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Abstract 

The problem of laminar forced convection heat transfer in short elliptical 
ducts with (i) uniform wall temperature and (if) prescribed wall heat flux 
is examined in detail with the well known L6vfique theory of linear velocity 
profile near the wall. Moreover, consideration is given to the variation of 
the slope of the linear velocity profile with the position oil the duct wall. 
A correction factor for the temperature dependent viscosity is included. 
Expressions for the local and average Nusselt numbers and wall temperatures 
are obtained. For the case of constant heat flux the Nusselt numbers are 
higher than for constant wall temperature. 

The results corresponding to the classical Graetz and Purday problems 
are deduced as special cases. 

Nomenclature 

a,b 
Ah 
C ~  a e  

C 
De 
e 

£(e) 
g 
gw 
G~ 
Gz 

J,~(x) 
K 

NO 

semiaxes of ellipse, b < a 
area of heat transfer surface 
distance between focus and centre of the ellipse 
heat capacity of the fluid 
equivalent diameter, (18) 
eccentricity of the elliptical duct 
complete elliptic integral 
Laplace transform of T 
Laplace transform of Tw 
Graetz number (local), Re Pr De/z 

Graetz number (average), Re Pr De/Z 
local heat transfer coefficient 
Bessel function of order n 
thermal conductivity of the fluid 
Laplace transform of X 
local Nusselt number, h°oDe/K 
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NO 

N u  
Nuw 
N u ~  

P 
Pr 
Re 
T 
TI, Tw 
Uz 

X, y, z 

Z 
o~ 

F 
r(x) 

#a, #w 
~,O,z 
p 
¢(z) 

perimeter average Nusselt number 

overall average Nusselt number 
wall Nusselt number 
Nusselt number at large distance from the inlet 
Laplace transform parameter 
Prandtl number, Cl~a/K 
:Reynolds number, De~p/IZa 
temperature of the fluid 
inlet and wall temperatures, respectively 
local isothermal velocity along the axis of  the duct 
average fluid velocKy 
Cartesian coordinates, z-axis parallel to the axis of the duct (z = 0 

at duct inlet) 
length of the duct 
thermal diffusivity, K/pC 
correction factor for the temperature dependent viscosity 
gamma function 
coordinate measured normal to the wall of the duct 
viscosity of fluid at average and wall temperatures 
elliptic cylindrical coordinates 
density of fluid 
heat flux 

§ 1. Introduction 

Heat transfer in noncircular conduits has become important in 
recent years since - due to the fact that they possess a high ratio 
of surface area to core volume -,  such conduits are employed in 
nuclear reactors, compact heat exchangers, and other high heat 
load systems. The problem of heat transfer in laminar flow in 
elliptical ducts with uniform wall temperature has been investigated 
earlier by Dunwoody [11 using a numerical method. Recently, 
Schenk and Bong Swy Han [2] considered the same problem with 
prescribed external or wall Nusselt numbers. As the wall Nusselt 
number approaches infinity, isothermal Conditions are attained on 
the duct wall. 

L6v6que [53 examined the problem of heat transfer in flow over 
a flat plate assuming a linear velocity profile near the wall and 
Krishnamurty et al [4-8] obtained exact solutions of the energy 
equation for various noncircular conduits with uniform wall tem- 
perature using the L6v6que theory. In the present investigation 
the problem of laminar forced convection heat transfer in short 
elliptical ducts with (i) uniform wall temperature and (it) pres- 
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cribed heat flux has been studied. The function F ( O )  (cf. eq. (5)) 
introduced in this work, takes care of the variation of the slope 
of the linear velocity profile along the perimeter. Further, a Sieder- 
Tate type of correction factor 8" has been introduced to account 
for the temperature dependent viscosity. The present results are 
applicable to short tubes, high fluid velocities, and low thermal 
conductivities. Since the transport mechanism of heat is essentially 
the same as that  for mass, the results of the present work can 
be employed successfully for similar cases of mass transfer. 

§ 2. Analysis 
For fully developed laminar isothermal steady unidirectional flow 
of an incompressible Newtonian fluid through an elliptic duct of 
constant cross section, the velocity distribution is 

X2 y2 ) 
u z  = 2 g  1 a 2 b2 - . (1) 

The equation for energy transfer without heat generation and with 
the assumption that  the longitudinal conduction is negligible in 
comparison with convective transport, is 

c (eosh  t - cos  0) z - -  + 002 / '  (2) 

where x = c cosh t cos 0, y = c sinh $ sin 0 and z -- z. 
The elliptic wall  is represented by t = t0. In the region around 

a point on the duct wall at ~ = t -- to ~ 0 and 0 ----- 01 the term 
~2T/~OZ may be neglected in comparison with ~9'T/~t~ .  Since the 
velocity near the wall is small, the term c2(cosh ~ t -- cos 20)uz can 
be approximated by the first nonvanishing term of its Taylor 
expansion at ~ = ~0. These approximations agree with the as- 
sumptions in [3-91. Equation (2) now reduces to 

~2T ~/ ST 
- -  O, (3 )  

8@ . m ~z 

where 

m -  4 * abF(O) (4) 
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and 

(_~_ sin2 0 a b )2. F(O) ---- + - -  cos~ 0 (5) 
a 

The factor fl* is the velocity distortion factor and accounts for 
distortion of the isothermal velocity profile due to non-isothermal 
conditions. In our investigation fl* is taken as 

fl*~ 1.15(/~a ~ °'14 = - -  , (6) 
\ # w /  

as suggested by Marshall and Pigford EI O~ based on experimental 
observations. 

Introducing the Laplace transform of T(~, z) as 

o o  

~ [ T ( ~ ,  z)] = g(~, p) = p I e-~Z T(,], z) dz 
0 

(3) transforms to the Stokes equation 

d2g p~/ 

d~] ~ m 

(7) 

(g - r i )  = o, (8) 

the general solution of which can be obtained as 

F 2 i ( p  ~ - 2i 

where B1 and B2 are constants to be determined from the boundary 
conditions. 

The equation 

d~dg _ owl  8-~-T 1 --~ 0 as ~ --~ oo (10) 

can be used as a boundary condition for both prescribed wall 
temperature and prescribed wall heat flux. This condition yields 

B1 = B2i*. (11) 

2.1. Case o/ constant wall temperature. This situation arises when 
the second fluid on the other side of the wall changes phase and 
when the duct wall thickness and thermal conductivity are large. 
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For this case (Tw = constant), the equation 

g(0, p) = gw = =LPVTw] = Tw (12) 

is the second boundary condition, using it we obtain 

B2 = (gw - -  T I ) 3 - W ( ~ ) i ~  . (13) 

Local heat transfer coefficient and Nusselt number: 

The local heat transfer coefficient, h°o (at a point S0, 0 on the wall), 
based on the inlet temperature drop Tw -- T1, may be computed 
from the heat balance 

I K 8T 
x/~_b{F(O) }~ l (-~-)~=o : h°o(Tw -- T1). (14) 

In terms of the Laplace transform, (14) can be written as 

_ [. K dg 
x/-~(O)÷ l (~- )~=o= ~[h°o(Tw-- T1)~. (15) 

From (9), (11), and (13) we can show 

f dgg~ = ( g w -  T1)F(§)(p/m)~ 
(16) \ d~7 .] .=o 3~r(~) 

From (15) and (16) we obtain, after inversion, 

k~°° = -Y-dT t V ) t - ~ - )  (~b)~ 
For elliptical ducts the equivalent diameter De (defined as four 
times the ratio of cross section to wetted perimeter), is given by 

~a(1 -- e~')~ 
De -- ,(18) 

E(e) 

O 

Hence, the local Nusselt number, Nu = h°oDeiK, can be obtained 
a s  

o o De V Xu = 0.983(Gz)~ F(O) ~i'" (19) 
tVw) \ d Z )  " 
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Average Nusselt number: 

The perimeter average Nusselt number is given by  

o o / , \0.14 

and the overall average Nusselt number is 

where 

N-u = 2.16~(e)(-~z)~( f~ ~o.1~, 
\ # w /  

~12 
~(e) = E(e)-* ~ (1 -- e 2 cos 2 0)~ dO. 

0 

Table I gives the function ~(e). 

TABLE I 

(2o) 

(21) 

(22) 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
(circle) 

~(e) 0.86 0.8614 0.8622 0.8736 0.8843 0.8997 0.9249 0.9548 

e 0.8 0.9 0.99 0.992 0.994 0.996 0.998 1.000 
(slit) 

~(e) 1,0010 1.0740 1.226 1.316 1.284 1 . 2 6 7  t.2~4 0.9111 

Behaviour of the function ~(e). 

2.2. Prescribed wall heat flux. A prescribed wall heat flux 6(z) arises 
in electrical and nuclear heating systems, where the surface tem- 
perature adjusts itself to the heat flux. For the present case the 
second boundary condition is 

_[, K aT 
a/~F(0) t ] (~-)n=o = ~(z). (23) 

The wall temperature follows from 

] T ~ _  ~ 4 ~  3~ r(~) F (0 )~ -~  ~[~(~)~ . (24) 
K 

Constant heat flux" 

When •(z) is a constant $o, the wall temperature distribution can 
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be obtained from (24) as 

Tw -- T1 - -  F(O)~m~zt (25) 
K V(§) 

The Nusselt number based on the local heat transfer coefficient, 
h~°o = ~o/(Tw -- TJ ,  is given by  

o o t \ 0 . 1 ~  z r - ,  \½  

Nu : 1.19(Gz)}[ #a ~ { W e ~ F(O)'hL (26) 
] k ,/ab / 

The average Nusselt numbers are calculated as 

o 

(Nu)avg = 5 Nu dAh/I dAm 

The perimeter average Nusselt number is 

- ( 5  o o 

Nu = 1.744,(e)(Gz)~ #_A_ a oa~. 
k#w / 

The overall average Nusselt number is 

/ \ 0 . 1 ~  

\ # w /  

(27) 

(28) 

(29) 

Other flux distributions: 

Using (24) we can obtain wall temperature distributions for other 
flux distributions, Expressions for the wall temperature drop 
Tw -- T1 involve hypergeometric functions in the case of cosine 
and chopped cosine flux distributions and then the expressions 
for Nusselt numbers will be complicated. 

§ 3. D i s c u s s i o n  

(a) I t  is noticed from (5) and (19) that  the local Nusselt number 
o 

Nu has a maximum at the ends of the minor axis and a minimum 
at the ends of the major axis. This effect increases with the eccen- 
tricity e. At the ends of the major axis the slope of the velocity 
profile will have its minimum value and this results in increased 
thermal resistance. The opposite happens at the ends of the minor 

o 

axis. The general trend of the variation of Nu around the peri- 
meter obtained in the present work checks well with the obser- 
vations of Schenk and Bong Swy Han [2]. 
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(b) The  results of Table  I indicate  tha t  ¢(e) has a m a x i m u m  
when e - -  0.992. This t rend  agrees with the observat ion of [2] t h a t  
the establ ished Nusselt  numbe r  Nu~ has a m a x i m u m  for e near  
0.968. 

(c) The  Nusselt  numbers  for the  case of cons tant  heat  f lux are 
found to be grea ter  t han  the values for cons tant  wall t empera tu re  
at  any  given Graetz  number .  

(d) The  present  results  reduce to expressions for circular tubes 
when e ~ 0 (Graetz problem).  

(e) When  e -+ 1 and a --> co keeping b finite, we m a y  reduce the 
present  problem to the classical problem of Purday ,  discussed in 
E5]. In  this case the  separat ion between the plates equals 2b and 

De = ~b. 

TABLE II  

o 
Gz N u  

[2] present work 

20 3.73 3.143 
30 3.81 3.598 
40 4.03 3.960 
50 4.22 4.266 
60 4.32 4.533 
70 4.44 4.772 
80 4.58 4.990 
90 4.72 5.189 

I00 4.90 5.375 
120 5.01 5.712 
140 5.13 6.013 
160 5.26 6.287 
180 5.43 6.539 
200 5.80 6.772 

Comparison of the results of Schenk et al [2] with the present results. 

(f) Table  I I  shows the  comparison of the present  results for 
f l * =  1 with those of [2] for Nuw = oo for the  Graetz  n u m b er  
range of 20 to 200 and  e = 0.6. For  Gz = 20 our  results are 15.5 
percent  lower and at  Gz = 30, our  results are only  5.5 percent  
lower. B e yond  Gz = 45, our  values of Nusselt  numbers  are higher. 
The  deviat ion from Gz = 120 to 200 is a round 12 percent .  For  
Gz above 200, da t a  of [2] are not  available for comparison.  I t  is, 
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therefore, concluded that the present results are applicable for 
Graetz numbers above 25 within a reasonable percentage error 
that occurs in experimental investigations. The present equations 
(19) to (21) and (26) to (29) for the Nusselt numbers are more 
convenient and simple for engineering applications. 
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