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Self-Modelling Flows of Non-Newtonian Viscous
Liquids

0. An interesting class of exact solutions of the
equations of motion of viscous liquids pertains to
the case of flows with axial symmetry so that the
derivatives of the functions with respect to one of
the coordinates vanish. If r, 0, 9 are the spherical
polar coordinates of a point with 6 measured from
the axis of symmetry, one way of seeking exact
solutiong is to assume that each of the dependent
functions such as the velocity components and pres-
sure can be represented as a product of a power of
the radius r and a function of the angle 6. Following
L. A. Vuuis and V. P.Kasgarov [1], we may refer
to such flows as ‘self-modelling flows’.

In the present paper we seek the self-modelling
solutions of the equations of motion of non-Newtonian
viscous liquids of the RemNER-RIVLIN type for which
the constitutive relation connecting the stress and
rate of deformation tensors is
(1) Lj=—p0;j+2pdij+ 2pcdiadaj.

As in [1] the problem reduces to the solution of ordi-
nary differential equations for the function depending
on 8. We find that the only possible solutions of the
form vy = = f(0) arise when n = 2 or 4. Both these
are also solutions of the NAVIER-STOKES equation
goverping the motion of linear (Newtonian) viscous
liquids. In the latter case there is yet another self-
modelling solution corresponding to » =1 (cf. [2]),
but there is no analogous solution when non-linear
viscous terms are included in ‘the equations of motion.

1. I (u,v,0) are the velocity components in the
directions of the spherical polar coordinates r, 0, ¢
and are dependent only on r and 6, the equations of
steady motion of non-Newtonian viscous liquids of
the REINER-RIVLIN type are given by
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is the Laplacian operator.
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From the continuity
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we can write the velocity components in terms of
the SToKES’s stream function y(r, 8) in the form
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On eliminating the pressure p from the equations
of motion (2), (3) we obtain the following equation
for the stream function:
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2, To seek the self-modelling solutions of the
equations (2), (3) we put

(8) v =vrnf(0)

in (6) and after some calculation we have

(9)  r2n=5£,(6) = a4 () + v, 1217 f4(6),
where

(10a) f,(0) = sin 8 {n F(0) ;i% [cosec? 6 X

X (#(8) — cot 6 f(6) + n (n — 1) /(6))]
— (n — 4) cosec? 6 /(6) [{"(6) — cot 8 '(6)

Fam—1 f(en} :
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(10b) f,(8)= (W — cot ed_f) 4 (n—2)(n — 3)) X

X (f(6) — cot 6 f(6) + n (n — 1) f(6))
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and To determipe such a 'cl&ss of flows, we have to consider
(100) fs(g) — — cosec? 0 (n cos 0 f(o) — gin 8 f/(o)) the followmg equatlons (Cf. (6))
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In order that the function in (8) may be compatible
with the equations of motion (2), (3) the equation(9)
must be identically satisfied and we consider the
following cases.

(a) % arbitrary, and f(0) is a solution common to
f1(8) =0, f{6) =0, f2(6) = 0;

n = 1, and f(0) is a solution common to

() — f(6) =0,  f4(6) =0;

n = 3, and {(6) is.a solution common to

h(0) =0, £:00) -+ v f3(6) = 0.
The equation f,(8) = 0 gives
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(b)

{c)

+n(n—l))f(9)=0

and has the solution
(11)  f(6) = sin? 6 {¢;, Py, _;(cos 0) + ¢, @}, _;(cos 0)
+ ¢5 P} _g(cos 8) + ¢, @}, s(cos 6)}

with some modification when = = 0, 1, 2, 3. We may
easily see that f(0) in (11) satisfies the equations
£(0) = 0, {s(8) = 0 also if and only if » = 4 and then
we have the solution

(12) v = vrtsin? 6 [¢; Py(cos 8) + ¢, Qy(cos ) + ] .

From the above analysis it is clear that this is also
a solution of the NAVIER-STOKES equations of linear
viscous motion {(cf. [3]). We thus see that the stream
function (12} is compatible with the equations of
motion whether the fluid is inviscid or linear-
ly viscous or is of the REINER-RIvLIN type.
It is also noteworthy that this solution is self-additive
in all these three cases; i.e., the motion determined
by this solution is superposable on itself.

8. This raises the interesting guestion of determing
the totality of steady flows of the axially symmetric
type, the streamline patterns of which are common
to the three distinct types of flows viz., inviscid
flows, viscous flows and non-Newtonian viscous flows.

(13a,b) D2y =r2sin%6 F(y), DYr?sin?0 F(y)] =0,

and

\
0 (sin ) —a—w fo—sg -b-”e, F(W))
(13) — 2 or r 20 )
r a(r, 0)
cosec? § 8 sin8 8
T 08 6 T 5@) (r2sin? § F(y))2
2 dp sinf dy
+7 cosec 0 (cos 7} T _86)
. 8 cos § @
X (sm 0 w5 55) Fly) =0.

All these equations are automatically satisfied when
we take F(y) = a constant, and the solution (12)
corresponds to this choice. It is not clear whether
there is any other choice of F(y) compatible with
the equations (13a, b, c).

4, Whenn =1,y ==»rf(f) and we want a solution
{(6) common to the equations

fl(o) — (8 =0, fa(o) =0.
The former equation has the solution (cf. [2])
(14) ) =a(l+2)+ (1 —2)
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where z = cos 6 and «, 8, @ are constants. This is
not compstible with the equation f5(6) = 0 and hence
the conclusion that the equations of motion of non-
linear viscous liguids (of the RemNER-RIvLIN type) do
not admit a solution of the form y = r f(6); i. e,
there is no solution corresponding to the
laminar axially symmetric jet in REINER-
Riviin fluids.

5. When n =3 the equation f,(6) =0 can be
integrated once, leading to the relation

(15)  (f""(6) — cot 6 1'(6) + 6 {(6))* {(0) = c, (sin 6)°,

and further integration is not simple. We can however
check that f(0) = (sin 6)® is one solution of (15) and
this makes f;{(6) = 0 also, but does not fit into the
equation f,(8) = 0. We conclude that there is no
elementary solution common to the equations
£(6) = 0 and f,(8) + v.f(6) = 0.

6. From eq. (6) it is obvious that the stream function
determined by the equation D?y = 0 fits into the
equations (2) and (3) also. We may readily determine
the function f(6) in this case and this corresponds
to n = 2 and gives irrotational flow.
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