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SUMMARY

The paper presents an analytical study of the consolidation of a semi-infinite clay layer subjected to a
shear load distributed over a rectangular area. Biot's theory is made use of, along with the three
displacement functions suggested by Verruijt. A complex Fourier and Laplace transformation technique
enables the solution to be obtained in terms of non-dimensional parameters. Settlements and pore
pressures under the loaded area are evaluated for two types of surface drainage conditions. Extension of
the solutions to point loads is also suggested. The Mandel-Cryer effect is seen in the behaviour of the
pore pressure.

INTRODUCTION

Present methods of estimating magnitudes and rates of settlements are based on the con-
ventional one-dimensional Terzaghi'® and pseudo three-dimensional Rendulic® theories of
consolidation. Biot® proposed a comprehensive three-dimensional theory of primary consoli-
dation based on a poro-elastic approach which takes care of simultaneous pore pressure
diffusion and total stress distribution.

Most of the previous studies based on Biot’s theory were confined to normal loads.>’
However, the plane strain shear load problem was investigated by the authors® and the
problem of shear load distributed over a circular area by Schiffiman and Fungaroli.® Rectan-
gular and square footings are common in foundation engineering practice. Inclined loads on
such footings can be split into vertical® and horizontal components. The present study concerns
the consolidation behaviour of a semi-infinite clay layer subjected to uniform shear load acting
over a rectangular area.

STATEMENT OF THE PROBLEM AND METHOD OF SOLUTION

The boundary-value problem under investigation is shown in Figure 1, which also shows the
coordinate system chosen (with the positive z-axis taken into the medium). The initial and
boundary conditions are:

o, =0, a,. =0, when z =0, x| < o0, lyl<oo, >0
lx] < b, ly| < baA, t>0

Oy =q when 2z =0,
=0 when 2z =0, [x|>b, ly|>bA, t>0

o=0 when z=0, |x| <00, ly| < oo, t>0 1)
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y

q= Load per unit area

z

Figure 1. Uniformly distributed shear load over a rectangular area

for a pervious drainage boundary at the surface, and

o4

5—=0 when z=0, |x} <00, ly|< o0, t>0
z

for an impervous drainage boundary at the surface.

Also ¢ =0 throughout the medium initially and

;=0 when [x|->o00, ly| o0, |z| > 00, t>0

where

o;; is the total stress tensor which is composed of the effective stress tensor o; (i.e., stress
carried by the soil skeleton through solid contacts) and excess pore pressure o (i.e., stress
taken by water present in the voids of soil),

€ is the volumetric strain,

q is the shear load intensity and

A =(a/b) is the length to breadth ratio of the rectangular area.

The governing equations of Biot’s theory” for a saturated soil are:

2 d 1 oo
v u.-—(2n —l)a—x—i—aa—h—
(2)

cVie=—
dt
where

u; is the displacement vector of the soil skeleton,
G is the shear modulus,
n is an auxiliary effective elastic parameter defined as n = (1 —»)/(1-2v),
v is the effective Poisson’s ratio,
= (2Gnk/v,.) is the coeflicient of consolidation,
k is Darcy’s coefficient of permeability,
v is the unit weight of water and
¥’ is the three-dimensional Laplacian operator.
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The governing equations (2) are satisfied if the displacement functions E, S and Q"' are the
solutions of

oE
cV4E=V2(E), Vi§=0, VQ=0 3)
0.2 Oxz, Oy, a, € and w are related to E, S and O by
e (0 s S S
- = —.,—V") —2—+—
2G (a; E-z 3t az

o. 9E S 30
Gxz _ -z _

2G 09xdz dxdz dyoz
o. &E S &0

z +
2G dydz dydz odxaz

4

2B vE  e=+vVE  w=-2E_ 54,5
2G oz az 9z
where w is the displacement in the z direction.

Following McNamee and Gibson,” normalization is done by dividing all stresses by g,
dividing all lengths by b and time by (b*/c). Henceforth, only normalized variables are used
(unless otherwise stated) and no special notation is employed for this purpose. Integral
transforms are used in the analysis.

Thus the (normalized) variable E is transformed into E as follows:

O

E(a, B, z,p)=£ J: J:) E(x,y, z,t)exp (i(ax + By)—pt)dt dx dy (5)

and similarly E is obtained from E by inversion, i.e.,

l ®© a0 ph+ico _
E(x,y,z,t)=8w3iJ._ J J‘;.—' E(a,B,z,p) exp(—i(ax+By)+pt)dp da dB (6)

Transforming equations (3) and using the last two conditions of (1), E, § and O are given by

E=A,exp(—rz)+A,exp (—rz(1+s)”2)
S=Bexp(—rz),O=Cexp(-rz) (7)

where r =V(a’ +B%)andp = r’s. The constants of integration in equation (7), on using the first
of the four conditions of equation (1) are:

i +
A= _iaD(1 i ns)’ A, = iaD/Hr*
Hr (8)
iansD _ipD
B= Hr*’ c= r

where

2sin a sin AB

-— —\/ =
H=1+ns—v(+ns), D GaBsr2
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in the case of a pervious boundary, whereas

iaDJ iaD

Ay=-— AR Az—?

B=iansD\/2(1+s)’ C=£312
Ir r

where J =ns¥(1+s)+1 and I = 1+(ns—1)~/(1+s) in the case of an impervious boundary.
Substitution of equation (8) in equation (7) and effecting Laplace inversion, one obtains the

following displacement functions:

YGE = _“iij J’ sin « sin BA expa(—z(ax +By))[2n +rz exp (—12)
7)ol Br 2n—1

—exp (—r’ NI+ exp(—rz )15)] da dB

. Q0 a . . A —_ + _ 2
ZGS=_Ln_J’ J’ sin a sin BA exp—i(ax +By)—az)[ 2n —exp(—rzt)lf,]dadﬁ

w’ o Br’ L2n—1
(7 s in BA (—i(ax+By)—rz) ®
ZGO=—I—2J‘ J sin a sin exp 3taJc By)—rz da dB
m Laod—oc ar
in the case of a pervious boundary, and
. X < . . A . + 2 +
2GE = _LZJ' J’ sin « sin 3 exp3( i(ax By))[ n+rz exp (=rz)—exp (—r’1)
T Jnd Br 2n—-1
X (I, —exp (=r2)] )_2 exp (—(1—8)r21)(exp (—rzx/8)—x/8 exp (—rz))] da dB
1 eXpTrE ) (1=8)(n+ 17— (2—ns)) *
2GS = _i_"zro j‘co sin a sin BA exp(—zi(ax+[3y)—-rz)
T )l Br
2 , 2V8 exp (—(1 —5)&)]
X — — -
[2,1—1 N By Jer S R
- ac [« o] » . — . + -
2GQ=’—qzj J sin a sin BA exp(at(ax By) ’Z)dadB
™ a0 d—0 ar
in the case of an impervious boundary, where I, I,, . .., I and § in equations (9) and (10) are

identical to expressions obtained by McNamee and Gibson’ except that r should be substituted
in the place of a. Once the displacement functions are known, all the other variables of interest

can be obtained using the relations given in equations (4).

RESULTS AND DISCUSSION
Results for pervious drainage boundary

The settlement as obtained from equations (9) and (4) is

_[* [ sin a sin BA exp (—i(ax +By))/
2Gw;=0= J_wj_m Br’ 2n-1

—n exp (—rzt)Is) dadB (11)
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The immediate settlement, wq, i.e. w at ¢ =0, is zero and so is the settlement for n —» o (or
v - 0-5). Thus, the time-dependent (consolidation) settlement is the same as the total settle-
ment for the problem. The ultimate settlement at points lying on the x-axis is obtained by
letting y = 0 and ¢ - o© in equation (11), i.e.,

4 '|‘°°r°sinasin BA sin ax

(2’1—1)772 0 Y0 Br2

1 [x (forx < 1)_1{ -1 2xA
2n—1 AP+1—x?

1(forx>1) =
. 2A A AZ+(1-x)

X tan A2+x2—1+§ln)\2+(1+x)2” (12)

2Gw(x,0,0,0)=

da dB

Equation (12) suggests that settlement is positive for x >0 and is negative for x <0, which
means that half the footing in the direction of the load settles and the other half correspond-
ingly heaves up with the result that there will not be any settlement at the centre of the footing
(ie., at x=0). Forn=1 (v =0) and x = 1 (i.e., midpoint of an edge of the footing), equation
(12) reduces to:

21 {2\ A A’
2Gw(1,0,0,00)=1 w[tan (A) +4 In (A2+4)]

This settlement increases with the A-value, and in the limit as A - o0, 2Gw (1, 0, 0, o), which
was obtained by the authors’ for the plane strain uniform shear load problem. It is also seen
that the higher the n-value (or v-value), the smaller will be the settlements.

The time-settlement relations obtained by numerical evaluation of the double integral in
equation (11) using Filon’s rule are shown in Figures 2 and 3.

The pore pressure is obtained as

_i_nr’ r sina sin A exp (—i(ax +8y)-r’nf 1 d’L,
7 7)) Br L™ 7% 422

—exp (—rz)IG] da dB
(13)
which for n =x =1, y =0, reduces to
4 @ A0 . 2 . A _
- =_§L L sin® a sin BA exp ( rz)[erfc(v/t—L> —erfc (,J,)] da dB
T Br 2Vt

and for n 00, x =1, y =0 is given by

o= %Lm['m §iny;‘:n-ﬁ—)‘[exp (—rz) erfc(n/t _ZLJI) ~exp (rz) erfc(n/t +227)] da dB
(14)

where erfc (x) refers to the complementary error function. The initial pore pressure (at y = 0)
is given by

4 L"’L‘” sin a sin B\ sin ax exp (- rz)
ao:-"? da

ar ds (15)

It is seen from equations (13), (14) and (15) that pore pressures are absent at x = 0, positive for
x>0 and negative for x <0. This pattern of pore pressure is consistent with the settlement
pattern discussed earlier.
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Figure 2. Time-settlement relation for v = 0-0

Time—pore pressure relations under the edge of square and rectangular footing (A = 1-5) are
shown in Figures 4 and 5. The most striking result of these figures is that while pore pressure
for the case n -» o decreases with time monotonically from its initial maximum value, for the
case of n =1 it increases with time beyond its initial value before decreasing steadily. This
peculiar pore pressure phenomenon is known as the Mandel-Cryer effect.*® Pore pressures
predicted from Terzaghi’s one-dimensional consolidation theory and from pseudo three-
dimensional theory do not exhibit this effect. The possible reasons for the manifestation of this
effect are shown in Figures 6 and 7. Figure 6 shows that during the initial stages of consolida-
tion, the total volumetric stress

o _O'xx+0'yy+azz
e
3

increases while the effective volumetric stress

’ ! !
’ _o'xx+0'yy+0'zz
gy —f

remains constant. This causes a temporary build up of pore pressure (o = o, — o). In ordinary
diffusion theories like that of Terzaghi, it is assumed that o, does not change during
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Figure 3. Time-settlement relation for v =0-4
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Figure 4. Time—pore pressure relation for A = 1-0
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Figure 5. Time-pore pressure relation for A =15

consolidation. The increase in o, as predicted by Biot’s theory is due to the fact that some
internal redistribution of stresses take place.
Another way of looking at the Mandel-Cryer effect is that, during the consolidation process,
the elastic parameters of soil (comprising soil skeleton and pore water) change from initial
underdrained values to final drained (effective) parameters. In Biot’s theory, it is assumed that
the effective stress parameters G and v (or n) are constant. For example, o, can be related to é
through the relation

, _2G (1+).
T3 -20)

A similar relation for ¢, in terms of the total stress parameters G, and v, could be written as

_2G,(1+w),
T3 -2m)
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Figure 7. Variation of total stress, Poisson’s ratio and volumetric strain with time
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As pore water is incapable of taking any shear, the values of G and G, must be equal. From the
common value of ¢ in the preceding two expressions, one obtains the following relation:

o1+ v)~(ov—a)(1-2v)
T Ge— )1 =20)+ 201+ 1)

a
= f =0
Ey— or v

Figure 7 shows the variation of », and ¢ with time. It is interesting to note that the v, value is
0-5 initially (signifying the initial condition of incompressibility) and gradually decreases with
time to its final (effective) value ».

Results for impervious drainage boundary

The settlements and pore pressure for the impervious case are obtained similarly and are
shown in Figures 2 to 5 along with the results for the pervious case for comparison. It is
obvious that initial and final values of settlements and pore pressures are the same for both the
drainage cases. Initial values of these parameters are also independent of n (or v). Rates of
settlement and pore pressure dissipation are slower in the impervious case than in the pervious
case. The Mandel-Cryer effect is seen for n = 1 even in the impervious case, the intensity of the
effect, however, being smaller than that in the pervious case.

Incidentally, it may be observed' that the excess pore pressures predicted from pseudo
three-dimensional theory® coincide with those obtained by Biot’s theory with n - or v - 0-5.

SOLUTIONS FOR POINT CONCENTRATED SHEAR LOAD

Solutions for the point shear load problem are obtained as particular cases of the correspond-
ing solutions of the rectangular shear load problem discussed earlier, making use of the
following condition in various dimensionalized variables:

P = lim 4b°gA (16)
b+
q—=+©

where P is the concentrated shear load at the origin of coordinate axes in the x-direction.
Only the final dimensional results are quoted in the following for both the drainage
conditions.

Results for pervious drainage boundary

ZGWZ:():ﬁjmJ‘m aexp(—ilax+By))[ 1

- -r l]d d
47t r L2n-1 n exp(=richls | de dp

_ .2
=1 nexp(—a cl)I(,]da (17)

where R2=x*+y” and I, Is, I, etc. are identical to similar integral expressions referred to
earlier with the exception that ‘ct’ is substituted for ‘¢".
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For n = 1, equation (18) reduces to

S S W

where M(a; B; x) is the confluent hypergeometric function. Figure (8) shows the result of the
above equation. For ¢t » o0, equation (17) reduces to

P
26w, g=
Wis0 TR0 - 1)

(18)

Pore pressure is obtained as

© _ + _ 2 2
a_ﬂj J‘ a exp (—i(lax +By)—r-ct) 14-—15d I;_ ——rz)lb] da dB
ar’) . J o r rodz

PR 1

ﬁ'[' all(aR)exp(—az)da =E(R7;—ZQ)—3/3

-

Ti=p=
Opn = zi:r-anJ,(aR )[exp (—az ){ erfc(aVet —an) —erfc (a \/ct)]] da

Onece = ﬁLmall(aR )[exp (—az)erfc (a\/ct —F) erfc (a\/cr +5‘%) exp (az )] doa

Pore pressure results are shown in Figure 9.
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Figure 8. Time—settlement relation for point shear load
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Figure 9. Time-pore pressure relation for point shear load

Results for impervious drainage boundary

The results for settlements and pore pressures obtained for this case are shown in Figures 8

and 9.

APPENDIX

Notation

The following symbols are used in this paper:

2; = constants of integration used in equation (7)
a = half the length of the rectangular loaded area
B = constant of integration in equation (7)

b = half the width of the rectangular loaded area
C = constant of integration in equation (7)
¢ = coefficient of consolidation
D =2 sin a sin BA/ GaBsr*
E = displacement function
E = transformed value of E after normalization
exp = exponential base

erf (x) = error function

& = volumetric strain
G =shear modulus
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H =1+nsv(1 +5)
I=1+(ns-1WV(1+s)
I, to I, = integrals obtained in References 5 and 7
i = imaginary unit
Ji(x)= Bessel function
k = coefficient of permeability
lim = limit of
M/{a; 8; x) = confluent hypergeometric function
n=(1-»)/1-2v)
P = point shear load
Q = displacement function
Q = transformed displacement function
p = parameter of Laplace transformation
q = intensity of shear load per unit area
r= \/(a 24 [32)
R=V(x’+y?
S = displacement function
$ = transformed value of S
s=p/r’
t=time
u = displacement in the x direction
u; = displacement in the x; direction
v = displacement in the y direction
w = displacement in the z direction
wo = immediate surface settlement (i.e., w at z =0, t =0)
x = horizontal coordinate in the direction of shear load
x; = ith component of the spatial vector x
y = horizontal coordinate perpendicular to the direction of shear load
z = vertical coordinate

[¢ 4 .
B = parameters of Fourier transforms

vw = unit weight of water
Vi=09%fax>+d% /oy’ +d%/0z°
5=(n+2-V(n*+4n))/2n
v = effective (stress) Poisson’s ratio
v, = total (stress) Poisson’s ratio
o = excess pore water pressure
o;; = total stress tensor
o, = total volumetric stress
Ty, Oyy, Oz, = total normal stresses
Oxyy Oy O = total shear stresses
A =(a/b)
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