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Introduction

It is customary to base the structural design of any machine tool
primarily upon the requirements of static rigidity and minimum
natural frequency of vibration. The effects of different machining
parameters like cutting speed, feed and depth of cut, as well as the
size of the work piece, also have to be considered by a machine tool
structural designer. For a tentative design, the machine tool is ana-
lyzed for natural frequencies, dynamic rigidity and chatter stability.
Based on the results of this analysis, suitable modifications are made,
by a process of trial and error, to satisfy the design requirements. This
procedure of trial and error is adopted, mainly because of the complex
nature of machine tool structures and also because of the lack of a
suitable design procedure that can handle all the requirements si-
multaneously. A survey of the available literature indicates that the
use of computers in the machine tool manufacturing industry has, up
to the present time, been confined to the implementation of finite
element techniques for the purpose of static and dynamic analysis
only, and the potentialities of optimization techniques have not yet
been exploited by the machine tool structural designers.

Taylor and Tobias [1]! described the application of a finite-element
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Automated Optimum Design of
Machine Tool Structures for Static
Rigidity, Natural Frequencies and
Regenerative Chatter Stability

A computational capability for the automated optimum design of complex machine tool
structures to satisfy static rigidity, natural frequency and regenerative chatter stability
requirements is developed in the present work. More specifically, the mathematical pro-
gramming techniques are applied to find the minimum-weight design of Warren-type
lathe bed and horizontal knee-type milling machine structures using finite-element ideal-
1zation. The Warren-type lathe bed is optimized to satisfy torsional rigidity and natural
frequency requirements, whereas, the milling machine structure is optimized with con-
straints on static rigidity of the cutter centre, natural frequency and regenerative chatter

program involving the use of slender beams to represent the structural
parts of a radial-arm drill and a lathe. Cowley and Fawcett [2] ana-
lysed a plain milling machine for static deflections, natural frequencies
and mode shapes. The authors have studied the effect of flexibilities
between joints on natural frequencies and mode shapes. Badauri et
al., [3] have studied, both analytically and experimentally, the effects
of breadth-to-depth ratios and lacing angles of Warren-type lathe
beds and investigated the possibility of obtaining optimum stiff-
ness-to-weight ratios of Warren beams from their results. Thornley
et al,, [4] studied the static and dynamic behavior of Warren beams
by experimental methods. A model milling machine was analysed for
deflections, natural frequencies and mode shapes by a C.LR.P. group
in which professors from several European Universities and one
Japanese University participated {5]. Andrews and Tobias [6] dis-
tinguished between forced vibration and chatter in horizontal milling
and concluded that self-excited vibration was a significant limitation
in horizontal milling, but forced vibration was relatively unimportant.
Taylor [7] described a technique for predicting from design drawings
the chatter stability of machine tool structures by computing re-
sponses to excitation from computed modes of vibration and assumed
damping constants. Out of several available theories for relating
chatter stability to response loci [8, 9, 10], the authors used regener-
ative chatter theory with penetration-rate effects neglected [8]. This
process is illustrated with reference to a lathe model and three versions
of a milling machine. The authors established the superiority of ma-
chines with box-type overarm over those with bar-type overarm, as
characterized by higher values of minimum stability under all cutting
conditions.
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Tlusty and Polacek [11] analyzed the role of vibration of machine
tool structures in the process of chatter with the idea of increasing
their stabilities for all possible cutting conditions. With reference to
horizontal milling machines, these authors recognized the “weak
links” of the structure and recommended maximum rigidity for the
overarm and its joint with the column. They also recommended that
the natural frequency of vibration corresponding to the vertical mode
should be slightly higher than the one corresponding to the horizontal
mode. The satisfication of ths requirement insures a good stability
in “down-milling,” because of the advantageous interaction of both
the modes. The effect of certain design features of horizontal milling
machines was also investigated by Said [12]. Koenigsberger and Tlusty
gave a state-of-the-art discussion of machine tool structural design
in 1971 [13].

During the last few years several optimization investigations have
been reported in the fields of civil engineering and aircraft structural
design. Using the method of feasible directions, Fox and Kapoor [14]
reported a capability for the minimum-weight optimum design of
planar truss-frame structures with inequality constraints on the
maximum dynamic displacements, stress and natural frequencies.
In the fields of aircraft structural design, Rao [15] developed a method
for the optimum design of aircraft wings to satisfy static, dynamic and
aeroelastic requirements.

Statement of the Problem

When a means for predicting the behavior of any design is available,
when limitations on the performance and other external constraints
on the design can be stated, and when some acceptance criteria can
be established, a design modification problem can be cast as a
mathematical programming problem. A general mathematical pro-
gramming problem can be stated as follows.

Minimize a multivariable function f(X) subject to the con-
straints

5X)<0,j=1,m 1)

where X is an n-dimensional vector consisting of the variables X,
X, ..., X, The function f(X) in equation (1) is called the objective
or criterion function. The minimization of the weight of Warren-type
lathe bed and horizontal knee-type milling machine structures is
taken as the objective function in the present work.

Design Constraints

The design requirements to be satisfied in the case of Warren-type
lathe beds are: i) the torsional rigidity must be greater than a

= Nomenclature

specified quantity and if)  the natural frequencies of the structure
are to be excluded from certain bands. In the case of milling machines,
the design constraints are: {)  the maximum deflection of the centre
of the cutter in any direction should not exceed a certain prescribed
value, if) the natural frequencies of the structure are to be excluded
from certain bands, and iif) the machine should not chatter under
the stated cutting conditions. These constraints are stipulated so as
to achieve a high-quality surface finish, to avoid mild harmonic forcing
that might cause resonance and to increase the metal-removal rate
which may be affected by the onset of chatter. In the design of me-
talcutting machine tools, the static- and dynamic-stiffness require-
ments are often more important than the load-carrying-capacity re-
quirements, since the induced stresses corresponding to the permis-
sible deformations are generally far less in value than those permis-
sible for the various materials. Hence, strength was not considered
as a design constraint in the present work.

Optimization Problem
The complete optimization problem can now be stated as fol-

lows:
i} For alathe bed:

Minimize

fX) = jgj:): Vipj + ig:i VisNppj+Np ©)

subject to
d® —dp 20 (3)
w;—wP =0 (4)
we — (w1 +100) 2 0 (5)

and

XWX =X;Wj=1,2...,n (6)

where, X1 = thickness of the main members, X = thickness of the
lacing diagonals, X5 = width of the stiffener on the main and lacing
diagonals, X4 = depth of the stiffener on the main and lacing diago-
nals, and X5 = width of the lathe bed as shown in Fig. 1.
it} For a milling machine structure:
Minimize

- Ne Nr
f(X) = _Z,l Viei + 2 Vitnppjsng (7)
j= j=1

Agavg = average chip cross-sectional area

B = width of engagement

Brim = limiting chip width

d = depth of cut

d. = maximum deflection of cutter centre

dy, = angle of twist of lathe bed

D = diameter of milling cutter

E = Young’s modulus

f = objective function

F = tangential force of milling cutter

Fr = radial force on milling cutter

Fy = horizontal force on milling cutter

Fy = vertical force on milling cutter

P4 = axial force on milling cutter

g; = ith inequality constraint

(7 = in-phase cross receptance

Gmin = minimum negative in-phase cross
receptance of cutter centre relative to
table
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|Gmmn'™| = upper bound on absolute value
of Gmin

| = superscript used to denote lower bound

m = number of constraints

n = number of design variables

N = number of degrees of freedom

Np = number of plate elements

Np = number of frame elements

Prlavyg = average tangential force in plain
milling

r = Coupling constant

rrim = Limiting value of r

ry = kth penalty parameter

R = Resultant force on cutter centre

S; = Feed per tooth in plain milling

tavg = Average uncut chip thickness in plain
milling

u = Superscript used to denote upper
bound

v = Feed rate

V; = Volume of jth element

V = Cutting velocity

X; = jth design variable

X = Design vector

Z = Number of teeth on milling cutter

Z; = Number of teeth in engagement

pj = Density of jth element

w; = [th natural frequency of vibration

6 = Helix angle of milling cutter

x = Angle of engagement of cutter with
workpiece

xi = Angle of engagement of ith tooth

Xyi = Angle between ith tooth and normal to
cut surface x = Friction angle

v = Normal rake angle

¢ = Shear angle

& = Penalty function

7s = Dynamic shear stress

v = Poisson’s ratio
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subject to
d.W—d. 20 (8)
[Gan®] = [Gumin| 2 0 9
wp— w0 =0 (10)
wg = (w1 +100) 2 0 (11)
and
X0<X; s X j=1,2,...,n (12)

where, X = breadth at the column at the base, X5 = thickness of the
overarm, X3 = width of the machine, X4 = thickness of the column
and table, X5 = breadth of the column at the top, and Xg = square
cross-sectional dimensions of the ribs on the overarm and its joint with
the column as shown in Fig. 2.

Structural Analysis

Idealization. In the present work, the finite-element displacement
method is used to model the machine tool structures. The idealization
using triangular plate elements with a 3-term in-plane and a 9-term
transverse displacement model [16, 17] and frame elements have been
found to be efficient. The triangular plate elements are used to idealize
the main members and lacing diagonals of lathe beds, and the column,
overarm and table of milling machine structures. The frame elements
are used to idealize the carriage guides, stiffeners on the main mem-
bers and on the lacing diagonals of lathe beds. In the case of milling
machines, the frame elements are used to model the ribs on the ov-
erarm, the overarm joint with the column, the arbor and the arbor
support. In the present work, identically oriented finite elements of
the same size and shape (having the same transformation matrix
hetween local and global coordinate systems) are grouped together
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Fig. 2 Horizontal Knee-Type Milling Machine Structural Details
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in generating element-stiffness and mass matrices. This resulted in
savings of about 20 to 80 percent of the computer time in generating
the global-stiffness and mass matrices.

Static and Dynamic Analysis

For the dynamic optimization of large structures using finite-ele-
ment methods, a designer is generally confronted with two problems,
namely, the computer storage and the computer time. The eigenvalue
problem has been solved by using one of the most efficient solution
techniques developed by Bathe and Wilson for large structural sys-
tems [18]. In this technique, the Rayleigh-Ritz subspace iteration
algorithm, which solves the eigenvalue problem directly without a
transformation to the standard form, has been used. In this work, the
Cholesky decomposition of symmetric banded matrices, storing only
the upper triangular matrix, is used for solving the equilibrium
equations. By using a judicious discretization and node-numbering
scheme, it has been possible to reduce the band width of the stiffness
matrix of the structure, A smaller band width, apart from reducing
the computer storage, considerably reduces the computer time for
static and eigen-solutions.

The frequency response of the structure has been obtained by using
modal coordinates and by taking the damping matrix proportional
to a linear combination of the stiffness and mass matrices. Since the
present day knowledge is not sufficient to estimate the modal damping
factors from the blueprints of a given structure, the values of damping
factors have to be obtained from experimental results on similar
structures. In the present work, equal modal damping factors of 0.06
have been used for the first few modes.

Regenerative Chatter Analysis

In machine tools, chatter occurs due to the interaction of the cutting
forces and the machine tool structural dynamics. In this work, a simple
dynamiec cutting force relationship, assuming a direct proportionality
between the force and the undeformed chip thickness, is taken. No
definite criterion has been established so far for taking the critical
proportionality constants between the force and the undeformed chip
thickness in plain milling operation. A study of proportionality con-
stants in plain milling has been made to choose a critical value for
incorporation into the chatter stability constraint. A method of in-
cluding Gy in the design is also developed. The change in the cut-
ting force, P, due to the variation in uncut chip thickness, Y, is given
by

AP=-~B.r-AY (13)

The change in the cutting force will again result in a variation giving
an undulating surface on the workpiece, and the regeneration of the
undulation proceeds in subsequent cuts. To derive the limits of sta-
bility for the machine tool and the cutting system, it is necessary to
agsume a force relationship for the cutting process and relate this to
the machine dynamics. The governing equations of motion cannot
be solved directly, but the analysis can be simplified very much by
assuming the condition at the limit of stability. In the present work,
the basic theory of stability analysis as given by Tlusty and Polacek
[19] is used in applying equation (13) for the design of milling machine
structures. According to this analysis, at the limit of stability the
following equation is obtained

-1— =—0 (14)

2Br
If the limiting or the maximum value of the coupling coefficient, rim,
can be estimated from all the commonly used cutting conditions, the
structure can be designed for regenerative chatter stability by putting
a constraint on Gy as

[Gyn®™] = |Gum] 20 (15)
where
Guin® = — _r (16)
2BrivrLiv
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Work Piece

(b) Down-Miling

Fig. 3 Merchant’s Circle Diagram for Cutting Forces in Plain Milling Simulated
by a Rotating Single-Point Culting Too!

Therefore it becomes essential to estimate ry so that the value of
G LM can be estimated.

Determination of rim

i) Basic theory of metal cutting:
Referring to Fig. 3(a), the horizontal force, F, can be written as
(20]

B Zi

Fu = Sing Cos(¢ + A —v) ; (8¢ - Sinx:)
X Cos(A—vy—=yx)... (A7)
and the vertical force, F'y, as
B, o
2. (Se - 8Binx) Sin(x — v — x;)  (18)

Y™ Sing Cos(p + A— ) 5

where S;-Sin x; indicates the uncut chip thickness at ith tooth. For
a displacement, AY, of the cutter center relative to the workpiece
along the normal to the cut surface, the uncut chip thickness at the
ith tooth is given by AY-Cos xyi, where x,; is the angle between ith
tooth and the normal direction to the cut surface as shown in Fig. 4.
For this displacement, AY, the new horizontal force, Ef;, and 'the new
vertical force, Fy*, become

B- 7, Zi
4 2. (S; Sinx; — AY - Cosxyi)

Fu* = Sing Cos(¢ + A —v) 1
-Cos(A —v~xi)... (19)
and
Pyt = T 5* (S, Sinxi = AY - Cosxy)
Sing Cos(p + X\ — ) T
SSinA—v—xi) ... (20)

For equations (13), (17), (18), (19) and (20), the value of r is obtained
from
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Ts Zi
= C i Cos(A = v —x; 21
" Sing Cos(¢p + X — ) ; 0sxi Cost 7 x) 1
= 3 Cosx S )
= : Xy Sin(A =y = x) (22
v Sing Cos(¢p + A — v) ? 08 i Sin L )
Therefore
r=(rg?+ry?)e2 (23)
Similarly for down—milliﬁg,
5" Cosxyi Cos( )
= : sxyi Cos(A =y + x1) (24
T = i Cos(p &+ h— ) & Lo Cos =) (24)
Tg Zi
2 Cosxy Sin(A — v + x;) (25)

v Sing Cos{p + A —v) T
For A = 18 deg v = 10 deg, ¢ = 37 deg and 7, = 353.05 N/m? {20], the
values of r calculated for various values of x are tabulated in Table
1.
ii) Coupling coefficients from Vulf’s formula {21]
Based on the following equation for the average tangential force
in horizontal milling,
_c
(tavg) k
the value of resultant force on the cutter is taken approximately as
Pr]avg and the value of r is computed as [20]
c-Z-k d/Dl_f-Tk

= 27
! a(Cosp)i+l g,k @0

where ¢ and k are constants.

The static forces on the cutter, Fy, Fy and F4, computed by using
the parameters
D =100 mm, B = 90 mm, Z = 12 teeth, S; = 0.1 mm/tooth, x = 30 deg
§ = 25 deg, ¢ = 140 (for mild steel) and k = 0.28 (for mild steel), are
given by

- Aavg

avg

PT‘avg = (26)

Fy = Pp|ay = 8,237.88 N
Fyo 0.2Pp) g = 1,647.58 N
Fa =2 0.2Pr]avg = 1,647.58 N
R = (Fy2+ Fy2+ FaH)V2 = 858113 N

Substituting for the various parameters, equation (27) can be written
as

23 d 0.36 o8
r=30 () (28)
The values of r for various values of d/D are given in Table 2, along
with the corresponding values of x.

It can be observed from Tables 1 and 2 that the values of r obtained
by using equation (28) agree very well with those obtained by using
the basic theory of metalcutting. In this work, the value of rip is
taken as 1618 X 108 N/m2 and By as 0.09 m.

In the chatter stability constraint, the upper limit on |Gyun] is
taken as

1

(W] =
| 2BrmrLim = 3.059 X 1079 m/N

|Gmin

Table 1 Values of Coupling Constants from Basic
Theory of Metalcutting

Coupling constants (N/m?2) -

' up-milling down-milling
35° 1756 X 106 1550 X 108
40° 1559 X 108 1539 X 108
45° 1559 X 108 1530 X 106
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Table 2 Values of Coupling Constants from Empirical

Formula
W (d/D) (N/m2)
35° .09 1363 X 10°
40° 116 1490 X 108
45° 146 1618 X 108

—7/0lm/4—02m~7‘<—02m ~7‘Foam7~—02m yolm/“-

Solution Procedure

The constrained optimum design problem is cast as a nonlinear
mathematical programming problem. The interior penalty-function
method, with a variable metric unconstrained minimization tech-
nique, is used to solve the minimum-weight design problem. In this
method the objective function is augmented with a penalty term
consisting of the constraints as shown below:

®X, rp) = f(X) =1y Z (29)

& (X )
The minimizing step lengths in the unconst}'alned minimization are
determined by the cubic interpolation method. The computation of
the gradient and the slope of ®-function has been carried out by a fi-
nite-difference method which incorporates the rates of changes of the
response quantities with respect to the design varibles.

Hlustrative Examples

The optimization problems formulated in the previous section have
been solved to demonstrate the feasibility and effectiveness of de-
signing complex structures with multiple behavior constraints. The
computer program developed is quite general and the elements used
for the idealization are sufficiently general to idealize several types
of machine tool structures. The static and dynamic analysis programs
as well as the optimization program are also written as general sub-
routines. Hence the optimum design of any other type of machine tool
structure can be accomplished by using the present computer program
by making little modifications.

Example 1 Lathe-Bed Design

The first example considered is a Warren-type lathe bed shown in
Fig. 5. The overall dimensions of this bed are taken from the bed of
lathe machine model No. MB02, year 1967, manufactured by Mysore
Kirloskar Litd., Harihar, India. This bed is optimized with a lower limit
of 630 rad/s on the fundamental frequency and an upper limit of
0.00174 rads on the torsional deflection when a torque of 1274.91 N-m

\(—Cuner
v ) v

Yooth 2

Tooth |

Vork Plecs

Fig. 4 Orientation of Cutting Teeth in Action with Respect to the Normal to
the Cut Surface
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is applied at one end of the structure by keeping the other end fixed.
This torque corresponds to a power of 2.984 kW of the turning is done
at the lowest spindle speed of 22 rpm. In this design, 4 design variables
and 10 design constraints are considered. The finite-element mod-
elling for this structure is shown in Fig. 6. The idealization of the
structure consists of 26 node points, 46 triangular plate-bending el-
ements and 32 frame elements. The number of degrees of freedom
considered in the static and eigenvalue analysis is 132. The band width
of the stiffness matrix is 36. The guides on the main members are
taken to be rectangular in cross-section (0.065 m X 0.02 m).

The material of the structure is taken as grey cast iron with p = 7.2
X 102 kg/m3, E = 10.98 X 1019 N/m?2, and » = 0.25. The lower limits
on X1, X, Xzand X, are taken as 0.01 m, 0.01 m, 0.0175 m, and 0.01
m and the upper limits as 0.02 m, 0.02 m, 0.032 m, and 0.022 m, re-
spectively. The behavior constraints include an upper bound of
0.00174 rad on the maximum torsional deflection and a lower bound
of 630 rad/s on the fundamental natural frequency of the bed. The
optimization results are shown in Table 3. The progress of the opti-
mization path, showing the cumulative number of one-dimensional
minimizations versus the weight of the structure, is given in Fig. 7.
The least-weight design has a weight of 470.0 N with a reduction of
45.5 percent compared to the starting design.

At the optimum point, the side constraints, Xy, and X, are at their
lower bounds, and none of the behavior constraints are active. The
natural frequency, wi, gradually increased from 718 rad/s in the initial
design to 735 rad/s for the optimum design, whereas, wy gradually
increased from 978 rad/s in the initial design to 949 rad/s for the op-
timum design. The number of one-dimensional minimizations is 10
and the total computer time taken is 35 minutes on an IBM 370/155
computer.

Example 2 Lathe-Bed Design

In this example, the same lathe bed shown in Fig. 5 is optimized by
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Table 3 Optimization Results of Warren-Type Lathe Bed (Example 1)

Bounds
Design Variable Initial Design Lower Upper Optimum Design
X, 0.018 m 0.0l m 0.02m 0.01029 m*
Xo 0.018 m 0.0l m 0.02m 0.01029 m*
Xy 0.029 m 0.0175 m 0.0320 m 0.01970 m
X4 0.019m 0.01m 0.0220 m 0.01110 m
Torsional Deflection 0.44 — 1.74 0.826
(103 radians) )
First National Frequency 718 630 — 735
(radians/second)
Objective Function 865.4 N — — 470.0 N
(weight of lathe bed)
Reduction in Weight Obtained by Optimization = 395.4 N (45.5%)
Number of One-Dimensional Minimizations =10
Computer Time Required = 35 minutes on an IBM 370/155 system
* Active Constraint.
A taking 5 design variables and 14 design constraints. The design vari-

ables X, X5, X3and X, are same as before. The width of the lathe
bed is included as the fifth design variable, X;, in this example. A
limitation is also placed on the second natural frequency in this ex-

150 ample. The initial design vector is chosen such that the behavior
A constraints are nearly satisfied at Xo. This was done to see whether
\ any weight could be removed from this starting design vector. The
13or \\\ 0%, starting design corresponds to a weight of 857.8 N.
Ly \,/— ; _2' 2 In addition to the side constraints taken in example 1, the following
nok - restrictions are also included in the present case:
-
'g - T} X2 - X3 S 0
<
.. 904 ; 0.10m — X5<0
. 1

s

j\ GAF X5—0.18m <0
/ =022

\ The behavior constraints are taken as
R S /- ,
r3 "0.02 dy, — 0.0005 rad < 0

50}
Objective Function f 700 rad/s ~w; <0
30 I n PR ' L L 1 L i g w;+ 100 ~wy =0
0 2 P} 6 8 10
Cumulative Number Of One- Dimensional Minimizations The optimiza.tior-l results are shown in Table 4. Tlle torsional de-
flection constraint is active in this example. The width of lathe bed,
Fig. 7 Progress of Optimization Path for Example 1 X5, at optimum design is 0.135 m and it corresponds to a lacing angle

Table4d Optimization Results of Warren-Type Lathe Bed (Example 2)

Bounds
Design Variable Initial Design Lower Upper Optimum Design
Xy 0.0175m 0.01 m 0.02 m 0.01605 m
Xo 0.0175m 0.0l m 0.02 m 0.01553 m
X3 0.0300 m 0.0175 m 0.0320 m 0.02764 m
X4 : 0.0200 m 0.0l m 0.0220 m 0.01676 m
X5 0.1325m 0.10 m 0.18 m 0.13504 m
Torsional Deflection 0.453 0.50 0.5 0.499*
(103 radians)
First Natural Frequency 718 700 — 734*
(radians/second)
Second Natural Frequency 1272 w; + 100 — 979
(radians/second)
Objective Function 857.8 N — — 759.1 N
(weight of lathe bed)
Reduction in Weight Obtained by Optimization = 98.7 N (11.45%)
Number of One-Dimensional Minimizations =14
Computer Time Required = 55 minutes on an IBM 370/155 system
* Active Constraint.
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Fig. 8 Progress of Oplimization Path for Example 2

of 53.5 deg. The proposed least weight design has a weight of 759.1 N
with a reduction of 11.45 percent compared to the starting design. The
progress of the optimization path is shown in Fig. 8. The number of
one-dimensional minimizations is 14 and the computer time taken
1s 55 minutes.

Example 3(a) Horizontal Knee-Type Milling
Machine Structural Design

The horizontal knee-type milling machine structure shown in Fig.
9 is considered for optimization in this example. The finite-element
modelling for this structure is shown in Fig. 10. In this example, 6
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Note:— All Dimensions
In Meters.

Fig. 9 Horizontal Milling Machine Structure (Examples 3(a) and 3(b)
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Fig. 10 Finite-Element Modelling of Horizontal Milling Machine (Examples
3(a) and 3(b}))

design variables and 16 design constraints are considered. The ide-
alization of the structure consists of 30 node points, 50 triangular
plate-bending elements and 18 frame elements. The number of elastic
degrees of freedom is 152 and the band width of the stiffness matrix
is 42. In this problem, about 20 percent of the computer time was
saved in generating the global-stiffness and mass matrices by grouping
finite elements of the same size and shape having the same transfor-
mation matrix from local to global coordinate system.

The arbor diameter is taken as 0.04 m. The arbor support is ideal-
ized as two frame elements of rectangular cross section (0.10 m X 0.07
m). The thickness of the dovetail on front face of the column is taken
as 0.035 m, and it is added to the thickness of the column, X4, on the
front face. The thickness of the dovetail on the bottom side of the
overarm is taken as 0.025 m. This thickness is added to the thickness
of the overarm, X, on the bottom side.

The geometrical constraints considered in this example are:

0.35m=<X; £054m
0.008m < Xy < 0.040 m
0.2dm < X3<035m
0.008 m < X4 < 0.040 m
0.30m < X5 < X,
0.0m < Xg<0.06m
The behavior constraints are taken as:
d. — 0.00009m <0
| Grarn] — 3.059 X 109 m/N < 0
850.0 rad/s — wy <0
wy + 100 —wy <0

The material of the column, table, overarm and arbor support is taken
as grey cast iron with the same material properties given in examples
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Table 5 Optimization Results of Horizontal Milling Machine (Example 3a)

Bounds
Design Variable Initial Design Lower Upper Optimum Design
X4 0.500 m 0.350 m 0.540 0.50120 m*
KXo 0.028 m 0.008 m 0.040 m 0.00987 m*
X3 0.320 m 0.240 m 0.350 m 0.28826 m
X4 0.028 m 0.008 m 0.040 m 0.00906 m*
X5 0.420 m 0.400 m Xy 0.41494 m
Xs 0.030 m 0.000 m 0.060 m 0.00896 m
Maximum Deflection of Cutter Centre 661 — 900 893*
In Any Direction (107 m) ’
First Natural Frequency (wy) 1003 850 — 913*
(radians/second)
Second Natural Frequency (wo) 1150 wi + 100 — 1024
(radians/second)
Minimum Negative In-Phase Cross 66.28 305.90 o 203.90
Receptance of Cutter Centre
Relative to Table (10~11 m/N)
Objective Function {wt. of the milling 7,256 N — — 2,949 N

machine including column, table and overarm)

Reduction of Weight Obtained by Optimization
Computer Time Required
Cumulative Number of One-Dimensional Minimizations

[

3

4,307 N (59.4%)
105 minutes on an IBM 370/155 system
1

* Active constraint.

1 and 2. The material for the arbor is assumed as wrought steel with
p =78 kg/m3, E = 20.59 X 10 N/m? and » = 0.3.

The optimization results are tabulated in Table 5. The starting
design corresponds to a weight of 7,256 N. The proposed optimum
design corresponds to a weight of 2,949 N with a reduction of 59.4
percent in weight compared to the initial design. The active behavior
constraints are static deflection, d. = 0.8932 X 10~* m, and the dif-
ference of w; and wg, wy — wy = 113 rads/second. The constraints on
wy and Gy approached criticality as the optimization process pro-
gressed. Among the geometrical constraints, X = 0.00987 m and X4
= 0.00905 m are near to their respective lower bounds. The average
computer time required for one one-dimensional minimization is eight
minutes on an IBM 370/155 system. The progress of the optimization
path as a plot of the f- and ®-functions versus the cumulative number
of one-dimensional minimizations is shown in Fig. 11. The total
computer time taken for the optimization is about 105 minutes.
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Fig. i1 Progress of Optimization Path for Example 3(a)
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In order to see whether the optimum design obtained in example
3(b) corresponds to a local minimum or the absolute minimum in the
design space, the space example has been considered with a different
starting design vector. The plot of the f- and ®-functions as the op-
timization progressed is shown in Fig. 12. It can be observed that the
plot is similar to the one shown in Fig. 11. The optimization results
for the example are shown in Table 6. The optimum design variables
in the two cases agree well with each other except for small differences
that might have occurred due to some roundoff errors and numerical
instabilities in the optimization process. Although, merely on the basis
of two trial starting designs, it is hard to say that the minimum ob-
tained is the absolute minimum over the design space, finding the
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Fig. 12 Progress of Optimization Path for Example 3(b)
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Table 6 Optimization Results of Horizontal Milling Machine (Example 3b)

Bounds
Design Variable Initial Design Lower Upper Optimum Design
X5 0.520 m 0.350 m 0.540 m 0.50314 m
Xo 0.332 m 0.008 m 0.040 m 0.01069 m*
X3 0.300 m 0.240 m 0.350 m 0.28978 m
X4 0.030 m 0.008 m 0.040 m 0.09102 m*
X5 0.450 m 0.400 m X4 0.42434 m
Xs 0.028 m 0.00 m 0.060 m 0.00866 m
Maximum Deflection of Cutter Centre 662 — 900 884*
In Any Direction (10~7 m)
First Natural Frequency (w;) 961 850 — 914*
(radians/second)
Second Natural Frequency (wg) 1187 wp + 100 —_ 1016*
(radians/second)
Minimum Negative In-Phase Cross 69.34 306.90 e 210.10
Receptance of Cutter Centre
Relative to Table (10~ m/N)
Objective Function 7,664 N — 3,028 N

Reduction of Weight Obtained by Optimization
Computer Time Required
Cumulative Number of One-Dimensional Minimizations = 12

= 4,626 N (60.4%)
= 101 minutes on an IBM 370/155 system

* Active Constraint

similar least-weight design by starting from two different initial de-
signs is at least a pointer in that direction.

Conclusions

The resuits of the example problems demonstrate the feasibility
of automated optimum design of machine tool structures with static,
dynamic and regenerative chatter stability constraints. In designing
these complex machine tool structures with multiple behavior con-
straints, several analysis programs have been developed and incor-
porated into the optimization routine, hence it is difficult to sum-
marize all the findings.

(1) The computational experience shows that the approximate
methods used in the present work for evaluation the gradient and the
slope of the ®-function have been quite efficient and reliable without
involving any significant errors. The progress of optimization has been
quite smooth without any undue number of optimization steps.

(2) From the optimum results of the lathe bed (example 1), it has
been found that the thickness of both the main members and the
lacing diagonals decreased as the optimization progressed. At the
optimum, the thicknesses are found to be the same and are at their
lower bounds. This indicates that thin structures are preferable for
this type of lathe bed. The widths and thicknesses of flanges (stiff-
eners) on the main members and the lacing diagonals also decreased
as the optimization progressed. The results of example 2 show that
the width of the lathe bed increased with a corresponding value of the
lacing angle, 53.5 deg. This value of the lacing angle agrees very well
with the results obtained by Badauri, Moshin and Thornley who
analysed and tested various Warren beams under static torsional
loads. It may also be mentioned that the thicknesses of both the main
members and the lacing diagonals decreased approximately at the
same rate, and at the optimum their values were same. Therefore, it
can be concluded that it is preferable to have equal values of thickness
for the main members and the lacing diagonals.

(3) The optimization results of the milling machine structure
(examples 3(a) and 3(b)) show that the thicknesses of the overarm,
the column and the table decreased as the optimization progressed.
Even in horizontal milling machine structures, it can be concluded
that thin structures are preferable. The cross-sectional areas of the
square ribs on the overarm and its joint with the column also de-
creased as the optimization progressed.

(4) The results of the present study clearly indicate that the op-
timum design of machine tool structures with multiple behaviour
tonstraints is feasible and the method proposed in this work can be
used as a unified design procedure by machine tool structural de-

Journal of Engineering for Industry

signers. Although weight minimization is considered as the objective
in the present work, other criteria like maximization of static rigidity,
fundamental natural frequency and regenerative chatter stability can
also be considered in the same manner.
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