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KLEINE MITTEILUNGEN 
S. K. LAKSHMANA RAO 
On the Motion of an Infinite Cylinder 
in Rotating "on-Newtonian' Viscous Fluid 

The simple shear flow of pseudo-plastic and dila- 
tant fluids is expressed to  a considerable degree of 
accuracy by the WAELE-OSTWALD'S formula 

where t is the shearing stress, du/dy is the velocity 
gradient, ppsu corresponds to  the viscosity coefficient 
and has the dimensions (mass). / (1ength)n (time)zn - 1. 
The parameter n occurring in the formula (1) is a 
constant, denoting the rheological constant for the 
fluid and is usually a non-integral quantity. I n  the 
special case of n = 1 the relation (1) is linear and this 
situation corresponds t o  the case of NEwToNian 
fluids. The flow is non-Nl3wToNian for other values 
of n and is called pseudo-plastic if 7i > 1 and is called 
dilatant if n < 1.  The constitutive relation connect- 
ing the stress and rate of strain components is non- 
linear in these cases and a mathematical study of the 
hydrodynamical propert,ies of such fluids has been 
initiated by Y. TOMITA [l] by adopting the law 

t . .  - - p 6. .  + 7 e.. ( 2 )  $ 1  - 2 1  $ 7  

between the stress tensor tij and the rate of deforma- 
tion tensor eii = (ui,j + uj,i)/2. Here p is a scalar 
quantity which can be identified with the mean 
pressure and 7 is an arbitrary scalar function of the 
invariants of the rate of strain matrix eij. For incom- 
pressible fluids the first invariant 1, = div a = 0 
and in plane motions the third invariant I ,  = det eiii 
also vanishes. In  [l] Y. TOMITA has shown that  the 
equations of motion for non-NEwToNian fluids gover- 
ned by the constitutive relation (2) can, under some 
simplifying assumptions, be obtained by means of a 
variation principle and this procedure gives an approxi- 
mate method of solution of the problem of flow of 
such fluids past bodies of different shapes. 

I n  the present note we examine the two-dimensional 
motion of an infinite cylinder in such pseudo-plastic 
or dilat,ant fluids governed by the constitutive relation 

t p 6 . . + 2 p i / n  G ~ . .  (3) 2)  - 1.1 p s u  $ 1  
with 

(4) 

1 - n  

o = (2 (e2z + e i y )  + 4 e2g> 2 n  
1 - n  

and show that i f  a uniform rotation is imposed on the 
whole system, the motion of the cylinder is not 
altered. This property was first established for inviscid 
fluids by Sir GEOFFREY TAYLOR [2] and was later 
shown to remain valid also in the case of viscous 
fluids by W. R. DEAN [3]. 

Using the constitutive relation (3) we obtain the 
equations of motion in the form 

a?, 
au)  ax 

au alL 

( a t  ax ay (5a) e - + u - + v -  = - - + 2 p $ r u  

We compare the two-dimensional motion of an infinite 
rigid cylinder in rotating viscous fluid with a second 

motion derived from the former by the addition on 
the whole system of a rotation with constant angular 
velocity w .  If y1 is the stream function of the first 
motion with the velocity distribution u1 = - ay1/3?/, 
v1 = ayl/ax and mean pressure p ,  we have from (5a) 
and (5b) 

ax ax ay ay 
x { O d V 1 +  i l  (F~, - + ' 2 + 2 - -  a ~ ) a O  av, a@ 

where 
1 -n 

(7) 0 - 2 -  (2)' + 2 -  (y ' + - + -  %)"}" . 
At a point P of the boundary of the cylinder the 
velocity of the fluid is equal t o  that  of the cylinder. 
I n  particular, we get 

giving the velocity component along the outward 
normal n to  the contour of the cylinder, s denoting 
the direction of the tangent t o  the boundary. We may 
obtain the second motion from the first by the addi- 
tion on the whole system a rotation about the origin 0 
with constant angular velocity w. The liquid particle 
at the point (z, y) a t  time t in  the first motion is a t  
the same point in the second motion when referred to  
rotating axes. The velocity and acceleration are 
(&+) and (2, 3) in the former case and ( 2  - w y , 
$ + w a ) ,  ( % - 2 0 y - w z x ,  5 + 2 w k - w 2 y )  in 
the latter case in terms of LAaRANcian components. 
If u2 = - ay2/ay, v2 = ayz/ax are the (EuLERian) 
components of velocity in the second motion and 
(fi, g,), (I,, 9,) are the acceleration components in the 
first and second motions, we have 

The equations of the second motion are obtained from 
( 6 4 ,  (6b) on changing u,, vl, pl, 0, to  v,, P ~ ,  0, 
where p2 is the mean pressure of the second motion 
and 0, has the value 

1 --n 

dv, 2 %2 
(11) 2 - + 2  - + -+- [ r:)" (2r (Bz a x ) \  a 

From (9a), (9b) we see that 0, = 0, and obtain by 
subtraction 
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as in the case of inviscid fluids though thc present 
relations are between the mean pressures. If ( t x J 1 ,  
(tXu);, ( fuu) l  are the stress components in the first 
motion we have 

a u 
ax (t$J1 = - p ,  + 2 01 -2 , 

(tlll)l = - p1 + 2 P$l,"u 0 1  3. 
If 0 denotes the angle between the outward normal n 
to the cylinder and the x-axis, the components of the 
force exerted on an element ds of the boundary L 
of the cylinder in the first motion are 

{(txx)l 00s 0 i- (tX& sin 0 ,  (txuIl cos 0 + ( tud l  sin 0) ds 

per unit length of the cylinder. I n  view of the rela- 
tions 

(txx), = ( L X ) ,  - (Pz  - P l )  7 

( tyu) ,  = ( t y Y ) l  - (Pz - P1) f (txu), = (txuh 

we find that  the differences between the two stress 
systems arise only from the difference in the mean 
pressures. If (Fl, GI) is the force exerted on unit length 
of the cylinder and H I  is the moment of the liquid 
pressures about the mass-centre of the cross section 
of the cylinder in the first motion and F,, G,, H, denote 
the similar quantities in the second motion, we have 

F 2 - -p  1 - / (Pz  - P1)dY 

I' 

- 2 e W  - - 

L Ir 

Gz - GI = (p2 - ~ 1 )  & 
L s 

= 2 @ W y1 dx + @ W2 ( 2 2  + y2) a x ,  
L s I S  L 

H,  - H ,  = J ( p ,  - pl) [(y -yo) COB 0 - (z - xo) sin 01 ds, 

where (zo, yo) is the mass-centre of the cross section. 
The evaluation of the line integrals is exactly similar 
to  the case of inviscid fluids (cf. [a], [3]) and we obtain 

(13) 

(14) 

(15) 

L 

Pz - F, = - @ A  (WZX0 + 2 w G o ) .  

G, - GI = - e A (w 'YO - 2 w f )  , 
H,  - HI  == 0 ,  

where A denotes the area of cross section of the cylin- 
der. We thus see that  the forces due t o  the stresses 
on the cylinder in the second motion are the resul- 
tant  of the forces that act in the first motion and a 
force 

( -  wzxo - 2 e A  w G o ,  - e A w2y0 + 2~ A w .k0) 

thus confirming that  TAYLOR'S result for inviscid 
fluids holds also in the case of pseudo-plastic and dila- 
tant  fluids. 

R. K. RATHY 
Hydromagnetic Couette's Flow with Suction 
and Injection 

1. Basic  E q u a t i o n s  a n d  t h e i r  S o l u t i o n  
The problem of the flow between two parallel plates 

has been investigated by the various authors. In 
hydrodynamics it was first successfully attempted by 
COUETTE. Later HARTMANN and LAZARUS [I] in 
1937 investigated i t  under a transverse magnetic 
field. REGIRER [ 2 ]  has attempted the same problem 
for variable viscosity. Recently A. S. GUPTA [3] 
has studied the POISEUILLE flow including suction 
and injection and under a transverse magnetic field. 

In  this paper the problem has been investigated for 
the case when one plate is moving parallel to  itself 
with a constant velocity while the other is a t  rest. 
Here p, v, e and u denote the magnetic permeability, 
kinematic viscosity, density and electrical condncti- 
vity of the -fluid respectively and f(ux, v, 0), 
Z(H,, Ha, O), E(0, 0, Ez) ,  T(0, 0, Jz) stand €or fluid 
velocity, magnetic field and current field vectors, p 
is the pressure and T is temperature at a point. 
Let x-axis be parallel to  the plates and y-axis normal 
to  them. It is assumed that  an external magnetic 
field Ho is acting normal to  the plates i. e. along y-axis 
and the fluid is being injected a t  a constant velocity 
a t  the lower plate and is being sucked a t  the same rate 
at the upper plate. It is also assumed that  the motion 
is steady therefore all the dependent variables are 
independent of t and are function of y only except p .  
We take the pressure gradient along x-axis i. e. ap/ax 
t o  be a constant. Subjected to  these assumptions 
basic equations are reduced t o  
(1)  v a u 5 = - - - + v ~ + ~ ~  I ap a2ux p H~ aHx 

aY e ax ay2 4 n e  ay ' 

Integrating equation ( 2 )  we find that  

(4) P H i  p + ~ = const. 8 n  
This shows that  the sum of hydrostatic pressure and 
magnetic pressureis constant through out the medium. 

Now we transform the equations to  non-dimensional 
form with the help of relations: 
H x = H o H ,  u . ~ = u ~ u ,  V = ' I I L U ~ ,  i ~ = q L ,  

R , = ~ Z G / A U O L ,  

We get 

du dH 1 d2H 
6- d q  R, d$ * 

Eliminating u between ( 6 )  and ( 7 )  we obtain, 

= 7 n - - - -  (7 )  
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- ( M 2  - WL' R R,) dH - = P R R, . 
dll 

The solution of this differential equation is 

P R R ,  
11 + C 3 ?  H = c, eo  7 + c, eB o - ~ - _ _  

i M 2  - rn2 R R, (9) 




