise to peaking of flux density on the stator surface in a small
region near the tips of the entry and exit ends. The effect is
more pronounced at the exit end. Regarding forces, the dis-
continuity in the iron at the entry end gives rise to a small
negative thrust, whereas at the exit end it gives rise to positive
thrust which can reach appreciable values for small values of
slip, including zero slip. However, all these effects are substan-
tially reduced by even a small amount of iron extension.

From the overall results, it appears that the loss of thrust in
a linear induction motor is almost entirely caused by the effect
of discontinuity in the stator winding at the entry end. It is
also desirable that there is no iron extension at the exit end.
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10 Appendixes

10.1 Wiender-Hopf techniques for the solution of i//+ and \p'_
The first step in the solution of \p+ and i//'_ occurring in eqn. 5
is to write

where GL is regular in Re s < b, and G+ is regular in Re s > a,
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b >a > 0 (Fig. 2). Knowing the zeros of /x(s, g) and f2(s,g),
these can be expressed in their infinite product form as:

fi(s,g) =
n = l

-s/yn)(\+s/8n)

Hence

and

Assuming this is done, we can write eqn. 5a as:

s+jk

On rearranging, we get

s+jk
(15)

The LHS expression of eqn. 15 is regular in Re s >a. The first
term on the RHS is regular in Re s < b, while the second term
would have been regular in Re s < b, but for a pole at s = —jk.
The second term can be resolved into the sum of C+(s) and
C-(s), C+(s) being regular in Re s>a and C.(s) being regular
in Re s < b. Substituting and rearranging, eqn. 15 becomes

i//+G+-C+ = (16)

The LHS of eqn. 16 is defined and regular in Re 5 >a, and the
RHS is defined and regular in Re s < b, both being regular in
the common strip, a < Re s < b. From the knowledge of the
asymptotic behaviour of the individual terms of eqn. 16 and
from Liouville's theorem of analytic continuation, it can be
shown [131 that eqn. 16 is equal to zero. Thus,

<//+ = CJG+ and ^1 = -C_/G_

10.2 Determination of C+ and C_
The term (JoHo)l(s + jk) is resolved into the sum of C+ and
C_, using the method of partial fractions:

(s+jk)

Multiplying both sides by (s — yn) and setting s = yn:

where GiR)(yn) is the residue of G-(s) ats = yn. Hence,

and

(s+jk)

J0H0GiR\yn)

n(yn+Jk)(s-yn)
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