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Steady flow of a viscous liquid in a porous elliptic tube 
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Abstract. Flow of a viscous-liquid in a porous tube of elliptic cross-section is studied 
using the generalized momentum equation. As a particular case, flow of the liquid in a 
tube of a circular cross-section is obtained. It is observed that the classical Darcian 
effect is realized only in a core very near to the axis of the tube while the non-Darcian 
phenomenon is felt predominantly near the boundary of the tube. 
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1. Introduction 

Flow of  a viscous liquid in a porous medium is of  importance in the study of  percola- 
tion through soils in hydrology, petroleum industry and in agricultural engineering. 
Henry Darcy had observed while studying flow of  water through sand filters that the 
flow rate of  water is proportional to the difference in head of  water across the filter. 
Subsequently, many experiments were conducted to study the flow of  various fluids 
through different types of  porous solids. 

Brinkman (1947), proposed a generalized Darcy's law to study flow through highly 
porous media. 

0 = - -Vp-- ( Iz /k)V+I*V*V 

where V, p represent velocity and pressure fields,/z is viscosity coefficient of fluid and 
k is the permeability of  the medium. Later Tam (1969) derived analytically the same 
equation to study flow past spherical particles at low Reynold's number. 

The generalized law is found useful in the study of  flow in highly porous media 
such as pappus of  dendelion and fibres. Yamamoto (1971, 1973) examined flow past 
porous bodies applying the generalized law. 

We observe that the classical Darcian effect is seen only in a core very near to the 
axis of the tube and at the boundary the non-Darcian effect is felt predominantly. 

2. Basic equations and solution 

Bdnkman (1947) proposed the basic equation for the slow steady flow of  a viscous 
liquid in a porous medium as a generalization to the classical Darcy's law. 

O=--~7p+t~V~v--(tz/k)v (1) 
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together with the equation of continuity 

div v : 0  (2) 

Let (x, y, z) be the rectangular co-ordinate system such that Z-axis lying along the 
length of the tube with impermeable boundary T. The velocity components in x, y, z 
directions are taken to be 0, 0, w (x, y) respectively. The equation of continuity is 
satisfied with the choice of the velocity and the equation of motion becomes 

o : - w (3) 
Oz /r 

with w : 0  on T, the boundary of the tube. (4) 

If the pressure gradient --Op/Oz:pa, is a constant, we re-write eq. (3) as 

~ 7 ~ -  r = 0  (5) 
k 

where 

r ok_, v=/~/p (6) 

and r  ok on T. (7) 
Y 

The transformation of eq. (5) into elliptic co-ordinates (~, V) can be done by taking 
x + i y : C  cosh (~-~-i~/) as in Mc Lachlan (1964, pp. 170--173), which gives 

09r 02r (cosh 2~:--cos 2~b-----0 (8) 
0 7  +  -2q 

where q=(1/k)C~/4 and C2:-a2--b 2 with a=C cosh $ and b-----C sinh $ as the haft of 
the major and minor axes of the elliptic cross-section T. 

Let r 

Here ~(~') 
ellipse and is periodic with period rr in 7/. 
by Me Lachlan (1964, pp. 21, 27) 

as g=Ce~,(~7, --q) 

and f=Ce2n(~, --q). 

~)-:f(~) g(a?) in the above equation then we get, 

d~f--IAt~)+2a cosh 2~] f = 0  

dgg -ff-[h (~) 2a - .  + _  cos 2~] g=0. 

is a separation constant. 

(9) 

(lO) 

The flow is symmetric about the axes of the 
The solutions of eqs (9) and (10) are given 
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Hence (/, is given by 

~ =  ~=oP2.Ce~ .  (~,  --q) Ce2n (~1, --q) (11) 

Ce2n ('q' --q) : ( - -1)n  ~n=O (--I)'A(~ n) COS 2rv/. (12) w h e f e  

Ce~. (~,--q)=(--1)" ~n---0 (--i)'A~2r n> cosh 2~:r (13) 

A(22r n) are functions ofq. The constants P~. are determined using and the coefficients 

the boundary condition on ~:~o. 

- -a  k_ ~- .Sp2,, Cez,, (r --q) Cez,, (~1, --q). (14) 
1) 

Multiplying both sides of eq. (14) by Ce2,, (~7, --q) and integrating with respect to 7/ 
from 0 to 2~r and using the orthogonality relation of Me Lachlan (1964) we get 

2n 1',. = ~ ( - 1 )  "+~ 2,~ ,% 
(15) 

2 
Ce2n ( r --q) I~. 

where 

f 2zr 2 I~ : 0 Ce2n (n, --q) d~ 

Hence w ----- $ + _ak 
v 

ak 1 + (-- 1) "+~ 2r A 
V n = O  

Ce~.(~, -q)2~. 

Case l 

Ce~. (~, --q) Ce~. (~, q)] 

when k~oo, q-+0 (Me Lachlan 1964 p. 15) 

Ce o (r/, --q)1 +(�89 cos 2~ 

Ce2. (71, --q) cos 2~/+{(--�88 (1/12) cos 4~q)} q 

Cea. (~, --q) : Ce,. (i~, --q) 

Ao ~~ = 1, Ao ~2~ = 0 Ao t~"~ :: 0 for all n > 2 

(16) 

(17) 

(is) 

(19) 

(2o) 

(21) 
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Po = aK(1--(�89 cosh 2~o) 
IP 

P 2 = a K (  q ),p~. O: n > = 
v 2 cosh 2~:o 

and velocity w becomes 

w - - 2 ~  (a~+b z) \ a S - -  

(22) 

(23) 

(24) 

which is the same as the velocity of a viscous liquid in an elliptic tube when no resist- 
ance is offered by the medium. 

Case H 

when k is very small q is very large 

Ao t~  Ao t~  - - 0 f o r  n > l  

and from Mc Lachlan (1964 p. 230) 

(--1)" G .  [ 
Ce~.(~, --q) "" 22n_ �89 (i sinh)�89 cosh 2 q�89 cosh 

--(4n+ 1) tanh-t I tan ( 4 - -  ~ )  1 ] 

C~.= (--1)" 22n-�89 Ceg., (0) Ce~ Or/2); 
,40 ~' '  (~/V'q3�89 

C2. "" 0 for n > 1 for large I q I 

4 " eo Ceo (~, - q )  Ceo (7, - q )  

(25) 

(20 

(27) 

,.. _ ak cosh (�89 ~0) exp (--2/q�89 (cosh ~:o--cosh 0. CeoO1, --q). (28) M 

v cosh (�89 ~) 

Hence w is given by (Me Lachlan 1964, p. 388) 

a___k [1 cosh�89 ~o Ce ~ (r l ,_  q)exp(--d/k  1/~) ] (29) W 
v L cosh �89 ~:o J 

where d ----- c (cosh ~:o -- cosh ~:) 
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Case 111." When the tube is o f  circular cross-section 

In the case of  a circle c-~ 0, ~o ~ ~ such that a = cosh ~o. 
The ellipse turns to a circle of  radius a and also (Me Lachlan 1964 p. 367). 

Ceo (~7, - -  q) ~ 2 -1/2 (30) 

Ce~n 07 - -  q) ~ cos 2n 7, n > 1 (31) 

Ce~n (~, - -  q) ~ P'~n. I2~ (K1 ~7): n > 0 (32) 

Ce2, (~o - -  q) + P'z,  I2~ (K1 a): n > 0 (33) 

Ao ~~ ~ 2 -1/3 (34) 

Ao~)  ~ 0 : n > 1 (35) 

and 13, ~ ~r : n > 0 (36) 

where K 1 = k -1/~, r ----- cosh ~ = (x  2 + yZ)l/z (37) 

with the help of  these limiting values we get 

J,[ Zo w = -  1 (38) 
v [ Io (a/kl/2)J 

which is the same as that obtained by Pattabhiramacharyulu (1976). 

3. Conclusion 

We notice that the second term in eq. (36) damps out as d, the distance f rom the 
wall of  the tube increases while the first term remains almost constant ak/v, which 
is the same as that obtained under the classical Darcy's  law (Mushakat 1937). 

0 = - - V p - - ~ _ V .  
k 

Hence the non-Darcian effect is seen to exist predominantly near the boundary of  the 
tube and the classical Darcian effect is realized only in a core near to the axis o f  the 
tube. 

A similar phenomenon is observed by Sexl (1930) in the study of  pulsating flow 
of  a classical viscous fluid in a circular tube and by Pattabhiramacharyulu (1976) 
for the flow in porous circular tube. 
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