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SUMMARY 

The paper presents an analytical study of the consolidation of a semi-infinite clay layer subjected to a 
shear load distributed over a rectangular area. Biot’s theory is made use of, along with the three 
displacement functions suggested by Verruijt. A complex Fourier and Laplace transformation technique 
enables the solution to  be obtained in terms of non-dimensional parameters. Settlements and pore 
pressures under the loaded area are evaluated for two types of surface drainage conditions. Extension of 
the solutions to point loads is also suggested. The Mandel-Cryer effect is seen in the behaviour of the 
pore pressure. 

INTRODUCTION 

Present methods of estimating magnitudes and rates of settlements are based on the con- 
ventional one-dimensional Terzaghi ’’ and pseudo three-dimensional Rendulic* theories of 
consolidation. Biot3 proposed a comprehensive three-dimensional theory of primary consoli- 
dation based on a poro-elastic approach which takes care of simultaneous pore pressure 
diffusion and total stress distribution. 

However, the plane strain shear load problem was investigated by the authors’ and the 
problem of shear load distributed over a circular area by Schiffman and Fungaroli.’ Rectan- 
gular and square footings are common in foundation engineering practice. Inclined loads on 
such footings can be split into vertical’ and horizontal components. The present study concerns 
the consolidation behaviour of a semi-infinite clay layer subjected to uniform shear load acting 
over a rectangular area. 

Most of the previous studies based on Biot’s theory were confined to normal 

STATEMENT OF THE PROBLEM AND METHOD OF SOLUTION 

The boundary-value problem under investigation is shown in Figure 1, which also shows the 
coordinate system chosen (with the positive z-axis taken into the medium). The initial and 
boundary conditions are: 
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Figure 1.  Uniformly distributed shear load over a rectangular area 

for a pervious drainage boundary at the surface, and 

for an impervous drainage boundary at the surface. 
Also t? = 0 throughout the medium initially and 

(+,,=0 when Ix1+a, ly (+oo,  lzl-,a, r > O  
where 
u,, is the total stress tensor which is composed of the effective stress tensor uli (i.e., stress 

carried by the soil skeleton through solid contacts) and excess pore pressure (+ (i.e.. stress 
taken by water present in the voids of soil), 

t? is the volumetric strain, 
4 is the shear load intensity and 
A = ( a / b )  is the length to breadth ratio of the rectangular area. 
The governing equations of Biot’s theory3 for a saturated soil are: 

ap 1 a u  
ax, G axi 

2 v u, - ( 2 n  - 1)--- - = 0 

ad c p p  = - 
at  

where 
u, is the displacement vector of the soil skeleton, 
G is the shear modulus, 
n is an auxiliary effective elastic parameter defined as n = (1 - v ) / ( l -  2 u ) ,  
u is the effective Poisson’s ratio, 
c = ( 2 G n k / y , )  is the coefficient of consolidation, 
k is Darcy’s coefficient of permeability, 
y is the unit weight of water and 
V2 is the three-dimensional Laplacian operator. 
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The governing equations (2) are satisfied if the displacement functions E,  S and 0’’ are the  
solutions of 

dE 
cV4E = V 2 ( ~ ) ,  VzS = 0, VzQ = 0 (3) 

uzz, uxz, uvz, (T, 2 and w are related to E, S and Q by 

= ($ 2 - V2)  E - ZZ a’s + as 

where w is the displacement in the z direction. 
Following McNamee and Gibson,’ normalization is done by dividing all stresses by q, 

dividing all lengths by b and time by ( b 2 / c ) .  Henceforth, only normalized variables are used 
(unless otherwise stated) and no special notation is employed for this purpose. Integral 
transforms are used in the analysis. 

Thus the (normalized) variable E is transformed into E as follows: 
w a r n  

E ( a . P , z , p ) = l  I J E ( x , y , z , r ) e x p ( i ( a x + p y ) - p r ) d t d x  dy ( 5 )  
-02 -02 0 

and similarly E is obtained from E by inversion, i.e., 

1 a, h + i m  
~ ( x ,  y, z, t )  = T I  J ~ ( a ,  p9 z.  p )  exp ( - ; ( a x  + p y ) + p t )  dp d a  d p  (6 )  87~ 1 -a --OD h--1m 

Transforming equations (3) and using the last two conditions of (l), I??, s and 6 are given by 

E = A exp (- r z )  + A2 exp (- rz (1 + s ) ” ~ )  

S =  B exp (- rz) ,  0 = C exp ( - r z )  (7 1 

where r = J(a2+p2)  and p = r2s. The constants of integration in equation (7), on using the first 
of the four conditions of equation (1) are: 

iaD(l+ ns)  
Hr3 ’ 

A2 = iaD/Hr3 A1= - 

where 

2 sin Q sin h p  
Ga/3sr2 H = 1 +ns -d(l + n s ) ,  D = 
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in the case of a pervious boundary, whereas 
ia DJ iaD 

A 1 =  -- A * = 7  rr3 ’ Ir 

iansDJ(1 +s) ipD 
, c=- 

Ir * r 3  
B =  

where J = nsJ(  1 + s )  + 1 and I = 1 + (ns - l ) J (  1 + s )  in the case of an impervious boundary. 
Substitution of equation (8) in equation (7) and effecting Laplace inversion, one obtains the 
following displacement functions: 

sin a sin PA exp ( - i ( a x  +By)) 33 ~ G E = - A J ’ ~ J  exp (-rz) 
T -a, -m /3r 

-exp (- r’t)(I4 + exp (- rz)15) d a  d p  1 

sin a sin PA exp (-i(ax +py)-rz)  w a ,  

3 d a  d p  
~ G Q = A J  T a, -a? ar 

in the case of a pervious boundary, and 

sin a sin PA exp ( - i ( a x  +By)) 2n + rz a, 

exp (-rz)-exp (-r2t) 
~ G E = - A J ~ J  77 --p .-a P r 3  [n-l 

2 exp ( - ( I  -s)r2r)(exp (-rzJG)-JS exp (-rz))] da dp 
x ( I ,  -exp ( -rz)IZ)-  

(1 - S ) ( ( n  + 1)* - ( 2  - 
00 2 G S =  -GJa,J sin a sin /3A exp (- i ( a x  +@y)- rz) 

?T -m -m prZ 

sin a sin exp ( - i ( a x  +By)- rz ) m a ,  

3 d a  d@ 
2GC?=<l  7T -Q -a, a r  

in the case of an impervious boundary, where I ] ,  Iz, . . . , 16 and S in equations (9) and (10) are 
identical to expressions obtained by McNamee and Gibson’ except that r should be substituted 
in the place of a. Once the displacement functions are known, all the other variables of interest 
can be obtained using the relations given in equations (4). 

RESULTS AND DISCUSSION 

Results for pervious drainage boundary 

The settlement as obtained from equations (9) and (4) is 
m sin a sin @A exp (- i ( a x  + py)) 

2Gw,=o = Im -Q I -m PI2 ,I exp(-rZr)16) d a  d o  (11) 
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The immediate settlement, wo, i.e. w at I = 0, is zero and so is the settlement for n + CD (or 
v + 0.5). Thus, the time-dependent (consolidation) settlement is the same as the total settle- 
ment for the problem. The ultimate settlement at points lying on the x-axis is obtained by 
letting y = 0 and t + co in equation (1 l) ,  i.e., 

4 la/* sin CY sin p h  sin a x  
2Gw(x, 0, 0.00) = d a  d p  

(2n-l).rr 0 0 Br2 

- 1 [ x ( f o r x < l )  --{tan-’ 1 2xh 
2n -1  l ( f o r x > 1 )  T A ’ +  1 -x2 

11 2h A A2+(1-x)’ + x tan-’ A2+X2-1 +-In 2 
h 2 + ( 1 + x ) ’  

Equation (12) suggests that settlement is positive for x > O  and is negative for x < 0, which 
means that half the footing in the direction of the load settles and the other half correspond- 
ingly heaves up with the result that there will not be any settlement at the centre of the footing 
(i.e., at x = 0). For n = 1 (v = 0) and x = 1 (i.e., midpoint of an edge of the footing), equation 
(1 2) reduces to: 

2Gw (1 ,0 ,0 ,  00)= 1 - 

This settlement increases with the A-value, and in the limit as A -+a, 2Gw (1, 0, 0, a), which 
was obtained by the authors’ for the plane strain uniform shear load problem. It is also seen 
that the higher the n-value (or v-value), the smaller will be the settlements. 

The time-settlement relations obtained by numerical evaluation of the double integral in 
equation (1 1) using Filon’s rule are shown in Figures 2 and 3. 

The pore pressure is obtained as 
m sin a sh PA exp (-i(ax + @ y ) - r ’ t )  

PI  
1 d214 (&[*[ IT -m -w 

[ I d - i - -  r d r 2  exp ( -  rz)lO] d a  d p  

(13) 

which for n = x = 1, y = 0, reduces to 

- erfc ( d t )  d a  d p  1 sin2 a sin P A  exp ( - rz )  
Pr 

and for n +a, x = 1, y = O  is given by 

exp (- r z )  erfc r J t  - - - exp ( rz )  erfc r J t  + - ( 2;r) ( 2;r)ldadP 
(14) 

where erfc (x) refers to the complementary error function. The initial pore pressure (at y = 0) 
is given by 

sin a sin sin a x  exp (- r z )  
da d@ 

Br 

It is seen from equations (13), (14) and (15) that pore pressures are absent at x = 0, positive for 
x > 0 and negative for x < 0. This pattern of pore pressure is consistent with the settlement 
pattern discussed earlier. 
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Figure 2. Time-settlement relation for Y = 0.0 

Time-pore pressure relations under the edge of square and rectangular footing (A = 1.5) are 
shown in Figures 4 and 5 .  The most striking result of these figures is that while pore pressure 
for the case n + CD decreases with time monotonically from its initial maximum value, for the 
case of n = 1 it increases with time beyond its initial value before decreasing steadily. This 
peculiar pore pressure phenomenon is known as the Mandel-Cryer Pore pressures 
predicted from Terzaghi's one-dimensional consolidation theory and from pseudo three- 
dimensional theory do not exhibit this effect. The possible reasons for the manifestation of this 
effect are shown in Figures 6 and 7. Figure 6 shows that during the initial stages of consolida- 
tion, the total volumetric stress 

a,, + a y y  + a z z  

3 
av = 

increases while the effective volumetric stress 

a:, +a:, + a:, 
3 

a: = 

remains constant. This causes a temporary build up of pore pressure (a = uv - 0:). In  ordinary 
diffusion theories like that of Terzaghi, it is assumed that uv does not change during 

C 
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Pervious case 

over a rectangular area 
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Figure 5 .  Time-pore pressure relation for A = 1.5 

10 0 

consolidation. The increase in uv as predicted by Biot's theory is due to the fact that some 
internal redistribution of stresses take place. 

Another way of looking at the Mandel-Cryer effect is that, during the consolidation process, 
the elastic parameters of soil (comprising soil skeleton and pore water) change from initial 
underdrained values to final drained (effective) parameters. In Biot's theory, it is assumed that 
the effective stress parameters G and v (or n) are constant. For example, ol can be related to P 
through the relation 

2G (1 + v)- 
3 (1 - 2 u )  

ul = 

A similar relation for uv in terms of the total stress parameters G, and u, could be written as 
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As pore water is incapable of taking any shear, the values of G and G, must be equal. From the 
common value of 2 in the preceding two expressions, one obtains the following relation: 

a,( 1 + u ) -  (av - a)(l - 2 u )  
(a, - a)(l - 2 u ) +  2av (  1 + u )  

ut = 

U 
for v = O  -- - 

3a, - a 

Figure 7 shows the variation of vt and F with time. It is interesting to note that the u, value is 
0.5 initially (signifying the initial condition of incompressibility) and gradually decreases with 
time to its final (effective) value u. 

Results for impervious drainage boundary 

The settlements and pore pressure for the impervious case are obtained similarly and are 
shown in Figures 2 to 5 along with the results for the pervious case for comparison. It is 
obvious that initial and final values of settlements and pore pressures are the same for both the 
drainage cases. Initial values of these parameters are also independent of n (or u ) .  Rates of 
settlement and pore pressure dissipation are slower in the impervious case than in the pervious 
case. The Mandel-Cryer efTect is seen for n = I even in the impervious case, the intensity of the 
effect, however, being smaller than that in the pervious case. 

Incidentally, it may be observed' that the excess pore pressures predicted from pseudo 
three-dimensional theory' coincide with those obtained by Biot's theory with n + 0;) or u + 0.5. 

SOLUTIONS FOR POINT CONCENTRATED SHEAR LOAD 

Solutions for the point shear load problem are obtained as particular cases of the correspond- 
ing solutions of the rectangular shear load problem discussed earlier, making use of the 
following condition in various dimensionalized variables: 

P = lim 4b2qA 
h - m  
9 - m  

where P is the concentrated shear load at the origin of coordinate axes in  the x-direction 

conditions. 
Only the final dimensional results are quoted in the following for both the drainage 

Resulrs for pervious drainage boundary 

a e x p ( - i ( a x + p y ) )  W 

2 r 

n exp (-a2cr)16 d a  JI(aR) -- 1 1 P "  =-I 2.n 0 L n - 1  

where R * = x2  + y 2  and 14, Is, 16,  etc. are identical to similar integral expressions referred to 
earlier with the exception that 'cf' is substituted for ' t ' .  
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For n = 1. equation ( 1  8)  reduces to 

where M ( a ;  p ;  x )  is the confluent hypergeometric function. Figure (8) shows the result of the 
above equation. For r + 00, equation ( 1  7)  reduces to 

P 
2Gw,,, = 

I - o D  27rR(2n- 1 )  

Pore pressure is obtained as 

o l = , = P % a l l ( o R ) e x p ( - a z ) d o  =- PR 1 
277 27r ( R ' + z * ) ~ / '  

= I r a J , ( a R ) [ e x p ( - a z )  erfc(aJcr--)-erfc(aJcr)]] 2 da 
27r I 2 Jet 

47r ( 2Jcr ) ( 2Jcr 
un+= = P r a J l ( o R ) [  exp ( -  az) erfc a Jet -- -erfc a Jcr +- ) exp (az)] d o  

Pore pressure results are shown in Figure 9. 
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Figure 8. Tirne-settlement relation for point shear load 
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Figure 9. Time--pore pressure relation for point shear load 

Results for impervious drainage boundary 

and 9. 
The results for settlements and pore pressures obtained for this case are shown in Figures 8 

APPENDIX 

Notation 

The following symbols are used in this paper: 

- constants of integration used in equation (7) 

a =half the length of the rectangular loaded area 
B = constant of integration in equation (7) 
b =half the width of the rectangular loaded area 
C = constant of integration in equation (7) 
c = coefficient of consolidation 

D = 2 sin a sin ph/Gapsr2 
E = displacement function 
I? =transformed value of E after normalization 

A1 
A2 - 

exp = exponential base 
erf ( x )  = error function 

d = volumetric strain 
G = shear modulus 
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H =  I + n s J ( l + s )  
I = 1 +(ns-  I)J(I + s )  

i = imaginary unit 
J l ( x )  = Bessel function 

k = coefficient of permeability 

M ( a ;  P ;  x)  = confluent hypergeometric function 

1, to 1, = integrals obtained in References 5 and 7 

lim = limit of 

n = ( l - v ) / 1 - 2 v )  
P =point shear load 
Q = displacement function 
0 = transformed displacement function 
p = parameter of Laplace transformation 
q = intensity of shear load per unit area 

R = J ( x z  + y 2 )  
S = displacement function 
3 = transformed value of S 
s = p / r 2  
t =time 

u = displacement in the x direction 
u, = displacement in  the xi  direction 
u = displacement in the y direction 
w =displacement in  the z direction 

wo = immediate surface settlement (i.e., w at z = 0, t = 0) 
x =horizontal coordinate in the direction of shear load 
x ,  = ith component of the spatial vector x’ 
y =horizontal coordinate perpendicular to the direction of shear load 
z = vertical coordinate 

P 
y,,, = unit weight of water 
v2 = a 2 / a ~ 2 + a 2 / a y 2 + a 2 / a ~ 2  

r = J(aZ+P?) 

a 
= parameters of Fourier transforms 

S = (n + 2 - J(n* + 4n))/2n 
v = effective (stress) Poisson’s ratio 
vt = total (stress) Poisson’s ratio 
a = excess pore water pressure 

aii =total stress tensor 
av = total volumetric stress 

a,,, ayy, a,, =total normal stresses 
aXy, ayz, a,, =total shear stresses 

A = ( a / b )  
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