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SUMMARY

The paper is concerned with the slow stationary flow of a micropolar incompressible fluid past a sphere. Adopting the
Stokesian approach of neglecting the inertial terms in the momentum equation and the bilinear terms in the balance
of first stress moments, the equations are integrated and the flow parameters determined. The drag on the sphere is
seen to be more in the present case than that in the case of non-polar fluids. It is found that in spite of the couple
stress in the fluid, there is no resultant action by it on the sphere. Numerical work shows that the streamlines in the
polar case have greater deflection towards the sphere than in the non-polar (or classical) case.

1. Introduction

The theory of micro-polar fluids introduced by A. C. Eringen [1] deals with a class of fluids
which respond to certain microscopic effects arising from the presence of micro-structure and
are influenced by the spin inertia. A simplified case of this theory has also been discussed recently
by A. C. Eringen [2]. An interesting feature of this class of fluids is the sustainance of couple
stresses. Some anisotropic fluids such as animal blood and liquid crystals made up of bar-like
or dumb-bell shaped molecules seem to fall within the scope of this theory. Apart from the
usual quantities p (mass density), ¢ (fluid velocity vector) and t;; (stress tensor), we have in the
present theory the following additional quantities: micro-stress average (s;;) and the first
stress moment 4;;,. In the theory of micropolar fluids, the constitutive equation is linear,
the micro-inertia moments have an isotropic distribution, the gyration tensor v;; is antisym-
metric and the first stress moment 4, is antisymmetric in the last two indices. Fluid particles
contained in a small volume element have besides the usual rigid rotation, also rotation about
the centroid of the volume element in an average sense, and the vector v defined by the anti-
symmetric tensor v;; describes this rotation. There is no micro-stretch of the particles in this
theory, since the tensor v;; is antisymmetric. The field equations are then presentable in terms
of the fluid velocity vector ¢ and the micro-rotation vector v.

In this paper we examine the slow stationary flow of an incompressible micro-polar fluid
past a sphere. As is usual with the classical investigations of the problem, as a first step the
inertial terms of the momentum equation and the bilinear terms in the balance of first stress
moments are neglected and the flow is obtained over the space outside the body under the
above approximation. Explicit calculations are given for the velocity and micro-rotation and
the stresses as well as couple stresses. The drag on the body is determined. It is seen that in the
present theory the drag is more than in the classical case. We find that the body as a whole does
not experience any couple.

2. Basic Equations

The field equations of the micro-polar fluid dynamics are [1]

~

op

5, T div(pq) =0 M
Dgq P
Pp = (A1 +2p+k) grad div ¢ — (u-+k) curl curl q-+k curl v—grad p+ pf 2)
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p]%: = (a+f+y) grad div v—y curl curlv

+k curl g —2kv+pl 3)

in which ¢, v, f, | are respectively the velocity, micro-rotation, body force and body couple
vector. The constants p and j are the density and gyration parameter, while (4,, p, k) and

(e, B, y) are material constants, which are governed by certain inequalities. The stress tensor
t;; and the couple stress tensor m;;= —g;,, A7 are given by

tij= (—p+Ay div q)0,;+ Qu+k)dy; + ke j (@™ —v™) 4
and

my; = (o0 div v)d,;+ By, j+yv; ; (5)
where v; and 2w; are the components of the micro-rotation vector and vorticity vector respect-
ively, d;; denote the rate of strain components and comma denotes covdariant differentiation.

3. Slow Stationary Flow past a Sphere
Let e,, ¢4, ¢, be the unit base vectors of the spherical polar system r, 6, ¢. The flow is past the

sphere r=a and is a uniform stream at infinity. The flow of the fluid is in the meridian plane
and all physical quantities are independent of ¢. We choose the velocity vector in the form

q=u(r, O)e,+v(r, t)e, (6)
and in view of the incompressibility condition div =0, we have
1 o7 -1 0¥

()

where ¥ is the stream function. Since the vorticity has its only component perpendicular to
the meridian plane, we take the micro-rotation vector v in the form

w0 = s Y00 = rana o

v=y(r, O)e,. ®)
It is then obvious that

divv=0. 9
Under these conditions, the equations (2) and (3) can be put in the form

—(u+k)curl curl g+k curl v—grad p=0, (10)

—vycurl curl v+kcurl g—2kv=0. (11)

From these we see that

Ptk

v=4curlqg — e curl curl curl ¢ (12)
and pressure is to be determined from the equation

grad p= —3(2u+k) curl curl ¢ — y(_,uz__;—k) curl curl curl curl q . (13)
The velocity vector satisfies the equation

curl curl curl curl curl ¢ + i—z curl curl curlg =0, (14)
where

2 kQutk)

@@ puth) : )
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These equations can be rewritten in terms of the stream function ¥. If

o? 1 é* cotO o

2 _ - R .
P v 7 @ (16)
we see that
12
E4(E2‘I/ -z 'I’> =0 (17)
and
-1 +k

The solution of the problem consists in solving the equations (17) and (18) subject to the
following conditions:

(i) adherence of the fluid to the solid boundary, which means that in this problem we have

u, v, v=0o0on r=gq conforming to the conditions of non-slip and non-spin on the boundary.

(ii) at infinity the flow approaches a uniform stream of speed U, parallel to the axis of

symmetry.
To have the uniform stream at infinity it is essential that

Y ~41Ur?sin 0 (19)
for large values of r. We therefore seck the solution for ¥ in the form

¥ =f(r)sin’0 . (20
The function f(r} is determined by

a2 ([ 2 X

(= 2) (G2 e =0 @y
and the solution of this is

f(r)=Ar*+Br’+Cr + g + \/r{EI% (g) +FK% (%)} (22)

involving six constants and the functions I (. .)and K (. . .)denote the modified Bessel functions.
For the flow to be regular at infinity and equal to the uniform stream as indicated in (10),
we must discard the constants A and E in (22) and choose

B=1U. (23)

The remaining three constants in the solution C, D, F are determined by the adherence condi-
tions, viz.,

u(@, 6)=0; v(a,0)=0 and v(a, 0)=0. (24)

The velocity and the micro-rotation are then found to be

u(r,@)=FU+2E+22+2§‘K%<&>]0059 (25)
L r r r a
-
o(r, 0) = —U—(—:+B3+£1 K%<£>+&K%<£>}]sin9 (26)
| roor ¥2 a a a
rC +k A% 1 Ary .
where } ‘
3aU (A+1)(u+k)
C= _ 28
2[2(u+k)A+(Q2u+k)] 28)
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3 3
a3U[u(/1+1)+k<)L+2 +o + Fﬂ

b ARt DAL a0 )
3Uka?
= — . 30
P = = G+ Crr k)] (30)
The pressure is foundfrom the equation (13). We see that
grad p= — (2u+k)r—c3 [2 cos e, +sin Oe, ] (31)
and hence
C .
p=(u+k) 3008 0+p, . (32)

4. Stress Tensor

The stress tensor t;; is defined in (4). Taking the suffixes r, 6, ¢ corresponding to indices 1, 2, 3
we have the physical components of the strain velocity given by

C 3D Al Ar
drr: —2d69= _2d¢¢:—2|:ﬁ +7 + F—d EK% (;)]COS@ (33)
dy=— [lf LS (l)]sm 0 (34)
r ar= a

and

dyp=dgy=0. (35)
Hence the stress tensor has the physical components

B C 30 il (h)}
t,= p—2(2,u+k) {;‘5 + & + Fa EK% p cos 6 (36)
(C 3D A1 ar
tgg—t¢¢=_p+(2ﬂ+k){r—2"+r—4+ FE EK%<»Q—>}COSH (37)
3D Al ¥ .
3iD F 1 Ar Ar Ar ‘
= 2 k = T2 T 3z — s|— - 2\ i

to, = (2u+k) [ - ria{K2<a>+ aK2<a>Hsm0 (39)
The stress vector on the surface r=a is

trrer+tr0e6+tr¢-e¢ > (41)
and it is found to be

C
—(2u+k) e (cos fe,—sin Oe,) . (42)

Thus we see that the stress vector is everywhere parallel to the axis of the symmetry. The drag
on the sphere is now found to be
6nal (2+1)(u+k)2u+k)
2(u+k)A+2u+k '

(43)
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We recover the expression for the drag in Stokes solution by taking the limit as k—0 in (43).
Let D, denote the drag on the sphere in the micropolar liquid and let Dy(=6raUp) be the
drag in the non-polar liquid.

We have
(L+A)(+R)2u+k)
D,/Dy = . 44)
D0 = Gl k) 7+ 2u R 8 (
Since the parameters y, k, A are all >0, we easily see that
k
1 +Z<D1/Do<1+k/#- (45)

Thus the drag on the sphere is greater in the micropolar liquid than in the ordinary non-polar
liquid.

5. Couple Stress

The couple stress m;; is given by (5). In the present case the physical components of the tensor are

m,,. = Mgg = m¢¢ = Mg = My, = 0 5 (46)

C k221 ar
n%=wum%—ﬁ+F”k 2€K4 ”

¥ a
13
+yF —— u+k 1 K, < )]sm 6 (47)
C ut+k 221 </1r)}
. ) _ = HTR A 2 e (M
M, [( /3+y)4{ st PSS Kl
ptk 221 <)Lr> .
+pF PR K, ) sin 0 (48)
_ I IKe pt+k 221 ir)
The couple stress vector on the sphere r=a is hence seen to be
[Mgle-aes (50)
and this reduces to
3UkQu+k) .
— . 5
Tat k) A+ iy S O (1)
The resultant couple vector on the sphere is therefore
T 2n
S S [m,],=q a* sin fe,d0dd (52)
0=0)¢=0

and this is seen to be zero. Thus we find that there is no resultant action by the couple stress on
the body as a whole and it experiences only a drag even as in the case of non-polar viscous
liquids.

Figures 1 to 6 indicate the stream lines, micro-rotation, shear stress difference and couple
stress components, for the values k/u=35, 1=1 and f/y=0.5. It is seen that the stream lines in
the polar case have greater deflection towards the sphere than in the non-polar (or classical)
case.

Journal of Engineering Math., Vol. 4 (1970) 209-217



214 S. K. Lakshmana Rao, P. Bhujanga Rao

_____ NEWTONIAN FLU|ID.
—— MICROPOLAR FLUID.

Fig. 1. Stream lines.

N

o
al

>

(]

)

Fig. 2. Micro-rotation.
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Fig. 3. Stress difference t,o— t,,.
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Fig. 4. Couple stress n,,.
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Fig. 5. Couple stress m,.
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Fig. 6. Couple stress my,.
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