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Steady flow of a viscous liquid in a porous elliptic tube
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Abstract. Flow of a viscous-liquid in a porous tube of elliptic cross-section is studied
using the generalized momentum equation. As a particular case, flow of the liquidina
tube of a circular cross-section is obtained. It is observed that the classical Darcian
effect is realized only in a core very near to the axis of the tube while the non-Darcian
phenomenon is felt predominantly near the boundary of the tube.
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1. Introduction

Flow of a viscous liquid in a porous medium is of importance in the study of percola-
tion through soils in hydrology, petroleum industry and in agricultural engineering.
Henry Darcy had observed while studying flow of water through sand filters that the
flow rate of water is proportional to the difference in head of water across the filter.
Subsequently, many experiments were conducted to study the flow of various fluids
through different types of porous solids.

Brinkman (1947), proposed a generalized Darcy’s law to study flow through highly
porous media.

0 = —Vp—(RV-+u*V

where V, p represent velocity and pressure fields, u is viscosity coefficient of fluid and
k is the permeability of the medium, Later Tam (1969) derived analytically the same
equation to study flow past spherical particles at low Reynold’s number.

The generalized law is found useful in the study of flow in highly porous media
such as pappus of dendelion and fibres. Yamamoto (1971, 1973) examined flow past
porous bodies applying the generalized law.

We observe that the classical Darcian effect is seen only in a core very near to the
axis of the tube and at the boundary the non-Darcian effect is felt predominantly.

2. Basic equations and solution

Brinkman (1947) proposed the basic equation for the slow steady flow of a viscous
liquid in a porous medium as a generalization to the classical Darcy’s law.

0=—Vp+u\2v—(u/k)v ¢y
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together with the equation of continuity
div v=0 ()]

Let (x, y, z) be the rectangular co-ordinate system such that Z-axis lying along the
length of the tube with impermeable boundary 7. The velocity components in x, y, z
directions are taken to be 0, 0, w (x, ¥) respectively. The equation of continuity is
satisfied with the choice of the velocity and the equation of motion becomes

op ®
0= —24uVw—Cw 3
oz i k ®
with w=0 on T, the boundary of the tube. (C))

If the pressure gradient —9p/0z=pa, is a constant, we re-write eq. (3) as

_¢_
Vi 3 =0 &)
where
$=w— aTk v=plp ©®
and ¢=— a—f on T. )

The transformation of eq. (5) into elliptic co-ordinates (£, n) can be done by taking
x+iy=C cosh (¢4-in) as in Mc Lachlan (1964, pp. 170-173), which gives

Zi; + g%’: 24 (cosh 26—cos 27)$=0 ®)

where g=(1/k)C?/4 and C?=qa2—b2 with a=C cosh ¢ and b=C sinh ¢ as the half of
the major and minor axes of the elliptic cross-section T.

Let ¢(£, 7)=f(£) g(n) in the above equation then we get,

) o -

e [A4-2g cosh 2£] £ =0 )]
d*g

—° 4+ [A@42g cos 27] g=0. 10$)
dn?

Here A® is a separation constant. The flow is symmetric about the axes of the
ellipse and is periodic with period = in %. The solutions of eqs (9) and (10) are given
by Mc Lachlan (1964, pp. 21, 27)

as g=Cey,(1, —q)
and f =Ce2n(§’ —Q)-
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Hence ¢ is given by

$= z:;opzncezn (¢, —9) Cey, (n, —q) 1
where Cegy (7, —g) =(=1)" > _o (—1r 4% cos 2r7, (12)
Ceg (& —)=(—1)" >_0 (—1y4S"™ cosh 2¢r (13)

and the coefficients Agzr" ) are functions of g. The constants P,, are determined using
the boundary condition on é=£,.

k
—a s = ZPy, Ceyy (£, —q) Cegn (0, —4) (14

Multiplying both sides of eq. (14) by Ce,, (3, —¢) and integrating with respect to 7
from 0 to 27 and using the orthogonality relation of Mc Lachlan (1964) we get

Py =% ()" 2m 42"
g — (15)
Cezn(fo, —q) Ly,
where
I = 27 C 2 d 16
b= [ Cey, (. —a)dn 16y

Hence w =¢ —}—a_]f
14

~ [1+ zw (—1)™ 27 4%
v n=0 0

m C€2n (fa —Q) Cez,, (17, q)] (17)

Case I

when ko0, g0 (Mc Lachlan 1964 p. 15)

Cey (1, —q)1+(3)g cos 29 (18)
Cegn (1, —q) cos 29+{(—}) (1/12) cos 47) } ¢ 19
Cegn (5’ "”q) = Cezn (if, "'—q) (20)

Ag® =1, 4,® =0 A4, =0 foralln > 2 @n
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Po= X (1—()g cosh 26) 22)
oK q ) .
p=""(_—2 ) p,.=0:

Py (2 cosh 2¢, P n>2 @)

and velocity w becomes

o ah? ( X2y
Y3 @\ B b“’) @4)

which is the same as the velocity of a viscous liguid in an elliptic tube when no resist-
ance is offered by the medium.

Case 11

when k is very small g is very large

Ay =1, 4,@ =0 for n>1 25)
and from Mc Lachlan (1964 p. 230)

(_l)n an

—) 2 % cosh
Ceyn (€, —9) 75=F (7 sinb)} cosh [2q cosh ¢

—(4n+1) tanh-1 { tan (’; — ’_f)g ] (26)

C,= 2t

Cey, (0) Cey, (7/2);
i o G O Cen )

C,,~0 for n > 1 for large |q | (v))

¢pP, Ceo(g’ —q) Ce, (77’ —q)

. __ ok cosh (} &)

T eomG oY (—2/q%) (cosh £y—cosh €). Ceo(n, —q).  (28)

Hence w is given by (Mc Lachlan 1964, p. 388)

__ak _ cosh } &, _ _
w="[1- 2R oy~ exo g | @)

where d = ¢ (cosh £, — cosh £)
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Case III: When the tube is of circular cross-section

In the case of a circle ¢~ 0, £,— oo such that @ = cosh &,.
The ellipse turns to a circle of radius @ and also (Mc Lachlan 1964 p. 367).

Cey (1, —q) > 2717 (30)
Cegu(n —gq) >cos2nm,n>1 @31
Cean (£ — ) > P'an. Iy (Ky m): n >0 32)
Cey (90— q) > P'yn Iy (K1 a): >0 (33)
Ay ® > 2-1/2 34
A2 >0:n>1 35
and L,,~>7:n >0 36)
where K, = k-1/2, r = cosh £ = (x2 + ?)1/2 37

with the help of these limiting values we get

R AL
1, (a/k'7®)

(38)
14
which is the same as that obtained by Pattabhiramacharyulu (1976).

3. Conclusion

We notice that the second term in eq. (36) damps out as d, the distance from the
wall of the tube increases while the first term remains almost constant ak/v, which
is the same as that obtained under the classical Darcy’s law (Mushakat 1937).

0=—vp—~Ev.
vp %

Hence the non-Darcian effect is seen to exist predominantly near the boundary of the
tube and the classical Darcian effect is realized only in a core near to the axis of the
tube.

A similar phenomenon is observed by Sexl (1930) in the study of pulsating flow
of a classical viscous fluid in a circular tube and by Pattabhiramacharyulu (1976)
for the flow in porous circular tube.
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