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KLEINE MITTEILUNGEN 
S. K. LAKSEIBSANA RAO 
Self-Modelling Flows of Non-Newtonian Viscous 
Liquids 
0. An interesting class of exact solutions of the 
equations of motion of viscous liquids pertains to 
the case of flows with axial symmetry so that the 
derivatives of the functions with respect to one of 
the coordinates vanish. If r,  0 , ~  am the spherical 
polar coordinates of a point with 6 measured from 
the axis of symmetry, one way of seeking exact 
solutions is to assume that each of the dependant 
functions such as the velocity components and pres- 
sure can be represented as a product of a power of 
the radius r and a function of the angle 8. Following 
L. A.VULIS and V.P.KASKAROV [l], we may refer 
to such flows as 'self-modelling flows'. 

In the present p&per we seek the mlf-modelling 
solutions of the equations of motion of non-Newtonian 
viscous liquids of the REMER-RIVLIN type for which 
the constitutive relation connecting the stress and 
rate of deformation tensors is 

As in [I] the problem reduces to the solution of ordi- 
nary differential equations for the function depending 
on 8. We find that the only possible solutions of the 
form cy = rn f ( 0 )  arise when n = 2 or 4. Both these 
are also solutions of the NAVIER-STOKES equation 
governing the motion of linear (Newtonian) viscous 
liquids. In the latter cam thero is yet another self- 
modelling solution corresponding to n = 1 (cf. [2]), 
but there is no analogous solution when aon-linear 
viecous terms are included in 'the equations of motion. 
1. If (u, v, 0) are the velocity componente in the 
directions of the spherical polar coordinah r ,  0, rp 
and are dependent only on r and 8, the equations of 
steady motion of non-Newtonian visc0,w liquids of 
the REMER-RIVLIN type are given by 

(1) t i j  = - P 6ij + 2 P dij  + 2 ~c dia daj - 

(2) au v au 3 1 BP 
ar r a0 r e a~ 

; re) ( u  cote  
T r + - -  T + Y "  

av v av u v  1 1 a p  ( 3 )  u - + - - + - = - - - -  
ar r a0 r e r a0 

. .  

where 

v = d e ,  vc = pcle and 

is the Laplacian. operator. Prom the continuity 
equation viz. 

au 2 1 av cote  -+p+--+- v = o  (4) ar r 80 r 

we can write the velocity components in terms of 
the STOKES'S stream function y(r,  0) in the form 

(5) e ae r ar ' 
COW e ay v=-- coseo 8 ay u = -- - - 

On eliminating the pressure p from the equations 
of motion (2), (3) we obtain the following equation 
for the stream function: 

where 
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8nd 
(1Oc) 

+ 2 cosec* 0 fl(0) - 3 (n - 1) (n sin 0 f ( 0 )  + 
fs (  0 )  = - coscc2 0 (n COB 0 f (  0) - sin 0 f '( 0)) 

[ 
d 

do + cos e /ye)) - [ c o ~ c z  e ( y ( e )  - cot o \ye) + 
+ n  (n-i)j(O)] - (n - 4) cosec2 0 (f"(0)- cot 0 f ' (O)+  

I d + x (n - 1) fw) (n sin e f (e )  + COB o !ye)) + 
- 3 (?a - 2 )  cosec e cot e [ / yo )  - cot o lye) + 
-1- n (n - 1) f ( O ) ] 2  + cosec 0 - [f"(e) - cot 0 f ' (0 )  + 
+ n (n - 1) f(6)jZ + 2 cosec 0 ( 7 ~  cos 0 f (0)  - 

- sin e fie)) (n - 4) cosec o (yyo) - cot e f(6) + 
+ n (n. - 1) / ( e l )  + cos e --- (COSCCZ e (/'ye) - 

d 
d0 

d 
[ 

de 

- cot 0 f ' ( 0 )  f n ( n  - 1) f(0)) . 1 
In order that the function in (8) may be competible 

with the equations of motion (2), (3) the equation(9) 
must be identically sstisfied and we consider the 
following CMM. 

(a) n arbitrary, and f(0) is a solution common to 

M O )  = 0 ,  f2(e) = 0 ,  f,toi = 0; 

fl(o) - ~ e )  = 0, 

fm = 0 w) -t V, = 0 . 

(b) n = 1, and f ( 0 )  is a solution common to 

~ 0 )  = 0; 

( c )  

The equation f Z ( @  = 0 gives 

n = 3, and f (e)  is.a solution common to  

with some modification when n = 0, 1,2 ,3 .  We may 
easily see that f (0) .  in (11) satisfies the equations 
f , ( O )  = 0, f,(O) = 0 also if and only if n = 4 and then 
we have the solution 

(12) tp = Y + sin2 8 [el P;(cos 0 )  + c2 Q;(cos 6) + a] , 
From the above analysis it is clear that this is also 
a solution of the XAVIER-STOKES equations of linear 
viscous motion (cf. [3]). We thus see that t,he stream 
function (12) is compatible with the equations of 
motion whether  t h e  f lu id  is inv isc id  o r  l i nea r -  
l y  viscous or  is  of t h e  REINER-RIVUN type .  
It is also noteworthy that this solution is self-additive 
in all these three cases; i. e., the motion determined 
by thia solution is superpoaable on itself. 

8. This raises the interesting question of determing 
the totality of steady flows of the axially symmetric 
type, the streamline patterns of which are common 
to the three distinct types of flows viz., inviscid 
flows, viscous flows and non-Newtonian viscous flows. 

To determine such a class of flows, we have to consider 
the following equstions (cf. (6)) 

(13a, b) D2 y = r2 sinZ 0 F ( y )  , P [ r 2  sin2 0 P ( y ) ]  = 0 ,  
and 

+ 2 coWc o (,,, o at alp - . sin -- 0 -- ay 
r ao)  x 

a COB e a x sin 0 - + - F(y)  = 0 .  ( ar r ae) 

All these equations are automatically satisfied when 
we take F ( y )  = a constant, and the solution (12) 
corresponds to this choice. It is not clear whether 
there is any other choice of F(tp) compatible with 
the equations (13a, b, c). 

4. ' When n = 1, = Y r f (0)  and we want a solution 
f ( 0 )  common to the equations 

1 ~ ( 0 )  - w) = 0 

(14) m = a (1 + 2) + B (1 - 

I3(e) = 0. 
The former equation has the solution (cf. [2]) 

whero x = cos 0 and u ,  p, a &re constants. This is 
not compatible with the equation fs(e) = 0 and hence 
the conclusion that the equations of motion of non- 
linear viscous liquids (of the REIXER-RNIN type) do 
not admit a solution of the form y = r f ( 0 ) ;  i. e., 
t h e r e  i s  n o  so lu t ion  corresponding t o  t h e  
l amina r  ax ia l ly  symmet r i c  j e t  in REINEH- 
KIVLIN fluids. 

6. When n = 3 the equation fl(0) = 0 can be 
integrated once, leading to the relation 

(15) (f'ye) - cot 0 f ' (0 )  + 6 f(0))' f ( 0 )  = c1 (sin e)a , 
and further integration is not simple. We can however 
check that f(0) = (sin is one solution of (15) and 
this makes = 0 also, but does not f i t  into the 
equation fz(0) = 0. We conclude that there is no 
elementary solution common to the equations 
h(0) = 0 and f&e) + vCfs(B)  = 0 .  

6. From eq. (6) it is obvious that the stream function 
determined by the equation Dz y = 0 fits into the 
equations (2) and (3) also. We may readily determine 
the function f (0)  in this cam and thia corresponds 
to n = 2 8nd gives irrotational flow. 
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