
C. P. Redely 
Department of Mechanical Engineering 

Regional Engineering College, 
Warangal-4, India 

. S- S. Rao 
Department of Mechanical Engineering 

Indian Institute of Technology, 
Kanpur-16, India 

Automated Optimum Design of 
Machine Tool Structures for Static 
Rigidity, Natural Frequencies and 
Regeneratiwe Chatter Stability 
A computational capability for the automated optimum design of complex machine tool 
structures to satisfy static rigidity, natural frequency and regenerative chatter stability 
requirements is developed in the present work. More specifically, the mathematical pro­
gramming techniques are applied to find the minimum-weight design of Warren-type 
lathe bed and horizontal knee-type milling machine structures using finite-element ideal­
ization. The Warren-type lathe bed is optimized to satisfy torsional rigidity and natural 
frequency requirements, whereas, the milling machine structure is optimized with con­
straints on static rigidity of the cutter centre, natural frequency and regenerative chatter 
stability. 

Introduction 

It is customary to base the structural design of any machine tool 
primarily upon the requirements of static rigidity and minimum 
natural frequency of vibration. The effects of different machining 
parameters like cutting speed, feed and depth of cut, as well as the 
size of the work piece, also have to be considered by a machine tool 
structural designer. For a tentative design, the machine tool is ana­
lyzed for natural frequencies, dynamic rigidity and chatter stability. 
Based on the results of this analysis, suitable modifications are made, 
by a process of trial and error, to satisfy the design requirements. This 
procedure of trial and error is adopted, mainly because of the complex 
nature of machine tool structures and also because of the lack of a 
suitable design procedure that can handle all the requirements si­
multaneously. A survey of the available literature indicates that the 
use of computers in the machine tool manufacturing industry has, up 
to the present time, been confined to the implementation of finite 
element techniques for the purpose of static and dynamic analysis 
only, and the potentialities of optimization techniques have not yet 
been exploited by the machine tool structural designers. 

Taylor and Tobias [l]1 described the application of a finite-element 

1 Numbers in brackets designate References at end of paper. 
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program involving the use of slender beams to represent the structural 
parts of a radial-arm drill and a lathe. Cowley and Fawcett [2] ana­
lysed a plain milling machine for static deflections, natural frequencies 
and mode shapes. The authors have studied the effect of flexibilities 
between joints on natural frequencies and mode shapes. Badauri et 
a l , [3] have studied, both analytically and experimentally, the effects 
of breadth-to-depth ratios and lacing angles of Warren-type lathe 
beds and investigated the possibility of obtaining optimum stiff­
ness-to-weight ratios of Warren beams from their results. Thornley 
et al., [4] studied the static and dynamic behavior of Warren beams 
by experimental methods. A model milling machine was analysed for 
deflections, natural frequencies and mode shapes by a C.I.R.P. group 
in which professors from several European Universities and one 
Japanese University participated [5]. Andrews and Tobias [61 dis­
tinguished between forced vibration and chatter in horizontal milling 
and concluded that self-excited vibration was a significant limitation 
in horizontal milling, but forced vibration was relatively unimportant. 
Taylor [7] described a technique for predicting from design drawings 
the chatter stability of machine tool structures by computing re­
sponses to excitation from computed modes of vibration and assumed 
damping constants. Out of several available theories for relating 
chatter stability to response loci [8, 9,10], the authors used regener­
ative chatter theory with penetration-rate effects neglected [8j. This 
process is illustrated with reference to a lathe model and three versions 
of a milling machine. The authors established the superiority of ma­
chines with box-type overarm over those with bar-type overarm, as 
characterized by higher values of minimum stability under all cutting 
conditions. 
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Tlusty and Polacek [11] analyzed the role of vibration of machine 
tool structures in the process of chatter with the idea of increasing 
their stabilities for all possible cutting conditions. With reference to 
horizontal milling machines, these authors recognized the "weak 
links" of the structure and recommended maximum rigidity for the 
overarm and its joint with the column. They also recommended that 
the natural frequency of vibration corresponding to the vertical mode 
should be slightly higher than the one corresponding to the horizontal 
mode. The satisfication of ths requirement insures a good stability 
in "down-milling," because of the advantageous interaction of both 
the modes. The effect of certain design features of horizontal milling 
machines was also investigated by Said [12]. Koenigsberger and Tlusty 
gave a state-of-the-art discussion of machine tool structural design 
in 1971 [13]. 

During the last few years several optimization investigations have 
been reported in the fields of civil engineering and aircraft structural 
design. Using the method of feasible directions, Fox and Kapoor [14] 
reported a capability for the minimum-weight optimum design of 
planar truss-frame structures with inequality constraints on the 
maximum dynamic displacements, stress and natural frequencies. 
In the fields of aircraft structural design, Rao [15] developed a method 
for the optimum design of aircraft wings to satisfy static, dynamic and 
aeroelastic requirements. 

Statement of the Problem 
When a means for predicting the behavior of any design is available, 

when limitations on the performance and other external constraints 
on the design can be stated, and when some acceptance criteria can 
be established, a design modification problem can be cast as a 
mathematical programming problem. A general mathematical pro­
gramming problem can be stated as follows. 

Minimize a multivariable function f(X) subject to the con­
straints 

j(X) <0,j = 1,771 (1) 

where X is an n-dimensional vector consisting of the variables Xi, 
X2, • • • , Xn. The function f(X) in equation (1) is called the objective 
or criterion function. The minimization of the weight of Warren-type 
lathe bed and horizontal knee-type milling machine structures is 
taken as the objective function in the present work. 

Design Constraints 
The design requirements to be satisfied in the case of Warren-type 

lathe beds are: i) the torsional rigidity must be greater than a 

specified quantity and ii) the natural frequencies of the structure 
are to be excluded from certain bands. In the case of milling machines, 
the design constraints are: i) the maximum deflection of the centre 
of the cutter in any direction should not exceed a certain prescribed 
value, ii) the natural frequencies of the structure are to be excluded 
from certain bands, and Hi) the machine should not chatter under 
the stated cutting conditions. These constraints are stipulated so as 
to achieve a high-quality surface finish, to avoid mild harmonic forcing 
that might cause resonance and to increase the metal-removal rate 
which may be affected by the onset of chatter. In the design of me-
talcutting machine tools, the static- and dynamic-stiffness require­
ments are often more important than the load-carrying-capacity re­
quirements, since the induced stresses corresponding to the permis­
sible deformations are generally far less in value than those permis­
sible for the various materials. Hence, strength was not considered 
as a design constraint in the present work. 

Optimization Problem 
The complete optimization problem can now be stated as fol­

lows: 
i) For a lathe bed: 

Minimize 

subject to 

and 

Np NF 

f(X) = £ VJPJ + i Y. Vj+Npl>j+Np 

dL
(u) -dL 5=0 

W l - O ) l < " > 0 

0)2 - (wi + 100) > 0 

Xj^<Xj<Xj^\j= 1,2, 

(2) 

(3) 

(4) 

(5) 

(6) 

where, X\ = thickness of the main members, X2 = thickness of the 
lacing diagonals, X3 = width of the stiffener on the main and lacing 
diagonals, Xn = depth of the stiffener on the main and lacing diago­
nals, and X5 = width of the lathe bed as shown in Fig. 1. 

ii) For a milling machine structure: 
Minimize 

Np Np 
f(X) = £ Vjpj + Y. Vj+NpPj+Np 

7=1 J = l 
(7) 

.Nomenclature-

Aavg = average chip cross-sectional area 
B = width of engagement 
SLIM = limiting chip width 
d = depth of cut 
dc = maximum deflection of cutter centre 
dt = angle of twist of lathe bed 
D = diameter of milling cutter 
E = Young's modulus 
/ = objective function 
FT = tangential force of milling cutter 
FR = radial force on milling cutter 
FH — horizontal force on milling cutter 
Fv = vertical force on milling cutter 
PA = axial force on milling cutter 
gi = ith inequality constraint 
G = in-phase cross receptance 
GMIN = minimum negative in-phase cross 

receptance of cutter centre relative to 
table 

|GMIN < U ' I = upper bound on absolute value 
of GMIN 

I = superscript used to denote lower bound 
m = number of constraints 
n = number of design variables 
N = number of degrees of freedom 
Np - number of plate elements 
Np = number of frame elements 
Pr\avg - average tangential force in plain 

milling 
r = Coupling constant 
''LIM = Limiting value of r 
rk = &th penalty parameter 
R = Resultant force on cutter centre 
St = Feed per tooth in plain milling 

t» : Average uncut chip thickness in plain 
milling 

u = Superscript used 
bound 

v = Feed rate 

to denote upper 

Vj = Volume of yth element 
V = Cutting velocity 
Xj = i t h design variable 
X = Design vector 
Z = Number of teeth on milling cutter 
Zi = Number of teeth in engagement 
Pj = Density of ;'th element 
w; = ith natural frequency of vibration 
0 = Helix angle of milling cutter 
X = Angle of engagement of cutter with 

workpiece 
Xi = Angle of engagement of ith tooth 
Xyi - Angle between ith tooth and normal to 

cut surface x = Friction angle 
7 = Normal rake angle 
<t> = Shear angle 
* = Penalty function 
r„ = Dynamic shear stress 
v = Poisson's ratio 
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Fig. 1 Warren-Type Lathe Bed Details 

subject to 

dc^
u)-dc^0 (8) 

| G M I N ( U ) | - | G M I N | » 0 (9) 

u i - w ^ ' ^ O (10) 

w2 - (on + 100) > 0 (11) 

and 

Xy«> < Xj < X/">, j = 1, 2 n (12) 

where, Xi = breadth at the column at the base, X-2 = thickness of the 
overarm, Xg = width of the machine, X4 = thickness of the column 
and table, X5 = breadth of the column at the top, and Xg = square 
cross-sectional dimensions of the ribs on the overarm and its joint with 
the column as shown in Fig. 2. 

Structural Analysis 
Idealization. In the present work, the finite-element displacement 

method is used to model the machine tool structures. The idealization 
using triangular plate elements with a 3-term in-plane and a 9-term 
transverse displacement model [16, 17] and frame elements have been 
found to be efficient. The triangular plate elements are used to idealize 
the main members and lacing diagonals of lathe beds, and the column, 
overarm and table of milling machine structures. The frame elements 
are used to idealize the carriage guides, stiffeners on the main mem­
bers and on the lacing diagonals of lathe beds. In the case of milling 
machines, the frame elements are used to model the ribs on the ov­
erarm, the overarm joint with the column, the arbor and the arbor 
support. In the present work, identically oriented finite elements of 
the same size and shape (having the same transformation matrix 
between local and global coordinate systems) are grouped together 

Fig. 2 Horizontal Knee-Type Milling Machine Structural Details 

in generating element-stiffness and mass matrices. This resulted in 
savings of about 20 to 80 percent of the computer time in generating 
the global-stiffness and mass matrices. 

Static and Dynamic Analysis 
For the dynamic optimization of large structures using finite-ele­

ment methods, a designer is generally confronted with two problems, 
namely, the computer storage and the computer time. The eigenvalue 
problem has been solved by using one of the most efficient solution 
techniques developed by Bathe and Wilson for large structural sys­
tems [18]. In this technique, the Rayleigh-Ritz subspace iteration 
algorithm, which solves the eigenvalue problem directly without a 
transformation to the standard form, has been used. In this work, the 
Cholesky decomposition of symmetric banded matrices, storing only 
the upper triangular matrix, is used for solving the equilibrium 
equations. By using a judicious discretization and node-numbering 
scheme, it has been possible to reduce the band width of the stiffness 
matrix of the structure. A smaller band width, apart from reducing 
the computer storage, considerably reduces the computer time for 
static and eigen-solutions. 

The frequency response of the structure has been obtained by using 
modal coordinates and by taking the damping matrix proportional 
to a linear combination of the stiffness and mass matrices. Since the 
present day knowledge is not sufficient to estimate the modal damping 
factors from the blueprints of a given structure, the values of damping 
factors have to be obtained from experimental results on similar 
structures. In the present work, equal modal damping factors of 0.06 
have been used for the first few modes. 

Kegeneratiye Chatter Analysis 
In machine tools, chatter occurs due to the interaction of the cutting 

forces and the machine tool structural dynamics. In this work, a simple 
dynamic cutting force relationship, assuming a direct proportionality 
between the force and the undeformed chip thickness, is taken. No 
definite criterion has been established so far for taking the critical 
proportionality constants between the force and the undeformed chip 
thickness in plain milling operation. A study of proportionality con­
stants in plain milling has been made to choose a critical value for 
incorporation into the chatter stability constraint. A method of in­
cluding GMIN hi the design is also developed. The change in the cut­
ting force, P, due to the variation in uncut chip thickness, Y, is given 
by 

A P = - B - r - A Y (13) 

The change in the cutting force will again result in a variation giving 
an undulating surface on the workpiece, and the regeneration of the 
undulation proceeds in subsequent cuts. To derive the limits of sta­
bility for the machine tool and the cutting system, it is necessary to 
assume a force relationship for the cutting process and relate this to 
the machine dynamics. The governing equations of motion cannot 
be solved directly, but the analysis can be simplified very much by 
assuming the condition at the limit of stability. In the present work, 
the basic theory of stability analysis as given by Tlusty and Polacek 
[19] is used in applying equation (13) for the design of milling machine 
structures. According to this analysis, at the limit of stability the 
following equation is obtained 

4 " = - G (14) 
2Br 

If the limiting or the maximum value of the coupling coefficient, aiM, 
can be estimated from all the commonly used cutting conditions, the 
structure can be designed for regenerative chatter stability by putting 
a constraint on GMIN as 

| G M I N < U ) | - | G M I N | > 0 (15) 

where 

GMIN ( U ) = - - ^ (16) 
^OLIM^LIM 
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(o) Up-Mil l ing 

(b) Down-Milling 

Fig. 3 Merchant's Circle Diagram for Cutting Forces in Plain Milling Simulated 

by a Rotating Single-Point Cutting Tool 

Therefore it becomes essential to estimate >'UM so that the value of 
GLIM can be estimated. 

Determination of TLIM 
i) Basic theory of metal cutting: 
Referring to Fig. 3(a), the horizontal force, FH, can be written as 

f20l 

B • T , Zi 

Sm<t> Cos(0 + A - 7) i 

X Cos(X - 7 - xi) • (17) 

and the vertical force, Fy, as 

Fv-
B-

Sin0 Cos(0 + X - 7) 1 
E ( S f S i n X ; ) S i n ( x - 7 - X i ) (18) 

where Sj-Sin Xi indicates the uncut chip thickness at ith tooth. For 
a displacement, A Y, of the cutter center relative to the workpiece 
along the normal to the cut surface, the uncut chip thickness at the 
ith tooth is given by AY-Cos Xyi, where Xyi is t n e angle between ith 
tooth and the normal direction to the cut surface as shown in Fig. 4. 
For this displacement, AY, the new horizontal force, EH, and'the new 
vertical force, Fy*, become 

^=s in 0co!(;;x-7)f ( s ' s i n x i 'A Y - c° s x y i ) 

• C o s ( X - 7 - xi) 

and 

Fy*--
B • TS Zi 

'„. ^n lx , , : £ (St Sinxi - AY • Cosxyi) 
bm(j) Cos(<t> + X - 7) 1 

• S i n ( X - T - X i ) . 

(19) 

(20) 

For equations (13), (17), (18), (19) and (20), the value of r is obtained 
from 

rH = Sin</> Cos(0 + X - 7) 1 
E C o S X > , C o s ( X - 7 - X i ) (21) 

rv = -
Sin# Cos(f/i + X - 7) 1 

Therefore 

r = (rH
2 + ry2)1'2 

Similarly for down-milling, 

£ Cosxyi Sin(X - 7 - Xi) (22) 

(23) 

i'n • 
S'm<t> Cos{<l> + X - 7) 1 

£ Cosx>.; Cos(X - 7 + Xi) (24) 

rv : 
g . k r , ' : £ Cosxy, Sin(X - 7 + Xi) (25) 
Sm0 L,os(<l) + X — 7) 1 

For X = 18 deg 7 = 10 deg, 0 = 37 deg and TS = 353.05 N/m2 [20], the 
values of r calculated for various values of x are tabulated in Table 
1. 

ii) Coupling coefficients from Vulf's formula [21] 
Based on the following equation for the average tangential force 

in horizontal milling, 

p. Tjavg " 
(t.vg)* 

-•Aa (26) 

the value of resultant force on the cutter is taken approximately as 
Prlavg and the value of r is computed as [20] 

••z-k d/D^-r-

ir(Cos0)*+1 
(27) 

where c and k are constants. 
The static forces on the cutter, FH, FV and FA, computed by using 

the parameters 
D = 100 mm, B = 90 mm, Z = 12 teeth, S, = 0.1 mm/tooth, x = 30 deg 
9 = 25 deg, c = 140 (for mild steel) and k = 0.28 (for mild steel), are 
given by 

FH^P. T | a v g : 

• 0.2P-H 

: 8,237.88 N 

= 1,647.58 N 

FAc^0.2PT\avg= 1,647.58 N 

R = (FH
2 + Fv

2 + FA
2)112 = 8,581.13 N 

Substituting for the various parameters, equation (27) can be written 

/ d \ o-36 
{331)(D) 

(28) 

The values of r for various values of d/D are given in Table 2, along 
with the corresponding values of x-

It can be observed from Tables 1 and 2 that the values of r obtained 
by using equation (28) agree very well with those obtained by using 
the basic theory of metalcutting. In this work, the value of TLIM is 
taken as 1618 X 106 N/m2 and BUM as 0.09 m. 

In the chatter stability constraint, the upper limit on |GMIN | is 
taken as 

|G» 
1 

2 S L I M ' - U M = 3.059 X IO-9 m/N 

Table 1 Values of Coupling Constants from Basic 
Theory of Metalcutting 

4> 
35° 
40° 
45° 

Coupling constants (N/m2) 

up-milling 

1756 X 106 

1559 X 106 

1559 X 106 

down-milling 

1550 X 106 

1539 X 106 

1530 X 106 
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Table 2 Values of Coupling Constants from Empirical 
Formula 

(d/D) (N/m2) 

35° 
40° 
45° 

.09 

.116 

.146 

1363 X 10e 

1490 X 106 

1618 X 106 

—VO.Iny^»- 0.2m -m<*- Q.2m -e?*o— 0 .2m-^—0.2m -^O.lr 

Fig. 5 Warren-Type Lathe Bed 

Solution Procedure 
The constrained optimum design problem is cast as a nonlinear 

mathematical programming problem. The interior penalty-function 
method, with a variable metric unconstrained minimization tech­
nique, is used to solve the minimum-weight design problem. In this 
method the objective function is augmented with a penalty term 
consisting of the constraints as shown below: 

J C 
St i f feners Idealized A« Frame Elements 

HX,rk)=f(X)- v 1 

i gj(X) 
(29) 

The minimizing step lengths in the unconstrained minimization are 
determined by the cubic interpolation method. The computation of 
the gradient and the slope of 'J-function has been carried out by a fi­
nite-difference method which incorporates the rates of changes of the 
response quantities with respect to the design varibles. 

Illustrative Examples 
The optimization problems formulated in the previous section have 

been solved to demonstrate the feasibility and effectiveness of de­
signing complex structures with multiple behavior constraints. The 
computer program developed is quite general and the elements used 
for the idealization are sufficiently general to idealize several types 
of machine tool structures. The static and dynamic analysis programs 
as well as the optimization program are also written as general sub­
routines. Hence the optimum design of any other type of machine tool 
structure can be accomplished by using the present computer program 
by making little modifications. 

Example 1 Lathe-Bed Design 
The first example considered is a Warren-type lathe bed shown in 

Fig. 5. The overall dimensions of this bed are taken from the bed of 
lathe machine model No. MB02, year 1967, manufactured by Mysore 
Kirloskar Ltd., Harihar, India. This bed is optimized with a lower limit 
of 630 rad/s on the fundamental frequency and an upper limit of 
0.00174 rads on the torsional deflection when a torque of 1274.91 N-m 

y 

(a) 

IX 

Finite 

5 Parts 

Etornent 

s 

At 

Grid 

y 

Equal 

On 

] s' 

Intervals 

Bottom Su 

/ i 

face 

^c 

>'' 

s ' 

,"* 
4 H 
m 

t 

Guidewoys 

Stiffeners On The Lacing Diagonal Idealized As 
Frame Elements 

l b ) Lacing Diagonal 

H»-O.I5m-H 

(c) Side Plate 

-St i f feners Idealized As Frame Elements 
,0.1m hs-0 .2m -»4-»- 0.2m -*4-a- 0.2m - * j * 0.2m -*HO.h 

J ™ y. «^ _3 

(d) F in i te - Element Grid On Top Surface 
Dotted Lines Represent Finite - Element Grid 

- Gideways 

Fig. 6 Details of Idealization of Warren-Type Lathe Bed 

Fig. 4 Orientation of Cutting Teeth in Action with Respect to the Normal to 
the Cut Surface 

is applied at one end of the structure by keeping the other end fixed. 
This torque corresponds to a power of 2.984 kW of the turning is done 
at the lowest spindle speed of 22 rpm. In this design, 4 design variables 
and 10 design constraints are considered. The finite-element mod­
elling for this structure is shown in Fig. 6. The idealization of the 
structure consists of 26 node points, 46 triangular plate-bending el­
ements and 32 frame elements. The number of degrees of freedom 
considered in the static and eigenvalue analysis is 132. The band width 
of the stiffness matrix is 36. The guides on the main members are 
taken to be rectangular in cross-section (0.065 m X 0.02 m). 

The material of the structure is taken as grey cast iron with p = 7.2 
X 103 kg/m3, E = 10.98 X 1010 N/m2, and v = 0.25. The lower limits 
on Xi, X2, X 3 and X 4 are taken as 0.01 m, 0.01 m, 0.0175 m, and 0.01 
m and the upper limits as 0.02 m, 0.02 m, 0.032 m, and 0.022 m, re­
spectively. The behavior constraints include an upper bound of 
0.00174 rad on the maximum torsional deflection and a lower bound 
of 630 rad/s on the fundamental natural frequency of the bed. The 
optimization results are shown in Table 3. The progress of the opti­
mization path, showing the cumulative number of one-dimensional 
minimizations versus the weight of the structure, is given in Fig. 7. 
The least-weight design has a weight of 470.0 N with a reduction of 
45.5 percent compared to the starting design. 

At the optimum point, the side constraints, Xi, and X2, are at their 
lower bounds, and none of the behavior constraints are active. The 
natural frequency, o>i, gradually increased from 718 rad/s in the initial 
design to 735 rad/s for the optimum design, whereas, «2 gradually 
increased from 978 rad/s in the initial design to 949 rad/s for the op­
timum design. The number of one-dimensional minimizations is 10 
and the total computer time taken is 35 minutes on an IBM 370/155 
computer. 

Example 2 Lathe-Bed Design 
In this example, the same lathe bed shown in Fig. 5 is optimized by 
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Table 3 Optimization Results of Warren-Type Lathe Bed (Example 1) 

Design Variable 
Bounds 

Initial Design 

0.018 m 
0.018 m 
0.029 m 
0.019 m 
0.44 

718 

865.4 N 

Lower 

0.01m 
0.01m 
0.0175 m 
0.01m 
_ 
630 

Upper 

0.02 m 
0.02 m 
0.0320 m 
0.0220 m 
1.74 

— 

Optimum Design 

0.01029 m* 
0.01029 m* 
0.01970 m 
0.01110 m 
0.826 

735 

470.0 N 

x2 
x3 
x4 

Torsional Deflection 
(10 - 3 radians) 
First National Frequency 
(radians/second) 
Objective Function 
(weight of lathe bed) 

Reduction in Weight Obtained by Optimization = 395.4 N (45.5%) 
Number of One-Dimensional Minimizations = 10 
Computer Time Required = 35 minutes on an IBM 370/155 system 
: Active Constraint. 

\ / — <J> (x", r,} 
Y r,=2.2 

-o o q 

- Objective Function f 

<x",r„) 

0 2 4 6 8 10 

Cumulative Number Of One - Dimensional Minimizations 

Fig. 7 Progress of Optimizat ion Path for Example 1 

taking 5 design variables and 14 design constraints. The design vari­
ables Xi, X% Xz and X4 are same as before. The width of the lathe 
bed is included as the fifth design variable, X5, in this example. A 
limitation is also placed on the second natural frequency in this ex­
ample. The initial design vector is chosen such that the behavior 
constraints are nearly satisfied at XQ. This was done to see whether 
any weight could be removed from this starting design vector. The 
starting design corresponds to a weight of 857.8 N. 

In addition to the side constraints taken in example 1, the following 
restrictions are also included in the present case: 

x2- x3 <0 

0.10 m - X5 <0 

X 5 - 0 . 1 8 m < 0 

The behavior constraints are taken as 

dL - 0.0005 rad < 0 

700 rad/s - «i < 0 

wi + 100 - w2 < 0 

The optimization results are shown in Table 4. The torsional de­
flection constraint is active in this example. The width of lathe bed, 
X5, at optimum design is 0.135 m and it corresponds to a lacing angle 

Table 4 Optimization Results of Warren-Type Lathe Bed (Example 2) 

Design Variable 
Bounds 

Initial Design 

0.0175 m 
0.0175 m 
0.0300 m 
0.0200 m 
0.1325 m 
0.453 

718 

1272 

857.8 N 

Lower 

0.01m 
0.01m 
0.0175 m 
0.01m 
0.10 m 
0.50 

700 

coi + 100 

— 

Upper 

0.02 m 
0.02 m 
0.0320 m 
0.0220 m 
0.18 m 
0.5 

— 

— 

Optimum Design 

0.01605 m 
0.01553 m 
0.02764 m 
0.01676 m 
0.13504 m 
0.499* 

734* 

979 

759.1 N 

Xi 
x 2 
x 3 
x4 
x6 

Torsional Deflection 
(10 - 3 radians) 
First Natural Frequency 
(radians/second) 
Second Natural Frequency 
(radians/second) 
Objective Function 
(weight of lathe bed) 

Reduction in Weight Obtained by Optimization = 98.7 N (11.45%) 
Number of One-Dimensional Minimizations = 14 
Computer Time Required = 55 minutes on an IBM 370/155 system 

' Active Constraint. 
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Y r,=2.0 

-Objective Function I 
*^s^st^g^e 

O I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

Cumulotive Number Of One - Dimensional Minimizations 

Fig. 8 Progress of Optimization Path for Example 2 

of 53.5 deg. The proposed least weight design has a weight of 759.1 N 
with a reduction of 11.45 percent compared to the starting design. The 
progress of the optimization path is shown in Fig. 8. The number of 
one-dimensional minimizations is 14 and the computer time taken 
is 55 minutes. 

Example 3(a) Horizontal Knee-Type Milling 
Machine Structural Design 

The horizontal knee-type milling machine structure shown in Fig. 
9 is considered for optimization in this example. The finite-element 
modelling for this structure is shown in Fig. 10. In this example, 6 

# — Nod® Point. 

Not©:— All Dimensions 
In Meters. 

Fig. 9 Horizontal Milling Machine Structure (Examples 3(a) and 3(d) 

Fig. 10 Finite-Element Modelling of Horizontal Milling Machine (Examples 
3(a) and 3(6)) 

design variables and 16 design constraints are considered. The ide­
alization of the structure consists of 30 node points, 50 triangular 
plate-bending elements and 18 frame elements. The number of elastic 
degrees of freedom is 152 and the band width of the stiffness matrix 
is 42. In this problem, about 20 percent of the computer time was 
saved in generating the global-stiffness and mass matrices by grouping 
finite elements of the same size and shape having the same transfor­
mation matrix from local to global coordinate system. 

The arbor diameter is taken as 0.04 m. The arbor support is ideal­
ized as two frame elements of rectangular cross section (0.10 m X 0.07 
m). The thickness of the dovetail on front face of the column is taken 
as 0.035 m, and it is added to the thickness of the column, X4, on the 
front face. The thickness of the dovetail on the bottom side of the 
overarm is taken as 0.025 m. This thickness is added to the thickness 
of the overarm, X2, on the bottom side. 
The geometrical constraints considered in this example are: 

0.35 m < Xx < 0.54 m 

0.008 m < X2 < 0.040 m 

0.24 m < X3 < 0.35 m 

0.008 m < X4 < 0.040 m 

0.30 m < X5 < Xi 

0.0 m < Xs < 0.06 m 

The behavior constraints are taken as: 

dc - 0.00009 m < 0 

| G M I N | ~ 3.059 X 10-9 m/N < 0 

850.0 rad/s - &>i < 0 

CO], + 100 - W2 < 0 

The material of the column, table, overarm and arbor support is taken 
as grey cast iron with the same material properties given in examples 
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Table 5 Optimization Results of Horizontal Milling Machine (Example 3a) 
Bounds 

Design Variable Initial Design 

0.500 m 
0.028 m 
0.320 m 
0.028 m 
0.420 m 
0.030 m 
661 

1003 

1150 

66.28 

Lower 

0.350 m 
0.008 m 
0.240 m 
0.008 m 
0.400 m 
0.000 m 
— 

850 

a>i + 100 

305.90 

Upper 

0.540 
0.040 m 
0.350 m 
0.040 m 
X! 
0.060 m 
900 

— 

— 
— 

Optimum Des 

0.50120 m* 
0.00987 m* 
0.28826 m 
0.00906 m* 
0.41494 m 
0.00896 m 
893* 

913* 

1024 

203.90 

X i 
X, 
x3 
x4 
x5 
x6 

Maximum Deflection of Cutter Centre 
In Any Direction (10~7 m) 
First Natural Frequency («i) 
(radians/second) 
Second Natural Frequency (02) 
(radians/second) 
Minimum Negative In-Phase Cross 
Receptance of Cutter Centre 
Relative to Table (10"11 m/N) 
Objective Function (wt. of the milling 
machine including column, table and overarm) 

7,256 N 2,949 N 

Reduction of Weight Obtained by Optimization = 4,307 N (59.4%) 
Computer Time Required = 105 minutes on an IBM 370/155 system 
Cumulative Number of One-Dimensional Minimizations = 13 

* Active constraint. 

1 and 2. The material for the arbor is assumed as wrought steel with 
p = 7.8 kg/m3, E = 20.59 X 1010 N/m2 and v = 0.3. 

The optimization results are tabulated in Table 5. The starting 
design corresponds to a weight of 7,256 N. The proposed optimum 
design corresponds to a weight of 2,949 N with a reduction of 59.4 
percent in weight compared to the initial design. The active behavior 
constraints are static deflection, dc = 0.8932 X 10 - 4 m, and the dif­
ference of coi and 02, o>i — «2 = 113 rads/second. The constraints on 
o)i and GMIN approached criticality as the optimization process pro­
gressed. Among the geometrical constraints, X-i = 0.00987 m and X 4 

= 0.00905 m are near to their respective lower bounds. The average 
computer time required for one one-dimensional minimization is eight 
minutes on an IBM 370/155 system. The progress of the optimization 
path as a plot of the /- and "I'-functions versus the cumulative number 
of one-dimensional minimizations is shown in Fig. 11. The total 
computer time taken for the optimization is about 105 minutes. 

In order to see whether the optimum design obtained in example 
3(b) corresponds to a local minimum or the absolute minimum in the 
design space, the space example has been considered with a different 
starting design vector. The plot of the /- and ^-functions as the op­
timization progressed is shown in Fig. 12. It can be observed that the 
plot is similar to the one shown in Fig. 11. The optimization results 
for the example are shown in Table 6. The optimum design variables 
in the two cases agree well with each other except for small differences 
that might have occurred due to some roundoff errors and numerical 
instabilities in the optimization process. Although, merely on the basis 
of two trial starting designs, it is hard to say that the minimum ob­
tained is the absolute minimum over the design space, finding the 

r, - 50 

0 2 4 6 8 10 12 

Cumulative Number Ot One-Dimensional Minimizofiona 

Fig. 11 Progress of Optimization Path lor Example 3(a) 

0 2 4 6 8 K) I2 

CumikiUm Humbsr Ot One - Diimns'tofial Minimizations. 

Fig. 12 Progress of Optimization Path for Example 3(b) 
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T a b l e 6 O p t i m i z a t i o n R e s u l t s of H o r i z o n t a l M i l l i n g M a c h i n e ( E x a m p l e 3b) 

Design Variable 

Xr 
X2 

x3 x4 x5 x6 

Initial Design 
Bounds 

Lower 

0.350 m 
0.008 m 
0.240 m 
0.008 m 
0.400 m 
0.00 m 
— 

850 

wi + 100 

305.90 

Upper 

0.540 m 
0.040 m 
0.350 m 
0.040 m 
X, 
0.060 m 
900 

— 
_ 

_ 

Optimum Design 

Maximum Deflection of Cutter Centre 
In Any Direction (10~7 m) 
First Natural Frequency (o>i) 
(radians/second) 
Second Natural Frequency (012) 
(radians/second) 
Minimum Negative In-Phase Cross 
Receptance of Cutter Centre 
Relative to Table (10" n m/N) 
Objective Function 

0.520 m 
0.332 m 
0.300 m 
0.030 m 
0.450 m 
0.028 m 
662 

961 

1187 

69.34 

7,654 N 

0.50314 m 
0.01069 m* 
0.28978 m 
0.09102 m* 
0.42434 m 
0.00866 m 
884* 

914* 

1016* 

210.10 

3,028 N 

Reduction of Weight Obtained by Optimization = 4,626 N (60.4%) 
Computer Time Required = 101 minutes on an IBM 370/155 system 
Cumulative Number of One-Dimensional Minimizations = 12 

* Active Constraint 

similar least-weight design by starting from two different initial de­
signs is at least a pointer in that direction. 

Conclusions 
The results of the example problems demonstrate the feasibility 

of automated optimum design of machine tool structures with static, 
dynamic and regenerative chatter stability constraints. In designing 
these complex machine tool structures with multiple behavior con­
straints, several analysis programs have been developed and incor­
porated into the optimization routine, hence it is difficult to sum­
marize all the findings. 

(1) The computational experience shows that the approximate 
methods used in the present work for evaluation the gradient, and the 
slope of the ^-function have been quite efficient and reliable without 
involving any significant errors. The progress of optimization has been 
quite smooth without any undue number of optimization steps. 

(2) From the optimum results of the lathe bed (example 1), it has 
been found that the thickness of both the main members and the 
lacing diagonals decreased as the optimization progressed. At the 
optimum, the thicknesses are found to be the same and are at their 
lower bounds. This indicates that thin structures are preferable for 
this type of lathe bed. The widths and thicknesses of flanges (stiff-
eners) on the main members and the lacing diagonals also decreased 
as the optimization progressed. The results of example 2 show that 
the width of the lathe bed increased with a corresponding value of the 
lacing angle, 53.5 deg. This value of the lacing angle agrees very well 
with the results obtained by Badauri, Moshin and Thornley who 
analysed and tested various Warren beams under static torsional 
loads. It may also be mentioned that the thicknesses of both the main 
members and the lacing diagonals decreased approximately at the 
same rate, and at the optimum their values were same. Therefore, it 
can be concluded that it is preferable to have equal values of thickness 
for the main members and the lacing diagonals. 

(3) The optimization results of the milling machine structure 
(examples 3(a) and 3(6)) show that the thicknesses of the overarm, 
the column and the table decreased as the optimization progressed. 
Even in horizontal milling machine structures, it can be concluded 
that thin structures are preferable. The cross-sectional areas of the 
square ribs on the overarm and its joint with the column also de­
creased as the optimization progressed. 

(4) The results of the present study clearly indicate that the op­
timum design of machine tool structures with multiple behaviour 
constraints is feasible and the method proposed in this work can be 
Used as a unified design procedure by machine tool structural de­

signers. Although weight minimization is considered as the objective 
in the present work, other criteria like maximization of static rigidity, 
fundamental natural frequency and regenerative chatter stability can 
also be considered in the same manner. 
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